5	oth reactions one of the products is copper chloride.
(a)	Describe how a sample of copper chloride crystals could be made from copper carbonate and dilute hydrochloric acid.
(b)	A student wanted to make 11.0 g of copper chloride.
(b)	A student wanted to make 11.0 g of copper chloride. The equation for the reaction is:
(b)	
(b)	The equation for the reaction is:
(b)	The equation for the reaction is: $CuCO_3 + 2HCI \rightarrow CuCl_2 + H_2O + CO_2$
(b)	The equation for the reaction is: $CuCO_3 + 2HCI \ \ \rightarrow \ CuCl_2 + H_2O + CO_2$ Relative atomic masses, A_r : H = 1; C = 12; O = 16; CI = 35.5; Cu = 63.5 Calculate the mass of copper carbonate the student should react with dilute hydrochloric
(b)	The equation for the reaction is: $CuCO_3 + 2HCI \ \ \rightarrow \ \ CuCl_2 + H_2O + CO_2$ Relative atomic masses, A_r : H = 1; C = 12; O = 16; CI = 35.5; Cu = 63.5 Calculate the mass of copper carbonate the student should react with dilute hydrochloric acid to make 11.0 g of copper chloride.
(b)	The equation for the reaction is: $CuCO_3 + 2HCI \ \ \rightarrow \ CuCl_2 + H_2O + CO_2$ Relative atomic masses, A_r : H = 1; C = 12; O = 16; CI = 35.5; Cu = 63.5 Calculate the mass of copper carbonate the student should react with dilute hydrochloric acid to make 11.0 g of copper chloride.
(b)	The equation for the reaction is: $CuCO_3 + 2HCI \ \ \rightarrow \ CuCl_2 + H_2O + CO_2$ Relative atomic masses, A_r : $H = 1$; $C = 12$; $O = 16$; $CI = 35.5$; $Cu = 63.5$ Calculate the mass of copper carbonate the student should react with dilute hydrochloric acid to make 11.0 g of copper chloride.

(c) The percentage yield of copper chloride was 79.1 %.

	Calculate the mass of copper chloride the student actually produced.	
	Actual mass of copper chloride produced = g	(2)
(d)	Look at the equations for the two reactions:	
	Reaction 1 $CuCO_3(s) + 2HCl(aq) \rightarrow CuCl_2(aq) + H_2O(l) + CO_2(g)$	
	Reaction 2 $CuO(s) + 2HCI(aq) \rightarrow CuCl_2(aq) + H_2O(I)$	
	Reactive formula masses: $CuO = 79.5$; $HCI = 36.5$; $CuCl_2 = 134.5$; $H_2O = 18$	
	The percentage atom economy for a reaction is calculated using:	
	Relative formula mass of desired product from equation × 100 Sum of relative formula masses of all reactants from equation	
	Calculate the percentage atom economy for Reaction 2.	
	Percentage atom economy = %	(3)

(e)	The atom economy for Reaction 1 is 68.45 %.	
	Compare the atom economies of the two reactions for making copper chloride.	
	City and the difference	
	Give a reason for the difference.	
		(1)
		(Total 14 marks)

Q2.Sodium carbonate reacts with dilute hydrochloric acid:

$$Na_2CO_3 + 2HCI \rightarrow 2NaCl + H_2O + CO_2$$

A student investigated the volume of carbon dioxide produced when different masses of sodium carbonate were reacted with dilute hydrochloric acid.

This is the method used.

- 1. Place a known mass of sodium carbonate in a conical flask.
- 2. Measure 10 cm³ of dilute hydrochloric acid using a measuring cylinder.
- 3. Pour the acid into the conical flask.
- 4. Place a bung in the flask and collect the gas until the reaction is complete.
- (a) The student set up the apparatus as shown in the figure below.

Identify the error in the way the student set up the apparatus.

escribe what would happen if the student used the apparatus shov	
	•••••
	•••••

(2)

(b) The student corrected the error.

The student's results are shown in the table below.

Mass of sodium carbonate in g	Volume of carbon dioxide gas in cm ³
0.07	16.0

0.12	27.5
0.23	52.0
0.29	12.5
0.34	77.0
0.54	95.0
0.59	95.0
0.65	95.0

	The result for 0.29 g of sodium carbonate is anomalous.	
	Suggest what may have happened to cause this anomalous result.	
		(1)
(c)	Why does the volume of carbon dioxide collected stop increasing at 95.0 cm ³ ?	
		(1)
(d)	What further work could the student do to be more certain about the minimum mass of sodium carbonate needed to produce 95.0 cm ³ of carbon dioxide?	
		(1)
(e)	The carbon dioxide was collected at room temperature and pressure. The volume of one mole of any gas at room temperature and pressure is 24.0 dm ³ .	
	How many moles of carbon dioxide is 95.0 cm ³ ?	

	Give your answer in three significant figures.	
	mol	
		(2)
(f)	Suggest one improvement that could be made to the apparatus used that would give more accurate results.	
	Give a reason for your answer.	
		(2)
(g)	One student said that the results of the experiment were wrong because the first few bubbles of gas collected were air.	
	A second student said this would make no difference to the results.	
	Explain why the second student was correct.	
		(2)
	(Total 11 n	narks)

Q3.This question is about chemical analysis.

(a) A student has solutions of three compounds, **X**, **Y** and **Z**.

The student uses tests to identify the ions in the three compounds.

The student records the results of the tests in the table.

			Test	
Compound	Flame test	Add sodium hydroxide solution	Add hydrochloric acid and barium chloride solution	Add nitric acid and silver nitrate solution
х	no colour	green precipitate	white precipitate	no reaction
Υ	yellow flame	no reaction	no reaction	yellow precipitate
z	no colour	brown precipitate	no reaction	cream precipitate

identify the two ions present in each compound, x , y and z .	
X	
Υ	
Z	
2	

(3)

(b) A chemist needs to find the concentration of a solution of barium hydroxide. Barium hydroxide solution is an alkali.

The chemist could find the concentration of the barium hydroxide solution using two different methods.

Method 1

- An excess of sodium sulfate solution is added to 25 cm³ of the barium hydroxide solution. A precipitate of barium sulfate is formed.
- The precipitate of barium sulfate is filtered, dried and weighed.
- The concentration of the barium hydroxide solution is calculated from the mass of barium sulfate produced.

Method 2

- 25 cm³ of the barium hydroxide solution is titrated with hydrochloric acid of known concentration.
- The concentration of the barium hydroxide solution is calculated from the result of the titration.

Compare the advantages and disadvantages of the two methods.	
	(5)
	(Total 8 marks)

Q4.Etching is a way of making printed circuit boards for computers.

Copper is a good conductor of electricity.

© Dario Lo Presti/Shutterstock

(2)

Printed circuit boards are made when copper sheets are etched using iron(III) chloride solution. Where the copper has been etched, only plastic remains.

	Expla	ain why.
(b)	Iron(III) chloride can be produced by the reaction shown in the equation:
	2	Fe + 3 Cl ₂ \rightarrow 2 FeCl ₃
	(i)	Calculate the maximum mass of iron(III) chloride (FeCl $_3$) that can be produced from 11.20 g of iron.
		Relative atomic masses (A,): CI = 35.5; Fe = 56.

(a)

Maximum mass of iron(III) chloride =g	_
(3))
(ii) The actual mass of iron(III) chloride (FeCl ₃) produced was 24.3 g.	
Calculate the percentage yield.	
(If you did not answer part (b)(i) assume that the maximum theoretical mass of iron(III) chloride (FeCl $_3$) is 28.0 g. This is not the correct answer to part (b)(i).)	
Percentage yield =%	
(1 (Total 6 marks)	•