M1. (a) (i) nucleus
(ii) diffusion
(b) increases / larger surface area (for diffusion) ignore large surface area to volume ratio
(c) (i) sugar / glucose
accept amino acids / other named monosaccharides
(ii) against a concentration gradient or from low to high concentration
(iii) (active transport requires) energy
(from) respiration
(d) minerals / ions accept named ion ignore nutrients do not accept water

Page 2

M2.
(a) contract / shorten
ignore relax
do not allow expand
to churn / move / mix food
accept peristalsis / mechanical digestion ignore movement unqualified
(b) 400
acceptable range 390-410
allow 1 mark for answer in range of 39 to 41 allow 1 mark for answer in range of 3900 to 4100
(c) to transfer energy for use
allow to release / give / supply / provide energy do not allow to 'make'/ \square produce'/ 'create’ energy allow to make ATP ignore to store energy
by (aerobic) respiration or from glucose
do not allow anaerobic
energy released for respiration = max 1 mark
(d) (i) to make protein / enzyme
ignore 'antibody' or other named protein
(ii) too small / very small
allow light microscope does not have sufficient magnification / resolution
allow ribosomes are smaller than mitochondria ignore not sensitive enough ignore ribosomes are transparent

M3. (a) Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also refer to the information in the Marking guidance, and apply a 'best-fit' approach to the marking.

0 marksNo relevant content.
Level 1 (1-2 marks)There is a brief description of at least one of the stages (pre-inoculation, inoculation, post-inoculation).

Level 2 (3-4 marks)There is a simple description of at least two stages and an explanation of at least one of them.

Level 3 (5-6 marks)There is a clear description of all three stages and an explanation of at least two of them.

Examples of Biology points made in the response:

Pre-inoculation

- Petri dish and agar sterilised before use
- to kill unwanted bacteria
- inoculating loop passed through flame / sterile swab
- to sterilise / kill (other) bacteria

Inoculation

- loop/swab used to spread/streak bacterium onto agar

Allow other correct methods, eg bacterial lawns

- lid of Petri dish opened as little as possible
- to prevent microbes from air entering

Post-inoculation

- sealed with tape
- to prevent microbes from air entering
- incubate
- to allow growth of bacteria
(b) (i) bacteria killed / destroyed ignore fights / attacks / stops growth / got rid of
(ii) Might be correct
largest area / space where no bacteria are growing allow most bacteria killed

Might not be correct
(need more evidence as) D may be harmful to people / animals / surfaces
ignore ref to cost / dangerous or harmful unqualified
or may work differently with different bacteria or disinfectants may be different concentrations ignore different amounts of disinfectant unless reference to different drop size
or may not last as long
ignore take longer to work
allow reference to anomalous result or not repeated

M4. (a) any two from:

- only one 'chromosome’
allow one strand of DNA
- circular
allow loop
- may have plasmids
- not in a nucleus / no nucleus
(b) (i) any one from:
- London is much higher or converse
- more variable / wider range
allow 'on average it is 5 / 6 times greater'
(ii) increases

Included figures must be correct
(iii) overall slight increase
accept 'doesn't change much'
variable / goes up and down
(c) (i) both axes correctly labelled
$x=$ Year
$y=$ Number of cases
correct points

$$
\begin{aligned}
& \text { all correct }=\mathbf{2} \text { marks } \\
& 1-2 \text { errors }=\mathbf{1} \text { mark } \\
& >2 \text { errors }=\mathbf{0} \text { marks }
\end{aligned}
$$

suitable line of best fit

accept straight line or smooth curve
(ii) doesn't fit the pattern / line of best fit
(d) provides immunity / protection (to TB)
ignore 'stops people catching it' ignore 'resistance'
prevents TB spreading
accept ref to herd immunity

M5. (a) (i) chloroplast

(ii) cell wall
(b) (i) osmosis
accept diffusion
(ii) cell wall (prevents bursting)
(c) (i) carbon dioxide
allow correct formula
glucose
allow sugar / starch
(ii) any two from:

- light sensitive spot detects light
- tells flagellum to move towards light
- more light $=$ more photosynthesis
(d) (cell has) larger SA:volume ratio
short (diffusion) distance
allow correct description
(diffusion) via cell membrane is sufficient / good enough or
flow of water maintains concentration gradient

M6. (a) (i) xylem
(ii) water
minerals / ions / named example(s) ignore nutrients
(b) (i) movement of (dissolved) sugar
allow additional substances, eg amino acids / correct named sugar (allow sucrose / glucose)
allow nutrients / substances / food molecules if sufficiently qualified ignore food alone
(ii) sugars are made in the leaves
so they need to be moved to other parts of the plant for respiration / growth / storage
(c) (i) mitochondria
(ii) for movement of minerals / ions

Do not accept 'water'
against their concentration gradient

