Q1. This apparatus is used for the reaction of copper oxide (CuO) with methane (CH₄).

(a) The symbol equation for this reaction is shown below.

$$4 \text{ CuO(s)} + \text{CH}_4(g)$$
 $4 \text{ Cu(s)} + 2 \text{ H}_2\text{O(g)} + \text{CO}_2(g)$

The water and carbon dioxide produced escape from the test tube.

Use information from the equation to explain why.

(1)

(b) (i) Calculate the relative formula mass (M_r) of copper oxide (CuO).

Relative atomic masses (A_r): O = 16, Cu = 64

.....

Relative formula mass $(M_r) = \dots$

(2)

(ii) Calculate the percentage of copper in copper oxide.

	Pe	ercentage of coppe	r =	%	
Mass of copper produced =		of copper that coul	d be produce	ed from 4.0 g	of copper
The mass of copper oxide used and the mass of copper produced were measured each time. The results are shown in the table. Experiment 1	Mass of copper				
The results are shown in the table. Experiment 1	The experiment was done three tim	es.			
Table 1 2 3 Mass of copper oxide used in g 4.0 4.0 4.0 Mass of copper produced in g 3.3 3.5 3.2 (i) Calculate the mean mass of copper produced in these experiments.					
Mass of copper oxide used in g 4.0 4.0 4.0 Mass of copper produced in g 3.3 3.5 3.2 (i) Calculate the mean mass of copper produced in these experiments.		the mass of coppe	r produced w	ere measure	ed each
Mass of copper oxide used in g 4.0 4.0 4.0 Mass of copper produced in g 3.3 3.5 3.2 (i) Calculate the mean mass of copper produced in these experiments.	time.	the mass of coppe	r produced w	ere measure	ed each
Mass of copper produced in g 3.3 3.5 3.2 (i) Calculate the mean mass of copper produced in these experiments.	time.			ere measure	ed each
(i) Calculate the mean mass of copper produced in these experiments.	time.	E	xperiment	T	ed each
	time. The results are shown in the table.	1	xperiment 2	3	ed each
	The results are shown in the table. Mass of copper oxide used in g	1 4.0	experiment 2 4.0	3 4.0	ed each

(c)

		(1)
(iii)	The three experiments gave different results for the amount of copper produced.	
(''')	This was caused by experimental error.	
	Suggest two causes of experimental error in these experiments.	
	1	
	2	
		(2)
	(Total 10	(2) marks)

Q2.Figure 1 shows the outer electrons in an atom of the Group 1 element potassium and in an atom of the Group 6 element sulfur.

Figure 1

(a) Potassium forms an ionic compound with sulfur.

Describe what happens when **two** atoms of potassium react with **one** atom of sulfur.

Give your answer in terms of electron transfer.

Give the formulae of the ions formed.

(5)

(b) The structure of potassium sulfide can be represented using the ball and stick model in **Figure 2**.

Figure 2

The ball and stick model is **not** a true representation of the structure of potassium sulfide.

iive one reason why.	

(c) Sulfur can also form covalent bonds.

Complete the dot and cross diagram to show the covalent bonding in a molecule of hydrogen sulfide.

Show the outer shell electrons only.

(2)

(1)

(d) Calculate the relative formula mass (M_r) of aluminium sulfate Al₂(SO₄)₃

Relative atomic masses (A_r): oxygen = 16; aluminium = 27; sulfur = 32

		Relative formula mass =	
	ovalent compounds such lectricity when molten.	as hydrogen sulfide have low melting po	ints and do not conduct
D	raw one line from each	property to the explanation of the prope	rty.
	Property	Explanation of property	
		Electrons are free to move	
		There are no charged particles free to move	
	Low melting point		
ļ		lons are free to move	
		Weak intermolecular forces of attraction	
	Does not conduct		

(2)

Bonds are weak

Bonds are strong

electricity when molten

(e)

(f) Ionic compounds such as potassium sulfide have high boiling points and conduct electricity when dissolved in water.

Draw **one** line from each property to the explanation of the property.

Property	Explanation of property
	Electrons are free to move
	There are no charged particles free to move
High boiling point	
	lons are free to move
	Weak intermolecular forces of attraction
Conduct electricity when molten	
	Bonds are weak
	Bonds are strong

(Total 14 marks)

(2)

(a)	Mag	gnesium oxide has the formula MgO.	
	(i)	Calculate the relative formula mass (M _r) of magnesium oxide.	
		Relative atomic masses: O = 16; Mg = 24.	
		Relative formula mass =	(2)
	(ii)	Calculate the percentage by mass of magnesium in magnesium oxide.	
	(11)	Calculate the percentage by mass of magnesium in magnesium oxide.	
		Percentage by mass of magnesium in magnesium oxide =%	
			(2)
	(iii)	Calculate the mass of magnesium needed to make 25 g of magnesium oxide.	
		Mass of magnesium =g	(1)
			(-)
(b)		students calculated that if they used 0.12 g of magnesium they should make 0.20 g of gnesium oxide.	
	The	y did this experiment to find out if this was correct.	

Q3.

Some students investigated magnesium oxide.

- The students weighed 0.12 g of magnesium ribbon into a crucible.
- They heated the magnesium ribbon.
- They lifted the lid of the crucible slightly from time to time to allow air into the crucible.
- The students tried to avoid lifting the lid too much in case some of the magnesium oxide escaped.
- When all of the magnesium appeared to have reacted, the students weighed the magnesium oxide produced.

The results of the experiment are shown below.

Mass of magnesium used in grams	0.12
Mass of magnesium oxide produced in grams	0.18

(i)	The mass of magnesium oxide produced was lower than the students had calculated.
	They thought that this was caused by experimental error.

Suggest	·				

ii)	The students only did the experiment once.	
	Give two reasons why they should have repeated the experiment.	
		(2)
		(Total 9 marks)

Q4. Some students did an experiment to find the relative formula mass (M_i) of a gas.

This is the method they used.

- The mass of the canister of gas was measured using a balance, which weighed to two decimal places.
- The measuring cylinder was filled with 1 dm³ of the gas from the canister.
- The mass of the canister of gas was measured again.
- The temperature of the laboratory was measured.
- The air pressure in the laboratory was measured.

The students repeated the experiment three times.

(a) The results for one of the experiments are shown in the table below.

Mass of the canister of gas before filling the measuring cylinder	53.07 g
Mass of the canister of gas after filling the measuring cylinder	51.21 g

Calculate the mass of the 1 dm³ of gas in the measuring cylinder.	
	• • •
Mass =g	

(1)

(b)	How	How could the results be made more precise?					
							(1)
(c)	gas.	students used their results are shown i			or the relative	formula mass (M _r) of this
Experime	nt		1	2	3	4	
Relative fo	ormula	mass (M,)	45.4	51.5	46.3	45.8	
	(i) (ii)	The four results at The students tho Suggest two cause	Mean = re different. ought this was b	ecause of exp	perimental eri	or.	(2)
	(iii)	It was important f Suggest why.	or the students	to repeat the	e experiment.		(2)

	(2 Total 9 marks)
	Relative formula mass =
	Neiative atomic masses. II = 1, C = 12.
	Relative atomic masses: H = 1; C = 12.
	Calculate the relative formula mass (M_r) of this gas. You should show your working.
(d)	The teacher told the students that the formula of the gas is C_3H_8

Q5. An experiment was done on the reaction of copper oxide (CuO) with methane (CH₄). Copper oxide Flame Methane -Test tube Heat (a) The equation for this reaction is shown below. 4CuO(s) CH₄(g) 4Cu(s) 2H₂O(g) CO₂(g) The water and carbon dioxide produced escapes from the test tube. Use information from the equation to explain why. (1) (b) (i) Calculate the relative formula mass (M_r) of copper oxide (CuO). Relative atomic masses (A_r) : O = 16; Cu = 64. Relative formula mass $(M_r) = \dots$ (2) (ii) Calculate the percentage of copper in copper oxide.

Percentage of copper = %

1	2	١

(iii)	Calculate the mass of copper that could be made from 4.0 g of copper oxide.	
	Mass of copper = g	(1)

(c) The experiment was done three times.

The mass of copper oxide used and the mass of copper made was measured each time.

The results are shown in the table.

	Experiment		
	1	2	3
Mass of copper oxide used in g	4.0	4.0	4.0
Mass of copper made in g	3.3	3.5	3.2

(i)	Calculate the mean mass of copper made in these experiments.			
	Mean mass of copper made =g	(1)		
(ii)	Suggest how the results of these experiments could be made more precise.			
		(1)		

(iii)	The three experiments gave slightly different results for the mass of copper made. This was caused by experimental error.
	Suggest two causes of experimental error in these experiments.
	1
	2
	(2
	(Total 10 marks

Q6. (a) The table gives information about two isotopes of hydrogen, hydrogen-1 and hydrogen-2.

	Hydrogen-1	Hydrogen-2
Atomic number	1	1
Mass number	1	2

An atom of hydrogen-1 is represented as: $oldsymbol{1}$

Show how an atom of hydrogen-2 is represented.

(b) (i) Calculate the relative formula mass (M_r) of water, H_2O

Relative atomic masses: H = 1; O = 16.

.....

Relative formula mass (M_r) =

(1)

(1)

(ii) Simple molecules like water have low boiling points.

Explain why, in terms of molecules.

.....

		(2)
(c)	Molecules of heavy water contain two atoms of hydrogen-2 instead of two atoms of hydrogen-1.	
	Explain why a molecule of heavy water has more mass than a normal water molecule. You should refer to the particles in the nucleus of the two different hydrogen atoms in your answer.	
	(Total 6 m	(2) narks)