M1.(a) (i) calcium oxide in either order carbon dioxide accept correct formulae (ii) $C(s) + CO_2(g) \rightarrow 2CO(g)$ allow multiples (iii) 210 (tonnes) award 3 marks for the correct answer with or without working allow ecf for arithmetical errors if answer incorrect allow up to **2** marks for any of the steps below: $160 \rightarrow 112$ $300 \rightarrow 112 / 160 \times 300$ or moles $Fe_2O_3 = 1.875 \times 10^6$ or 300 / 160moles of Fe = 3.75 (× 10^6) or 2 × moles Fe₂O₃ mass Fe = moles Fe × 56 105 (tonnes) scores 2 (missing 1:2 ratio) 420 (tonnes) scores 2 – taken M_r of iron as 112

(b) (i) aluminium is more reactive than carbon or carbon is less reactive than aluminium
 must have a comparison of reactivity of carbon and aluminium
 accept comparison of position in reactivity series.

(ii) (because) aluminium ions are positive ignore aluminium is positive

and are attracted / move / go to the negative electrode / cathode

where they gain electrons / are reduced / $Al^{3+} + 3e^- \rightarrow Al$ accept equation or statements involving the wrong number of electrons.

(iii) (because) the anodes or (positive) electrodes are made of carbon / graphite

1

1

1

1

1

3

1

1

oxygen is produced (at anode)

1

which reacts with the electrodes / anodes

do **not** accept any reference to the anodes reacting with oxygen from the air

equation $C + O_2 \longrightarrow CO_2$ gains **1** mark (M3)

1 [13]

M2.(a) lattice / giant structure

max 3 if incorrect structure or bonding or particles

1

ionic or (contains) ions

1

Na⁺ and Cl⁻

accept in words or dot and cross diagram: must include type and magnitude of charge for each ion

1

electrostatic attraction

allow attraction between opposite charges

1

(b) hydrogen

allow H₂

1

sodium hydroxide

allow NaOH

1

- (c) any **one** from, eg:
 - people should have the right to choose
 - insufficient evidence of effect on individuals
 - individuals may need different amounts.

allow too much could be harmful

ignore religious reasons

ignore cost

ignore reference to allergies

1

(d) (i) one bonding pair of electrons

accept dot, cross or e or - or any combination, eg

	6 unbonded electrons on each atom	1			
(ii)	simple molecules				
	max 2 if incorrect structure or bonding or particles				
	accept small molecules				
	accept simple / small molecular structure				
		1			
	with intermolecular forces				
	accept forces between molecules				
	must be no contradictory particles				
	,,,	1			
	which are weak or which require little energy to overcome – must be linked to second marking point				
	reference to weak covalent bonds negates second and third marking points				
	g power	1			
(iii)	iodine has no delocalised / free / mobile electrons or ions	1			
		-			
	so cannot carry charge				
	if no mark awarded iodine molecules have no charge gains 1 mark				

[14]

M3.(a) (i) any one from: one electron in the outer shell / energy level form ions with a 1+ charge (ii) any **one** from: hydrogen is a non-metal (at RTP) hydrogen is a gas hydrogen does not react with water hydrogen has only one electron shell / energy level hydrogen can gain an electron or hydrogen can form a negative / hydride / H⁻ion hydrogen forms covalent bonds or shares electrons accept answers in terms of the Group 1 elements (b) (i) (bromine) gains electrons *it = bromine* do **not** accept bromide ion gains electrons ignore loss of oxygen (ii) I₂ must both be on the right hand side of the equation + 2e⁻ $2l^{-}-2e^{-} \rightarrow l_{2}$ for **2** marks

(iii) fluorine is the smallest atom in Group 7 **or** has the fewest energy levels in Group 7 **or** has the smallest distance between outer shell and nucleus the outer shell **must** be mentioned to score 3 marks

1

1

1

1

1

fluorine has the least shielding ${f or}$ the greatest attraction between the nucleus and the outer shell

1

therefore fluorine can gain an electron (into the outer shell) more easily

1

[8]

M4.		(a)	52.9(411765) / 53 correct answer with or without working = 2 marks if answer incorrect allow 2 x 27= 54 or 27/102 x 100 or 26.5 fo mark	r 1 2
	(b)	(i)	because it lowers the melting point (of the aluminium oxide) allow lowers the temperature needed do not accept lowers boiling point	1
			so less energy is needed (to melt it) accept so that the cell / equipment does not melt	1
		(ii)	2 O ²⁻ on left hand side accept correct multiples or fractions	1
			4e on right hand side accept -4e on left hand side	1
		(iii)	because the electrode reacts with oxygen or because the electrode burns	1
			to form carbon dioxide or electrode made from carbon / graphite	1

M5. (a) any **two** from:

- outer shell electrons / electrons in highest energy level (in metals)
- electrons are delocalised / sea of electrons
- electrons are free or electrons move <u>around</u>
 or electrons are free to flow or electrons attracted to positive terminal
- electrons carry charge / current or electrons form the current / electrons transfer charge / electrons pass charge

ignore electrons carry electricity
ignore reference to positively charged atoms / ions
if they state electrons have +ve charge = max 1 mark
if they state covalent bonding then max 1 mark

2

(b) ions can move / are attracted to electrode accept ions are free allow 'they' for ions

or

attracted to named electrode

or

ions are charged **or** ions form / carry the current **or** ions form the charge

1

(c) (i) electron gain

ignore hydrogen reduces charge

1

(ii) sodium hydroxide **or** NaOH **or** caustic soda do **not** allow hydroxide alone

[6]

M6.		(a)	(i)	any one from:	
			•	they are positive / cations	
			•	they are H⁺	
			•	opposite charges attract ignore atom	
					1
		(ii)	ро	tassium is more reactive (or reverse)	
				assume 'it' refers to hydrogen	
				allow potassium reacts <u>with</u> water	
				allow potassium is very reactive or most reactive metal / element	
				allow hydrogen gains electrons more easily / is reduced more easily	
				accept potassium is higher up the reactivity series	1
	(b)	6 a	i nd 2	accept correct multiples and fractions	1
	(c)	(i)	the	e reaction / it is reversible or a description of a reversible reaction	
				allow 'it is an equilibrium'	
				allow reversible symbol drawn correctly	
				allow 'the reverse / back reaction'	1
		(ii)	litl	hium nitride	
			ass	sume that 'it' or if they do not specify means lithium nitride	
			ass	sume lithium / lithium nitrate refers to lithium nitride	
			•	hydrogen is bonded / held / absorbed / has formed a compound / reacted with lithium nitride	

plus one of:

- does not explode / cause a fire
- is not free / less hydrogen
- is not under pressure
- does not leak
- is only released slowly

 compound of hydrogen with lithium nitride / product is (more) stable / less reactive / less chance of a reaction accept converse for hydrogen as below assume that gas / hydrogen means gas in the cylinder

> hydrogen (in cylinder) / gas is not bonded / held absorbed / in a compound / reacted with lithium nitride

plus one of:

- can explode / cause a fire
- is free
- is under pressure
- can leak
- releases quickly

(d) (i) loss of an electron **or** loses electrons do not accept any ref. to oxygen

(ii) full outer shell of 8 electrons on circle need not be paired can be ×, dot or e do not accept if extra electrons added to inner shell

[10]

Page 12

1

1

1

1