M1.	(a)	(i)	chloroplast	1
		(ii)	cell wall	1
	(b)	(i)	osmosis accept diffusion	1
		(ii)	cell wall (prevents bursting)	1
	(c)	(i)	carbon dioxide allow correct formula	1
			glucose allow sugar / starch	1
		(ii)	 any two from: light sensitive spot detects light tells flagellum to move towards light 	
			 more light = more photosynthesis 	2
	(d)	(cell	has) larger SA:volume ratio	1

short (diffusion) distance

allow correct description

(diffusion) via cell membrane is sufficient / good enough

or

flow of water maintains concentration gradient

[11]

1

M2. (a) LHS = water

RHS = glucose

1

1

- (b) any **three** from:
 - (measure) temperature

ignore reference to fair test

- to check that the temperature isn't changing
- rate of reaction changes with temperature
- temperature is a variable that needs to be controlled allow lamp gives out heat

3

(c) (i) 10

correct answer = 2 marks allow 1 mark for: $\frac{(10+9+11)}{3}$

allow **1** mark for correct calculation without removal of anomalous result ie 15

2

1

2

1

(ii) graph:

allow ecf from (c)(i)

label on y-axis as 'number of bubbles per minute'

three points correct = 1 mark
 allow ± 1 mm

four points correct = **2** marks

line of best fit = smooth curve

 (iii) as distance increases, rate decreases – pro allow yes between 20 – 40 but should be a straight line / but line curves - con / not quite pro allow not between 10 - 20 if line of best fit is straight line, allow idea of poor fit

- (d) any four from:
 - make more profit / cost effective
 - raising temp. to 25 °C makes very little difference at 0.03% CO2
 - (at 20 °C) with CO₂ at 0.1%, raises rate

 - (at 20 °C with CO₂ at 0.1%) \rightarrow >3x rate / rises from 5 to 17 although 25 °C \rightarrow higher rate, cost of heating not economical
 - extra light does not increase rate / already max. rate with daylight

accept ref to profits c.f. costs must be favourable

[17]

M3. (a) to kill virus or to prevent virus spreading

> (b) take (stem) cells from meristem or tissue culture *allow take cuttings*

(c) use Benedict's solution

glucoses turns solution blue to orange

(d) Level 2 (3–4 marks):

A detailed and coherent explanation is provided. The student makes logical links between clearly identified, relevant points that explain why plants with TMV have stunted growth.

Level 1 (1–2 marks):

Simple statements are made, but not precisely. The logic is unclear.

0 marks:

No relevant content.

Indicative content

- less photosynthesis because of lack of chlorophyll
- therefore less glucose made
 - SO
- less energy released for growth
- because glucose is needed for respiration and / or
- therefore less amino acids / proteins / cellulose for growth
- because glucose is needed for making amino acids / proteins / cellulose

4

1

1

1

M4.	(a)	6H₂O in the correct order		
				1
		C ₆ H ₁₂	2 O 6	1
	(b)	(i)	control do not accept 'control variable' allow: to show the effect of the organisms or to allow comparison	
			or to show the indicator doesn't change on its own	
				1
		(ii)	snail respires	1
			releases CO ₂	1
		(iii)	turns yellow	1
			plant can't photosynthesise so CO_2 not used up	1
			but the snail (and plant) still respires so CO_2 produced	1 [8]

M5.

(a) methane is produced

ignore bad smell

which is a greenhouse gas / causes global warming

- (b) (9.80 / 0.20 = 49 therefore) 49:1
- (c) horse (manure) allow ecf from **11.2**

closest to 25:1 (ratio)

(d) Level 3 (5–6 marks):

A detailed and coherent explanation is given, which logically links how carbon is released from dead leaves and how carbon is taken up by a plant then used in growth.

Level 2 (3–4 marks):

A description of how carbon is released from dead leaves and how carbon is taken up

by a plant, with attempts at relevant explanation, but linking is not clear.

Level 1 (1–2 marks):

Simple statements are made, but no attempt to link to explanations.

0 marks:

No relevant content.

Indicative content

statements:

- (carbon compounds in) dead leaves are broken down by microorganisms / decomposers / bacteria / fungi
- photosynthesis uses carbon dioxide

explanations:

- (microorganisms) respire
- (and) release the carbon from the leaves as carbon dioxide
- plants take in the carbon dioxide released to use in photosynthesis to produce glucose

1

1

1

use of carbon in growth:

- glucose produced in photosynthesis is used to make amino acids / proteins / cellulose
- (which are) required for the growth of new leaves

(e) any **three** from:

•

(storage conditions)

- (at) higher temperature / hotter
- (had) more oxygen
- (had) more water / moisture
 - (contained) more microorganisms (that cause decay)

allow reference to bacteria / fungi / mould

[13]

3