M1. (a)	add exo	cess copper carbonate (to dilute hydrochloric acid) accept alternatives to excess, such as 'until no more reacts'	1
		filter (to remove excess copper carbonate) <i>reject heat until dry</i>	1
		heat filtrate to evaporate some water or heat to point of crystallisation accept leave to evaporate or leave in evaporating basin	1
		leave to cool (so crystals form) until crystals form	1
	(b)	must be in correct order to gain 4 marks M _r CuCl ₂ = 134.5 correct answer scores 4 marks	1
		moles copper chloride = (mass / <i>M</i> _r = 11 / 134.5) = 0.0817843866	1
		<i>M</i> _r CuCO ₃ = 123.5	1

	accept 10.1 with no working shown for 4 marks				
(c)	79.1 × 11.0				
	or				
	11.0 × 0.791	1			
	8.70 (g)	1			
	accept 8.70(g) with no working shown for 2 marks				
(d)	Total mass of reactants = 152.5	1			
	<u>134.5</u>				
	152.5				
	allow ecf from step 1	1			
	88.20 (%)	1			
	allow 88.20 with no working shown for 3 marks				
(e)	atom economy using carbonate lower because an additional product is made or carbon dioxide is made as well				
	allow ecf	1			

[14]

the acid would go into the water **or** the acid would leave the flask or go up the delivery tube

ignore no gas collected

- (b) any one from:
 - bung not put in firmly / properly •
 - gas lost before bung put in •
 - leak from tube •
- all of the acid has reacted (c)
- (d) take more readings in range 0.34 g to 0.54 g

take more readings is insufficient ignore repeat

(e) <u>95</u> 24000 1 0.00396

or 3.96×10^{-3} 1

1

1

1

1

acce	pt 0.00396	or 3.96 >	× 10 ⁻³	with	no working	shown	for 2	marks
							,	

(f) use a pipette / burette to measure the acid

1

1

1

1

because it is more accurate volume than a measuring cylinder
or
greater precision than a measuring cylinder or
use a gas syringe to collect the gas
so it will not dissolve in water
or use a flask with a divider accept description of tube suspended inside flask

so no gas escapes when bung removed

(g) they should be collected because carbon dioxide is left in flask at end

and it has the same volume as the air collected / displaced

[11]

(d) titrations 3, 4 and 5 or $\frac{27.05 + 27.15 + 27.15}{3}$

1

27.12 cm³

allow 27.1166 with no working shown for **2** marks

(e) Moles $H_2SO_4 = conc \times vol = 0.00271$ allow ecf from 8.4

> Ratio H_2SO_4 :NaOH is 1:2 or Moles NaOH = Moles $H_2SO_4 \times 2 = 0.00542$

Concentration NaOH = mol / vol = 0.00542 / 0.025 = 0.2168

0.217 (mol / dm³) accept 0.217 with no working for **4** marks

accept 0.2168 with no working for 3 marks

(f) $\frac{20}{1000} \times 0.18 = \text{no of moles}$ or $0.15 \times 40 \text{ g}$ 0.144 (g)

accept 0.144g with no working for 2 marks

1

1

1

1