M1.(a) add excess copper carbonate (to dilute hydrochloric acid) accept alternatives to excess, such as 'until no more reacts'
filter (to remove excess copper carbonate) reject heat until dry
heat filtrate to evaporate some water or heat to point of crystallisation accept leave to evaporate or leave in evaporating basin
leave to cool (so crystals form)
until crystals form
must be in correct order to gain 4 marks
(b) $M_{r} \mathrm{CuCl}_{2}=134.5$
correct answer scores 4 marks
moles copper chloride $=\left(\right.$ mass $\left./ M_{r}=11 / 134.5\right)=0.0817843866$

$$
M_{r} \mathrm{CuCO}_{3}=123.5
$$

# (c) $\frac{79.1}{100} \times 11.0$ <br> or <br> $11.0 \times 0.791$ 

8.70 (g)
accept $8.70(\mathrm{~g})$ with no working shown for 2 marks
(d) Total mass of reactants $=152.5$
134.5
152.5
allow ecf from step 1
88.20 (\%)
allow 88.20 with no working shown for 3 marks
(e) atom economy using carbonate lower because an additional product is made or carbon dioxide is made as well
allow ecf

M2.(a) (delivery) tube sticks into the acid
the acid would go into the water or the acid would leave the flask or go up the delivery tube ignore no gas collected
(b) any one from:

- bung not put in firmly / properly
- gas lost before bung put in
- leak from tube
(c) all of the acid has reacted
(d) take more readings in range 0.34 g to 0.54 g


## take more readings is insufficient

ignore repeat
(e) $\underline{95}$

24000
(f) use a pipette / burette to measure the acid
because it is more accurate volume than a measuring cylinder or
greater precision than a measuring cylinder
or
use a gas syringe to collect the gas
so it will not dissolve in water
or
use a flask with a divider
accept description of tube suspended inside flask
so no gas escapes when bung removed
(g) they should be collected because carbon dioxide is left in flask at end
and it has the same volume as the air collected / displaced

M3.(a) (sulfuric acid is) completely / fully ionised

In aqueous solution or when dissolved in water
(b) $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
allow multiples
1 mark for equation
1 mark for state symbols
(c) adds indicator, eg phenolpthalein / methyl orange / litmus added to the sodium hydroxide (in the conical flask)
do not accept universal indicator
(adds the acid from a) burette
with swirling or dropwise towards the end point or until the indicator just changes colour
until the indicator changes from pink to colourless (for phenolphthalein) or yellow to red (for methyl orange) or blue to red (for litmus)
(d) titrations 3, 4 and 5
or
$\frac{27.05+27.15+27.15}{3}$

## $27.12 \mathrm{~cm}^{3}$

accept 27.12 with no working shown for $\mathbf{2}$ marks
allow 27.1166 with no working shown for $\mathbf{2}$ marks
(e) Moles $\mathrm{H}_{2} \mathrm{SO}_{4}=$ conc $\times$ vol $=0.00271$
allow ecf from 8.4

Ratio $\mathrm{H}_{2} \mathrm{SO}_{4}: \mathrm{NaOH}$ is $1: 2$
or
Moles $\mathrm{NaOH}=$ Moles $\mathrm{H}_{2} \mathrm{SO}_{4} \times 2=0.00542$

Concentration $\mathrm{NaOH}=\mathrm{mol} / \mathrm{vol}=0.00542 / 0.025=0.2168$
$0.217\left(\mathrm{~mol} / \mathrm{dm}^{3}\right)$
accept 0.217 with no working for 4 marks
accept 0.2168 with no working for $\mathbf{3}$ marks
(f) $\frac{20}{1000} \times 0.18=$ no of moles
or
$0.15 \times 40 \mathrm{~g}$
0.144 (g)

