Q1.Scientists investigated how exercise affects blood flow to different organs in the body.
The scientists made measurements of blood flow to different organs of:

- a person resting in a room at $20^{\circ} \mathrm{C}$
- the same person, in the same room, doing vigorous exercise at constant speed on an exercise cycle.

The table shows the scientists' results.

Organ	Blood flow in cm	
	resting	doing vigorous exercise
Brain	750	750
Heart	250	1000
Muscles	1200	22000
Skin	500	600
Other	3100	650

(a) In this investigation, it was better to do the exercise indoors on an exercise cycle than to go cycling outdoors on the road.

Suggest two reasons why.
Do not include safety reasons.
1
\qquad
\qquad
2. \qquad
\qquad
\qquad
(b) Blood flow to one organ did not change between resting and vigorous exercise.

Which organ? \qquad

Page 2

(c) (i) How much more blood flowed to the muscles during vigorous exercise than when resting?
\qquad
\qquad
Answer = \qquad cm^{3} per minute
(ii) Name two substances needed in larger amounts by the muscles during vigorous exercise than when resting.

1
2 \qquad
(iii) Tick (\checkmark) one box to complete the sentence.

The substances you named in part (c)(ii) helped the muscles to
make more lactic acid.

respire aerobically.

make more glycogen.

(iv) The higher rate of blood flow to the muscles during exercise removed larger amounts of waste products made by the muscles.

Which two substances need to be removed from the muscles in larger amounts during vigorous exercise?

Tick (\checkmark) two boxes.

Amino acids

Carbon dioxide

Glycogen

Lactic acid

(d) The total blood flow was much higher during exercise than when resting.

One way to increase the total blood flow is for the heart to pump out a larger volume of blood each beat.

Give one other way to increase the blood flow.
\qquad
\qquad

Q2. An athlete did a 6-month training programme.
The graph shows the effect of the same amount of exercise on his heart rate before and after the training programme.

(a) (i) What was the maximum heart rate of the athlete during exercise before the training programme?
beats per minute
(ii) Give two differences between the heart rate of the athlete before and after the training programme.

After the training programme
Difference 1 \qquad
\qquad
Difference 2
(b) Which two substances need to be supplied to the muscles in larger amounts during exercise?

Tick (\checkmark) two boxes.

Carbon dioxide

Glucose

Lactic acid

Oxygen

Urea

Q3. This question is about what happens during decay.
Draw a ring around the correct word to complete each sentence.
(a) After living things die, they are decayed by $\quad \begin{aligned} & \text { animals. } \\ & \text { microorganisms. } \\ & \text { plants. }\end{aligned}$
(1)
(b) Decay happens faster when there is plenty of oxygen and conditions are $\quad \begin{aligned} & \text { cold. } \\ & \text { dry. } \\ & \text { moist. }\end{aligned}$
(c) During decay carbon dioxide is produced by

osmosis.
respiration.
photosynthesi
s.

(d) Decay releases mineral salts into the soil.

These mineral salts are absorbed by plant | eaves. |
| :--- |
| roots. |
| stems. |

Q4. The diagrams show four types of cell, A, B, C and D. Two of the cells are plant cells and two are animal cells.
A

B

(a) (i) Which two of the cells are plant cells?
Tick (\checkmark) one box.

A and B \square

A and D \square

C and D \square

(ii) Which part is found only in plant cells?

Draw a ring around one answer.
cell membrane cell wall nucleus
(b) (i) Which cell, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}, is adapted for swimming?
(ii) Which cell, A, B, C or D, can produce glucose by photosynthesis? \square
(c) Cells A, B, C and D all use oxygen.

For what process do cells use oxygen?
Draw a ring around one answer.
osmosis photosynthesis respiration

Q5. Muscles need energy during exercise.
Draw a ring around the correct answer in parts (a) and (b) to complete each sentence.

(ii) The process that releases energy in muscles is
transpiration.
(b) The table shows how much energy is used by two men of different masses when swimming at different speeds.

Speed of swimming in metres per minute	Energy used in kJ per hour	
	$\mathbf{3 4} \mathbf{~ k g ~ m a n ~}$	$\mathbf{7 0} \mathbf{~ k g ~ m a n ~}$
25	651	1155
50	1134	2103

(i) When the 34 kg man swims at 50 metres per minute instead of at 25 metres per minute,

(ii) When swimming at 50 metres per minute, each man's heart rate is faster than when swimming at 25 metres per minute.

A faster heart rate helps to supply the muscles with more | carbon dioxide. |
| :--- |
| glycogen. |
| oxygen. |

(iii) During the exercise the arteries supplying the muscles would
constrict.
dilate.
pump
harder.
(c) When a person starts to swim, the breathing rate increases.

Give one way in which this increase helps the swimmer.
\qquad
\qquad

Q6. The diagram shows a plant cell from a leaf.

(a) List \mathbf{A} gives the names of three parts of the cell.List \mathbf{B} gives the functions of parts of the cell.

Draw a line from each part of the cell in List A to its function in List B.
List A
Parts of the cell
\square
Nucleus
Absorbs light energy to make food
Cytoplasm

Strengthens the cell

Chloroplast
Controls the activities of the cell
(b) Respiration takes place in the cell.

Draw a ring around the correct answer to complete the sentence.

All cells use respiration to release

energy
oxygen.
sugar.

(1)

Q7.The photograph shows an athlete at the start of a race.

(a) The athlete's sense organs contain special cells.

These special cells detect changes in the environment.
(i) List A shows changes in the environment.

List B shows some of the athlete's sense organs.
Draw one line from each change in the environment in List \mathbf{A} to the sense organ detecting the change in List \mathbf{B}.

List A
Change in the environment

Sight of the finishing
line

Sound of the starting gun
Pressure of the ground
on the fingers

List B
Sense
organ

(ii) Which cells detect changes in the environment?

Tick (\checkmark) one box.

(b) During the race, the concentration of sugar in the athlete's blood decreases. Why?
\qquad
\qquad
(c) Some athletes use anabolic steroids to improve performance.
(i) Draw a ring around the correct answer to complete the sentence.

Anabolic steroids increase	breathing rate.
growth of muscles.	
heart rate.	

(ii) Sporting regulations ban the use of anabolic steroids.

Suggest one reason why.

Q8.The mould Penicillium can be grown in a fermenter. Penicillium produces the antibiotic penicillin.

The graph shows changes that occurred in a fermenter during the production of penicillin.

(a) During which time period was penicillin produced most quickly?

Draw a ring around one answer.
0 - 20 hours
40 - 60 hours
80 - 100 hours
(b) (i) Describe how the concentration of glucose in the fermenter changes between 0 and 30 hours.
\qquad
\qquad
\qquad
\qquad
(ii) How does the change in the concentration of oxygen in the fermenter compare with the change in concentration of glucose between 0 and 30 hours?

Tick (\checkmark) two boxes.

The oxygen concentration changes after the glucose concentration.

The oxygen concentration changes before the glucose concentration.

The oxygen concentration changes less than the glucose concentration.

The oxygen concentration changes more than the glucose concentration.

(iii) What is the name of the process that uses glucose?

Draw a ring around one answer.

$$
\begin{array}{lll}
\text { distillation } & \text { filtration } & \text { respiration }
\end{array}
$$

Q9.The diagram shows one type of biogas generator.

(a) With this type of biogas generator, the concentration of solids that are fed into the reactor must be kept very low.

Suggest one reason for this.
Tick (\checkmark) one box.

A higher concentration contains too little oxygen.

A higher concentration would be difficult to stir.

A higher concentration contains too much carbon dioxide.

(b) The pie chart shows the percentages of the different gases found in the biogas.

Gas \mathbf{X} is the main fuel gas found in the biogas.
(i) What is the name of gas \mathbf{X} ?

Draw a ring around one answer.
methane nitrogen oxygen
(ii) What is the percentage of gas \mathbf{X} in the biogas?

Show clearly how you work out your answer.
\qquad
\qquad
Percentage of gas $\mathbf{X}=$
(c) If the biogas generator is not airtight, the biogas contains a much higher percentage of carbon dioxide.

Draw a ring around one answer in each part of this question.
(i) The air that leaks in will increase the rate of $\begin{aligned} & \text { aerobic respiration. } \\ & \text { anaerobic respiration. }\end{aligned}$

Q10.The diagrams show four types of cell, A, B, C and D. Two of the cells are plant cells and two are animal cells.
A

B

(a) (i) Which two of the cells are plant cells?

Tick (\checkmark) one box.
A and B \square
A and D $\quad \square$
C and D $\quad \square$
(ii) Give one reason for your answer.
\qquad
\qquad
(b) (i) Which cell, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}, is adapted for swimming?
(ii) Which cell, A, B, C or D, can produce glucose by photosynthesis? \square
(c) Cells A, B, C and D all use oxygen.

For what process do cells use oxygen?
Draw a ring around one answer.

