| Q1. Sc | Q1. Sodium hydroxide neutralises sulfuric acid. | | | | | | |---------------|---|--|-----|--|--|--| | | The e | The equation for the reaction is: | | | | | | | $2NaOH + H2SO4 \rightarrow Na2SO4 + 2H2O$ | | | | | | | | (a) Sulfuric acid is a strong acid. | | | | | | | | What is meant by a strong acid? | (2) | | | | | | | | | | | | | | (b) | Write the ionic equation for this neutralisation reaction. Include state symbols. | | | | | | | | | (2) | | | | | | | | (-) | | | | | | | | | | | | | | (c) | A student used a pipette to add 25.0 cm ³ of sodium hydroxide of unknown concentration to a conical flask. | | | | | | | | The student carried out a titration to find out the volume of 0.100 mol / dm³ sulfuric acid needed to neutralise the sodium hydroxide. | | | | | | | | Describe how the student would complete the titration. | | | | | | | | You should name a suitable indicator and give the colour change that would be seen. | 1 | | | | |--|---------------------------|-----------------------------------|----------------|----------------|----------------| | | Titration
1 | Titration
2 | Titration
3 | Titration
4 | Titration
5 | | Volume of 0.100 mol / dm³ sulfuric acid in cm³ | 27.40 | 28.15 | 27.05 | 27.15 | 27.15 | | Concordant results are with | in 0.10 cm ³ (| of each othe | er. | | | | | | | | | 3 | | Mean vo | iuiile – | | | | | | Mean vo | | | | | | | ne equation for the reaction | | → Na ₂ SO ₄ | .+ 2H₂O | | | | ne equation for the reaction | n is:
OH + H₂SO₄ | | | | | | | Concentration = mol / dm ³ | (4) | |-----|---|---------------| | | | (4) | | | | | | (f) | The student did another experiment using $20~{\rm cm}^3$ of sodium hydroxide solution with a concentration of $0.18~{\rm mol}$ / ${\rm dm}^3$. | | | | Relative formula mass (M_r) of NaOH = 40 | | | | Calculate the mass of sodium hydroxide in 20 cm ³ of this solution. | Mass = g | | | | (Total 16 n | (2)
narks) | **Q2.**Dilute nitric acid reacts with potassium hydroxide solution. The equation for the reaction is: A student investigated the temperature change in this reaction. This is the method the student used. - Step 1 Put 25 cm³ of dilute nitric acid in a polystyrene cup. - Step 2 Use a thermometer to measure the temperature of the dilute nitric acid. - Step 3 Use a burette to add 4 cm³ of potassium hydroxide solution to the dilute nitric acid and stir the mixture. - Step 4 Use a thermometer to measure the highest temperature of the mixture. - Step 5 Repeat steps 3 and 4 until 40 cm³ of potassium hydroxide solution have been added. The dilute nitric acid and the potassium hydroxide solution were both at room temperature. (a) **Figure 1** shows part of the thermometer after some potassium hydroxide solution had been added to the dilute nitric acid. Figure 1 What is the temperature shown on the thermometer? The temperature shown is°C (1) - (b) Errors are possible in this experiment. - (i) Suggest **two** causes of random error in the experiment. | | | | | | | (2) | |-----|--------|---------------------|----------------------|-------------------------------|---------------------------|-----| | | | | | | | (2) | | | | | | | | | | | (ii) | Another student ι | sed a glass beaker i | stead of a polystyrene | cup. | | | | | This caused a sys | ematic error. | | | | | | | Why does using a | glass beaker instea | d of a polystyrene cup o | cause a systematic error? | (1) | | | | | | | | | | | | | | | | | | (c) | The re | esults of the stude | nt using the polysty | ene cup are shown in F | igure 2. | | | | | | Fi | gure 2 | | | | | | | 34 | | | | | | | | 32- | * | * | | | | | | 30 | × | * | | | | | Temperature in °C | 28 × | | | | | | | in °Ċ | | | | | | | | | 26 | | | | | | | | | | | | | (i) | How do the results in Figure 2 show that the reaction between dilute nitric acid and | |-----|--| | | potassium hydroxide solution is exothermic? | Volume of potassium hydroxide added in \mbox{cm}^3 | (ii) | Explain why the temperature readings decrease between 28 cm ³ and 40 cm ³ of potassium hydroxide solution added. | | |-------|---|-----| | | | | | | | | | | | (2) | | (iii) | It is difficult to use the data in Figure 2 to find the exact volume of potassium hydroxide solution that would give the maximum temperature. | | | | Suggest further experimental work that the student should do to make it easier to find the exact volume of potassium hydroxide solution that would give the maximum temperature | | | | | | | | | | | | | | | | | (2) | | | | | | | student did further experimental work and found that 31.0 cm ³ of potassium hydroxide tion neutralised 25.0 cm ³ of dilute nitric acid. | | | The | concentration of the dilute nitric acid was 2.0 moles per dm ³ . | | | | $HNO_3 + KOH \longrightarrow KNO_3 + H_2O$ | | | Calc | ulate the concentration of the potassium hydroxide solution in moles per dm ³ . | | | | | | | | | | | | | | | | | | (d) | | Concentration = moles per dm ³ | (3) | |-----|--|-----| | (e) | The student repeated the original experiment using 25 cm ³ of dilute nitric acid in a polystyrene cup and potassium hydroxide solution that was twice the original concentration. | | | | She found that: | | | | a smaller volume of potassium hydroxide solution was required to reach the maximum temperature | | | | the maximum temperature recorded was higher. | | | | Explain why the maximum temperature recorded was higher. | | | | | | | | | | | | | | | | | (2) | | Q3. | V | inegar can be added to food. Vinegar is an aqueous solution of ethanoic acid. | | |-------|-------|--|----| | VINEG | SAR I | | | | i | Ethai | noic acid is a <i>weak</i> acid. | | | (| (a) | Which ion is present in aqueous solutions of all acids? | | | | | | (1 | | (| (b) | What is the difference between the pH of a <i>weak</i> acid compared to the pH of a strong acid of the same concentration? | | | | | Give a reason for your answer. | (2 | | (| (c) | The diagram shows the apparatus used to find the concentration of ethanoic acid in vinegar. | | | | | | | | (d) | The concentration of ethanoic acid in a different bottle of vinegar was 0.80 moles per cubic decimetre. | | |-----|--|--------| | | Calculate the mass in grams of ethanoic acid (CH ₃ COOH) in 250 cm ³ of this vinegar. The relative formula mass (M_r) of ethanoic acid = 60. | Mass of ethanoic acid =g | | | | | (2) | | | (Total 8 | marks) | **Q4.** Ammonium sulfate is an artificial fertiliser. | (a) | (i) | When this fertiliser is warmed with sodium hydroxide solution, ammonia gas is given off. | | |-----|------|---|-----| | | | Describe and give the result of a test for ammonia gas. | | | | | Test | | | | | | | | | | Result | | | | | | (2) | | | | | | | | | | | | | (ii) | Describe and give the result of a chemical test to show that this fertiliser contains sulfate ions (SO_4^{2-}). | | | | | Test | | | | | | | | | | Result | | | | | | | (b) Ammonium sulfate is made by reacting sulfuric acid (a *strong* acid) with ammonia solution (a *weak* alkali). (2) | | (i) | Explain the meaning of <i>strong</i> in terms of ionisation. | | |------------|-------|--|-----| | | | | (1) | | | (ii) | A student made some ammonium sulfate in a school laboratory. | | | | | The student carried out a titration, using a suitable indicator, to find the volumes of sulfuric acid and ammonia solution that should be reacted together. | | | | | Name a suitable indicator for strong acid-weak alkali titrations. | | | | | | (1) | | | | | | | | (iii) | The student found that 25.0 cm³ of ammonia solution reacted completely with 32.0 cm³ of sulfuric acid of concentration 0.050 moles per cubic decimetre. | | | | | The equation that represents this reaction is: | | | 2H₂SO₄(aq) | | + $2NH_3(aq)$ $\rightarrow (NH_4)_2SO_4(aq)$ | | | | | Calculate the concentration of this ammonia solution in moles per cubic decimetre. | Concentration = moles per cubic decimetre | | | | | | (3) | | | (iv) | Use your answer to (b)(iii) to calculate the concentration of ammonia in grams per cubic decimetre. | | | | | (If you did not answer part (b)(iii), assume that the concentration of the ammonia solution is 0.15 moles per cubic decimetre. This is not the correct answer to part | | | (b)(iii).) | | |---|-------------------------| | Relative formula mass of ammonia (NH ₃) = 17. | | | | | | | | | | | | Concentration = grams per cubic decimetre | | | | (2)
(Total 11 marks) | **Q5.** Chemical tests can be used to detect and identify elements and compounds. Two jars of chemicals from 1870 are shown. (a) One jar contains copperas. Copperas was a name used for iron(II) sulfate, FeSO₄ It does not contain any copper! Describe and give the result of a chemical test to show that a solution of copperas contains: (i) iron(II) ions, Fe2+ Test Result (2) (2) (ii) sulfate ions, SO₄²⁻ Test Result (b) The other jar contained a mixture of common salt (sodium chloride, NaCl) and washing soda (sodium carbonate, Na₂CO₃). To show that the mixture contains chloride ions, silver nitrate solution (AgNO₃) and nitric | | acid (HNO ₃) are added. A white precipitate is produced. | | | | | | | | | | | | |------------------------------------|--|---|----------|------------------------------------|---------------|-----------|---------------------|------------|---------------------|----------|---------------|---------------| | | | AgNO₃(aq) | + N | IaCl(aq) | \rightarrow | AgCl(s) | + | NaNO₃(a | aq) | | | | | | (i) | The carbonat | e ions i | in the mix | xture w | ill affec | t the te | st for chl | oride ions. | | | | | | | Use the equa | | | | | e ions a | ffect the | test for ch | oride io | ns and | | | gCl (s) | | + HNO₃ (ac | ı) → | no rea | ction | | | | | | | | | AgNO₃ (aq) | | + Na₂CO₃(ad | q) > | Ag ₂ CO ₃ (s |) white | + 21 | laNO₃(a | aq) | | | | | | g ₂ CO ₃ (s) | | + 2HNO₃(ad | a) → | 2AgNO |)₃ (aq) | + | H ₂ O(I) | + | CO ₂ (g) | (2) | | | | | | | | | | | | | | | | | (ii) | Hydrochloric acid (HCI) should not be used instead of nitric acid when testing for chloride ions with silver nitrate solution. | | | | | | | | | | | | | | Suggest why | • | (Total 7 m | (1)
narks) |