

Exampro GCSE Chemistry C3 Chapter 1 Higher Class: Author: Date: Time: 72 Marks: 72 Comments:

Mer	Mendeleev placed the alkali metals in the same group.							
(a)	What evidence did Mendeleev use to decide that the alkali metals should be in the same group?							
		(1)						
(b)	Describe how the elements in the modern periodic table are arranged:							
	(i) in terms of protons							
		(1)						
	(ii) in terms of electrons.							
		(1)						
(c)	State two properties of transition elements that make them more useful than alkali metals for making water pipes.							
		(2)						

In 1869, Dmitri Mendeleev produced his periodic table of the elements.

Q1.

(d)	Describe and explain the trend in reactivity of the alkali metals (Group 1).	
		(4)
	(Tot	al 9 marks)
-	The graph shows the boiling points of the halogens.	
!	300 1	
	200	
	Boiling points	
	°C 0 Room temperature	
	-100	
	-200	
	Fluorine Chlorine Bromine Iodine	
(a)	Use the graph to help you answer these questions.	
	(i) Use the correct answer from the box to complete the sentence.	
	gas liquid solid	
	At room temperature chlorine is a	
		(1)
	(ii) Describe the trend in boiling point from fluorine to iodine.	
		(1)

Q2.

(b)	Chl	orine reacts with metals to produce metal chlorides.	
	(i)	When a chlorine atom forms a chloride ion it gains one electron.	
		What is the charge on a chloride ion?	
			(1)
	(ii)	Write a word equation for the reaction between sodium and chlorine.	
			(1)
(c)	In th	ne UK water companies add chlorine to tap water.	
	Wh	y is chlorine added to tap water?	
			(1)
(d)	Wat	ter companies add fluoride to tap water in some parts of the UK.	
, ,		oride is added to improve dental health.	
	Sug	gest one reason why some people are against adding fluoride to tap water.	
			(1)
			(Total 6 marks)
·			
		m is in Group 1 of the periodic table.	
Litni	um re	eacts with water to produce a gas and an alkaline solution. Bubbles of gas	
		Lithium	
		Water—	
(a)	(i)	Name the gas produced.	
			(1)
	(ii)	Which ion causes the solution to be alkaline?	
	(/		
			(1)

Q3.

		Write down two differences you would see between the reactions of potassium and lithium with water.	
		1	
		2	
			(2) (s)
Q4.	ا	Platinum and gold are transition elements. They can both be used to make wedding rings.	
	By Je	ff Belmonte from Cuiabá, Brazil (Flickr) [CC-BY-2.0], via Wikimedia Commons	
		Platinum and gold are good materials for making wedding rings.	
	(a)		
		Use your knowledge of the properties of transition elements to suggest why.	
			(2)

(b) Potassium is also in Group 1 of the periodic table. Potassium reacts with water in a similar way to lithium.

0)	Explain, in terms of electronic structure, why transition elements have similar chem properties.	ıcal
		(2)
		Total 4 marks)

Q5. Use the periodic table on the Data Sheet and the information below to help you answer these questions.

Mendeleev was one of the first chemists who classified elements in a systematic way based on atomic weight. He suggested his version of the periodic table in 1869.

He put the elements in order of their atomic weights but reversed the order for some pairs of elements. Then he arranged them in a table so that chemically similar elements were in columns known as Groups. He also left gaps and made predictions.

Part of Mendeleev's table is shown below.

Gro	oup 1	Grou	p 2	Gı	roup	3	Gr	oup	4	Gr	oup 5		Group	6 0	Gr	oup	7
Н																	
	Li	Ве)		В			С			N		0			F	
ļ	Na	Μç)		Al			Si			Р		S			CI	
K		Ca		#			Ti			V		C	Cr		Mn		
	Cu		Zn			#			#		As	;		Se			Br
Rb		Sr		Υ			Zr			Nb		N	Ло		#		
	Ag		Cd			In			Sn		Sb	,		Те			1

The gaps Mendeleev left are shown by #.

Which grou	up of elements in the modern periodic table is missing from Mendeleev's table?	
Mendeleev (Te, atomic	reversed the order for some pairs of elements. For example, he put tellurium weight 128) before iodine (I, atomic weight 127), as shown in his table.	
Why did he	e do this?	
In 1869 ma	any chemists did not agree with Mendeleev's periodic table.	
Suggest th	nree reasons why.	
	century, the arrangement of elements in the periodic table was explained in comic structure.	
Describe th	ne links between atomic structure and the periodic table.	

Q6.	Lithium	ic a	verv	reactive	metal
QU.	Littiiuiii	is a	vel y	reactive	metai.

(a) Lithium reacts with cold water.

		Lithum	
		Water with universal indicator solution	
	(i)	Which physical property of lithium is seen during this reaction?	
			(1)
	(ii)	Which chemical property of lithium will be shown by the universal indicator?	
			(1)
(b)	Con	nplete the sentence by writing in the missing numbers.	
	Lith	ium has an atomic number of 3 and a mass number of 7.	
	This	means that an atom of lithium has protons electrons	
	and	I neutrons.	
		(Total 5 m	(3) arks)
Q7 .		Omitri Mendeleev was one of the first chemists to classify the elements by arranging m in order of their atomic weights. His periodic table was published in 1869.	
		v did Mendeleev know that there must be undiscovered elements and how did he take into account when he designed his periodic table?	
			(2)

	(b)	By tl	he early 20th century protons and electrons had been discovered.	
			cribe how knowledge of the numbers of protons and electrons in atoms allow mists to place elements in their correct order and correct group.	
				(3)
	(c)		transition elements are a block of elements between Groups 2 and 3 of the periodic	` ,
		table		
		(i)	Transition elements have similar properties.	
			Explain why, in terms of electronic structure.	
				(2)
		(ii)	There are no transition elements between the Group 2 element magnesium and the Group 3 element aluminium.	
			Give a reason why, in terms of electronic structure.	
				(1)
			(Total 8 mar	ks)
Q8.		The h	alogens are in Group 7 of the periodic table.	
Ψ0.	(a)		y, in terms of electrons, are the halogens in Group 7?	
	(α)		, in terms of electrons, are the halogens in Group 7:	
				(1)

(b)	Sea water contains bromide ions (Br ⁻). The bromide ions can be changed to bromine by b Chlorine is able to displace bromine from sea water than bromine.			
	$2Br(aq) + Cl_2(g) \rightarrow$	Br ₂ (g)	+	2Cl⁻(aq)
	Explain, in terms of electrons, why chlorine is more	e reactive th	nan bromi	ne.
				(3)
				(Total 4 marks)
Γ	Sodium Drum Blaze Scare]	
1	A 20 litre drum containing sodium burst into flames v reacted violently with rainwater at a Manchester factobelieved that the sodium, which is normally stored ur had been accidentally left outside with the lid off.	ory. It is		
;	A factory worker put out the blaze before the fire sen arrived, and a leading fire fighter said, "It was fortuna potassium wasn't involved as it would have reacted violently and exploded. These Group 1 alkali metals overy dangerous".	te that more		
(a)	Group 1 metals are stored under oil.		-	
	Suggest why.			
				(1)
(b)	Balance the equation which represents the reaction	n between	sodium ar	nd water.
	Na + $H_2O \rightarrow NaOH +$	$H_{_2}$		
				(1)

		(Total 6 marks)
		. (3)
(d)	Explain, in terms of electrons, why potassium reacts more violently than sodium.	
/ D		(1)
		. (1)
(c)	Explain why the Group 1 metals are called the <i>alkali metals</i> .	

Q10. Read the information about the development of the periodic table and answer the questions that follow:

Johann Döbereiner was a chemist who realised there was a link between atomic weight and chemical properties. Although it was difficult to measure atomic weights accurately, by 1829 Döbereiner had arranged many elements with similar chemical reactions in groups of three. He noticed that the middle element had an atomic weight that was approximately the average of the other two. These groupings were known as triads. Three of these triads are shown below:

As new elements were discovered, it became difficult to group them in triads, and it was left to others to build on Döbereiner's work. The result was the first periodic table, suggested by Dimitri Mendeleev in 1869.

Our modem periodic table has evolved from Mendeleev's Table. Lithium, sodium and potassium are still together in Group 1, and chlorine, bromine and iodine are in Group 7.

It was many years before chemists understood the nature of the transition elements.

(a)	Döb	ereiner suggested that calcium (Ca), strontium (Sr) and barium (Ba) were also a triad.						
	Use	e relative atomic masses to explain why.						
			(1)					
(b)	Sug	gest why Döbereiner's ideas were replaced by those of Mendeleev.						
			(1)					
(c)	Lithium, sodium and potassium are in Group 1. All these elements react with water.							
	Describe what you see when potassium is added to water.							
			(2)					
(d)	In terms of electronic structure, explain why:							
` ,	(i)	elements in the same group of the periodic table have similar chemical properties						
			(1)					
	(ii)	transition elements have similar properties even though they are not in the same group						
			(2)					

The modern periodic table on the Data Sheet may help you to answer these questions.

		(iii)	in Group 1, lithium is less reactive than potassium.	
				(2) (Total 9 marks)
Q11.		In 199 hexiur	99 scientists at the University of Berkeley claimed to have discovered the elemm.	ient
	The	electro	on arrangement of this element is thought to be as shown in the diagram below	N.
	(a)	Which	h group of the periodic table should this element be placed in?	
			Group	(1)
	(b)	Give	a reason for your answer.	
				(1) (Total 2 marks)

Q12. Neodymium (Nd) is a member of the group of elements known as the lanthanides. It is a silvery, white metal. It has a number of uses including making special alloys.

In the reactivity series of metals neodymium is above magnesium but below calcium. Predict how neodymium might react with each of the substances in (a) to (c).

If you think a reaction will take place you should suggest **how vigorous** it might be and **name the products** that might be produced.

(a)	now might neodymium react with water?
	Reaction
	Products
(b)	How might neodymium react with air?
	Reaction
	Products
(c)	How might neodymium react with dilute hydrochloric acid?
	Reaction
	Products
	/Tatal 9 mayles)
	(Total 8 marks)

M1.		(a)	similar properties				
			allow same properties				
			allow correct example of property				
			ignore answers in terms of atomic structure	1			
	(b)	(i)	in order of atomic / proton number				
			allow increasing number (of protons)	1			
		(ii)	elements in same group have same number (of electrons) in outer shell or highest energy level				
			allow number (of electrons) increases across a period	1			
	(c)	any	two from:				
		•	statements must be comparative stronger / harder				
			ignore higher densities				
		•	less reactive higher melting points				
		•	ignore boiling point				
			ignore boiling point	2			
	(d)	rea	ctivity increases down group				
			allow converse throughout				
			for next three marks, outer electron needs to be mentioned once otherwise $\max = 2$	1			
	outer electron is furth <u>er</u> from nucleus						
		out	allow <u>more</u> energy levels / shells				
			allow Intore energy levels / Shells allow larger atoms				
			anow larg <u>or</u> atomo	1			
		les.	s attraction between outer electron and nucleus				
			allow <u>more</u> shielding				
				1			
		the	refore outer electron lost <u>more</u> easily				
				1	[9]		
					[-]		
M2.		(a)	(i) gas	1			
				•			
		(ii)	Increases	1			
				1			
	(b)	(i)	–1				
			allow Cl -				
			allow –				
			allow negative	1			

		(ii)	sodium + chlorine → sodium chloride		
			allow correct symbol equation		
				1	
	(c)	red	duce microbes		
	` '		accept sterilise		
			accept prevent diseases		
			allow disinfect		
			allow kill bacteria / germs / microbes / micro-organisms		
			allow to make it safe to drink		
			ignore get rid of bacteria		
				1	
	(4)	anv	ay one from:		
	(d)	arry	y one from:		
		•	no freedom of choice		
			allow unethical		
		•	fluoride in toothpaste		
		•	too much can cause fluorosis		
			allow <u>too much</u> can cause damage to teeth		
			anon <u>coo mach</u> oan caace damage to tooth	1	
					[6]
MO		(-)	(i) budge as a		
М3.		(a)	(i) hydrogen		
			accept H ₂		
			allow H		
				1	
		(ii)	hydroxide		
		` '	accept OH		
			allow OH		
			do not accept lithium hydroxide		
			3.2.1.0.2	1	

(b) any **two** from:

'it' = potassium

potassium:

accept converse for lithium

reacts / dissolves faster

allow reacts more vigorously / quickly / violently / explodes ignore reacts more

bubbles / fizzes faster

allow fizzes more allow more gas

moves faster (on the surface)

allow moves more

melts

allow forms a sphere

• produces (lilac / purple) flame

allow catches fire / ignites

do **not** accept other colours

2

[4]

M4. (a) any **two** from:

- do not react with water
- do not react with air

allow unreactive **or** <u>stay</u> shiny **or** do not tarnish **or** do not corrode for either of first two points for **1** mark ignore rusts

malleable

ignore hard / strong

• high melting point

ignore boiling point ignore other correct properties

2

(b) (transition elements have) same number / two electrons in outer shell / energy level / fourth shell

ignore references to (metallic) structure / bonding

1

any	On	Δf	ro	m·
aliv	UII	~ I	ıv	

•	because	lower	energy	level /	inner	shell	heina	filled
	Decause		CHEIGI	10 101 /	1111101	311011	Delitig	IIIICU

because third energy level can hold up to eighteen electrons

[4]

M5. (a) Group O / 8

accept transition elements / metals

or noble / rare / inert gases apply list principle

1

1

1

(c) any three from:

ignore not enough evidence / proof or Mendeleev not respected

- (some) boxes had <u>two</u> elements allow <u>two</u> correctly identified elements together (in the same box)
- Group 1: copper / silver unreactive (not like the others)
 allow copper / silver not alkali metals / Group 1
- there are non-metals and metals in the same group / box accept named examples
- Mendeleev left spaces / gaps
 accept (some chemists thought) there were no more elements to
 discover
- Medeleev reversed the order (for some elements)

3

	(d)	any two from:			
			ignore mass number / atomic weight / neutrons throughout		
		•	elements arranged in proton / atomic number order		
			allow number of protons / electrons increases across period		
		•	group: elements in same group / column have same number of outer electrons		
		•	elements in same period / row have same number of (electron) shells / energy levels		
			allow number of (electron) shells / energy level increase down group		
			allow <u>electron</u> rings		
			allow orbits	2	
				-	[7]
M6.		(a)	(i) low density		
		` '	accept floats (on water)		
				1	
		(ii)	forms an alkaline solution with water		
			accept <u>alkali</u> (metal) or basic do not accept group 1 metal		
			do not accept group i metal	1	
	(b)	2 or	three (protons)		
	(D)	3 01	tillee (protons)	1	
		3 or	three (electrons)		
				1	
		4 or	four (neutrons)		
				1	[5]
					[0]
M7.		(a) if	placed consecutively, then elements would be in wrong group / have wrong allow some elements didn't fit pattern	properties	
			·	1	
		left (gaps		
			•	1	
	(b)	(ele	ments placed in) atomic / proton number order		
	(~)	(3.3	p	1	
		(ele	ments in) same group have same number of <u>outer</u> electrons		
		(3,0)	, James g. Jap James d. Jam	1	

any one from: number of protons = number of electrons reactions/(chemical) properties depend on the (outer) electrons number of shells gives the period allow number of shells increases down the group 1 (c) (i) (transition elements usually) have same / similar number of outer / 4th shell electrons allow 2 electrons in outer shell 1 (because) inner (3rd) shell / energy level is being filled ignore shells overlap 1 (ii) 2nd shell / energy level can (only) have maximum of 8 electrons accept no d-orbitals or 2nd shell / energy level cannot have 18 electrons 1 [8] all have seven electrons in their outer shell / energy level 1 (b) must be comparative in all points or converse chlorine atom is smaller than bromine atom or chlorine atom has fewer shells than bromine atom 1 outer shell / energy level of chlorine has stronger (electrostatic) attraction to the nucleus than bromine or outer shell of chlorine is less shielded from the nucleus than bromine 1

M9. (a) acts as barrier between sodium and air / oxygen / water (vapour) accept because they are reactive ignore oil will not react

so chlorine more readily gains an extra electron

M8.

1

1

[4]

	(b)	$2Na + 2H_2O \rightarrow 2NaOH + H_2$		
		allow multiples / fractions	1	
	(c)	these metals react with water producing an alkaline solution		
		or		
		produce solution with pH greater than 7 / high pH owtte		
		allow produce OH. ions		
		not these metals are / form alkalis		
		ignore 'strong' pH	1	
	(4)	it notopoium		
	(d)	it = potassium <pre>outer</pre> electron must be mentioned once for all 3 marks		
		bigger atom		
		or outer shell electron further from nucleus		
		or		
		more shells		
		or converse argument for sodium less reactive provided sodium is		
		specified	1	
		less attraction to nucleus		
		Or		
		more shielding not less magnetic attraction		
		not less magnetic attraction	1	
		outer electron more easily lost		
		ignore potassium reacts more easily	1	
			-	[6]
M10.		(a) $40 \text{ (Ca)} + 137 \text{ (Ba)} \div 2 = 88.5$		
		accept a recognition that the average is near 88 or it is the average of the other two		
		accept Sr is midway between Ca and Ba	1	
			-	
	(b)	eg newly discovered elements / atoms didn't fit (into triads) or didn't apply to all elements / atoms or lot of exceptions		
		he = Döbereiner		
		ignore Mendeleev left spaces or not enough evidence		
			1	

(c)	any two from:								
	•	fizzes / bubbles / gas hydrogen alone is insufficient ignore incorrect name if 'gas' stated							
	•	violent / vigorous / explodes / very fast reaction accept container explodes ignore strong reaction							
	•	floats / on surface ignore sinks							
	•	moves (very quickly)							
	•	melts (into a ball)							
	•	bursts into flame accept (bright) light ignore colour / glow							
	•	gets smaller / (reacts to) form a solution / dissolves / disappears etc							
	•	steam / gets hot (owtte) ignore alkaline solutions or change in colour etc	2						
(d)	(i)	same number of electrons in outer shell accept energy level for shell accept a correct reference to a specific group eg (all) have one electron in outershell / (all) lose one electron (when they react)	1						
	(ii)	electrons fill an inner / 3 rd shell accept energy level for shell accept d-level being filled accept specific reference to 3rd shell accept descriptions in terms of 3d & 4s etc	1						
	(usually) same number of outer / 4th shell electrons								

(iii) it = lithiumaccept energy level for shell or converse reasoning for potassium outer shell electron closer to nucleus accept fewer shells / smaller atom more (electrostatic) attraction (to nucleus) / electrons less likely to be lost accept less shielding / isn't much shielding ignore nucleus has more influence but accept nucleus has more influence over the outer electron(s) do **not** accept magnetic / gravitational attraction 1 [9] M11. (a) 6 **or** 16 or transition metal or F block element or actinide 1 (b) (elements in group 6 have) six (electrons) in the outer shell or needs 2 electrons to gain a full shell accept has 98 electrons 1 [2]

- **M12.** (a) bubble slowly/quickly/vigorously neodymium hydroxide hydrogen
 - (b) oxidise slowly in air neodymium oxide
 - (c) violent/very vigorous/rapid bubbles neodymium chloride hydrogen

1 mark for each point

[8]