exampro

Exampro GCSE Physics

P2 Foundation - Calculating Energy and M omentum Self Study Questions

Name:

Class:

Author:

Date:

Time:
95

Marks:
95

Comments:

Q1. A paintball gun is used to fire a small ball of paint, called a paintball, at a target.
The figure below shows someone just about to fire a paintball gun.
The paintball is inside the gun.

(a) What is the momentum of the paintball before the gun is fired?
...
Give a reason for your answer.
\qquad
\qquad
(b) The gun fires the paintball forwards at a velocity of $90 \mathrm{~m} / \mathrm{s}$.

The paintball has a mass of 0.0030 kg .
Calculate the momentum of the paintball just after the gun is fired.
Use the correct equation from the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
(c) The momentum of the gun and paintball is conserved.

Use the correct answer from the box to complete the sentence.

equal to	greater than	less than

The total momentum of the gun and paintball just after the gun is fired will be \qquad the total momentum of the gun and paintball
before the gun is fired.

Q2. The figure below shows a slide in a children's playground.

(a) A child of mass 18 kilograms goes down the slide.

The vertical distance from the top to the bottom of the slide is 2.5 metres.
Calculate the decrease in gravitational potential energy of the child sliding from the top to the bottom of the slide.

Gravitational field strength $=10 \mathrm{~N} / \mathrm{kg}$
Use the correct equation from the Physics Equations Sheet.
\qquad
\qquad
\qquad
(b) The slide is made of plastic.
(i) The child becomes electrically charged when he goes down the slide.

Explain why.
\qquad
\qquad
\qquad
\qquad
(ii) Going down the slide causes the child's hair to stand on end.

What conclusion about the electrical charge on the child's hair can be made from this observation?
\qquad
\qquad
Give a reason for your answer.
\qquad
\qquad
(iii) Why would the child not become electrically charged if the slide was made from metal?
\qquad
\qquad

Q3. The diagram shows a climber part way up a cliff.

(a) Complete the sentence.

When the climber moves up the cliff, the climber
gains gravitational \qquad energy.
(b) The climber weighs 660 N .
(i) Calculate the work the climber must do against gravity, to climb to the top of the cliff. Use the correct equation from the Physics Equations Sheet.
\qquad
\qquad
Work done = ... J
(ii) It takes the climber 800 seconds to climb to the top of the cliff. During this time the energy transferred to the climber equals the work done by the climber.

Calculate the power of the climber during the climb.
Use the correct equation from the Physics Equations Sheet.
\qquad
\qquad
\qquad
Power = W

Q4. A car has an oil leak. Every 5 seconds an oil drop falls from the bottom of the car onto the road.
(a) What force causes the oil drop to fall towards the road?
\qquad
(b) The diagram shows the spacing of the oil drops left on the road during part of a journey
A -B

Describe the motion of the car as it moves from \mathbf{A} to \mathbf{B}.
\qquad
Explain the reason for your answer.
\qquad
\qquad
\qquad
\qquad
(c) When the brakes are applied, a braking force slows down and stops the car.
(i) The size of the braking force affects the braking distance of the car.

State one other factor that affects the braking distance of the car.
..
(ii) A braking force of 3 kN is used to slow down and stop the car in a distance of 25 m .

Calculate the work done by the brakes to stop the car and give the unit.
Use the correct equation from the Physics Equations Sheet.
\qquad
\qquad
\qquad
Work done $=$ \qquad

Q5. Part of a bus route is along a high street.
The distance-time graph shows how far the bus travelled along the high street and how long it took.

(a) Between which two points was the bus travelling the slowest?

Put a tick (\checkmark) in the box next to your answer.

Points	Tick (\checkmark)
A - B	
C - D	
D-E	

Give a reason for your answer.
\qquad
\qquad
(b) The bus travels at $5 \mathrm{~m} / \mathrm{s}$ between points \mathbf{A} and \mathbf{B}.

The bus and passengers have a total mass of 16000 kg .
Use the equation in the box to calculate the momentum of the bus and passengers between points \mathbf{A} and \mathbf{B}.

$$
\text { momentum }=\text { mass } \times \text { velocity }
$$

Show clearly how you work out your answer.
\qquad
\qquad
Momentum =
\qquad $\mathrm{kg} \mathrm{m} / \mathrm{s}$
(c) A cyclist made the same journey along the high street.

The cyclist started at the same time as the bus and completed the journey in 220 seconds. The cyclist travelled the whole distance at a constant speed.
(i) Draw a line on the graph to show the cyclist's journey.
(ii) After how many seconds did the cyclist overtake the bus?

The cyclist overtook the bus after \qquad seconds.

Q6. (a) The diagram shows a builder using a plank to help load rubble into a skip.

The builder uses a force of 220 N to push the wheelbarrow up the plank.
Use information from the diagram and the equation in the box to calculate the work done to push the wheelbarrow up the plank to the skip.

```
work done = force applied }\times\mathrm{ distance moved in the direction of force
```

Show clearly how you work out your answer.
\qquad
\qquad
Work done $=$
. J
(b) A student investigated how the force needed to pull a brick up a slope, at a steady speed, depends on the angle of the slope.
The apparatus used by the student is shown in the diagram.

The student used the results from the investigation to plot the points for a graph of force used against the angle of the slope.

(i) Draw a line of best fit for these points.
(ii) How does the force used to pull the brick up the slope change as the angle of the slope increases?
\qquad
\qquad
(iii) Consider the results from this experiment.

Should the student recommend that the builder use a long plank or a short plank to help load the skip?

Draw a ring around your answer.
long plank short plank

Explain the reason for your answer.
\qquad
\qquad
\qquad
\qquad

Q7. The picture shows three skateboarders, \mathbf{A}, \mathbf{B} and \mathbf{C}.

Skateboarder \mathbf{A} is not moving.
Skateboarder B is moving towards the ramp at a constant speed.
Skateboarder \mathbf{C} is moving on the ramp at a constant speed.
(a) The skateboarders have different amounts of kinetic energy.

Which two factors affect the kinetic energy of the skateboarders?
Put a tick (\checkmark) in the box next to your answer.
direction and mass \square
mass and speed

speed and direction

(b) The skateboarders also have different amounts of momentum.
(i) Which one of the skateboarders has the smallest amount of momentum?

Draw a ring around your answer.
A
B
C

Give a reason for your answer.
\qquad
\qquad
(ii) Skateboarder B has a mass of 55 kg .

Use the equation in the box to calculate the momentum of skateboarder \mathbf{B} when moving at $4 \mathrm{~m} / \mathrm{s}$.

```
momentum = mass }\times\mathrm{ velocity
```

Show clearly how you work out your answer.
\qquad
\qquad
Momentum = \qquad $\mathrm{kg} \mathrm{m} / \mathrm{s}$

Q8. (a) The diagram shows an athlete at the start of a race. The race is along a straight track.

In the first 2 seconds, the athlete accelerates constantly and reaches a speed of $9 \mathrm{~m} / \mathrm{s}$.
(i) Use the equation in the box to calculate the acceleration of the athlete.

$$
\text { accelleration }=\frac{\text { change in velocity }}{\text { time taken for change }}
$$

Show clearly how you work out your answer.
\qquad
\qquad
\qquad
Acceleration = .
\qquad
(ii) Which one of the following is the unit for acceleration?

Draw a ring around your answer.
$\begin{array}{llll}\mathrm{J} / \mathrm{s} & \mathrm{m} / \mathrm{s} & \mathrm{m} / \mathbf{s}^{2} & \mathrm{Nm}\end{array}$
(iii) Complete the following sentence.

The velocity of the athlete is the \qquad of the athlete in a given direction.
(iv) Complete the graph to show how the velocity of the athlete changes during the first 2 seconds of the race.

(b) Many running shoes have a cushioning system. This reduces the impact force on the athlete as the heel of the running shoe hits the ground.

The bar chart shows the maximum impact force for three different makes of running shoe used on three different types of surface.

(i) Which one of the three makes of running shoe, \mathbf{A}, \mathbf{B} or \mathbf{C}, has the best cushioning system?
\qquad
Explain the reason for your answer.
\qquad
\qquad
\qquad
\qquad
(ii) The data needed to draw the bar chart was obtained using a robotic athlete fitted with electronic sensors.

Why is this data likely to be more reliable than data obtained using human athletes?
\qquad
\qquad

Q9. (a) A van has a mass of 3200 kg . The diagram shows the van just before and just after it collides with the back of a car.

Just before the collision, the van was moving at $5 \mathrm{~m} / \mathrm{s}$ and the car was stationary.
(i) Use the equation in the box to calculate the momentum of the van just before the collision.

```
momentum = mass }\times\mathrm{ velocity
```

Show clearly how you work out your answer.
\qquad
\qquad
Momentum =
\qquad $\mathrm{kg} \mathrm{m} / \mathrm{s}$
(ii) The collision makes the van and car join together.

What is the total momentum of the van and the car just after the collision?

$$
\text { Momentum = } \mathrm{kg} \mathrm{~m} / \mathrm{s}
$$

(iii) Complete the following sentence by drawing a ring around the correct line in the box.

momentum of the car after the collision.
(b) A seat belt is one of the safety features of a car.

In a collision, wearing a seat belt reduces the risk of injury.
Use words or phrases from the box to complete the following sentences.

decreases	stays the same	increases

In a collision, the seat belt stretches. The time it takes for the person held by the seat belt to lose momentum compared to a person not wearing a seat belt,

The force on the person's body \qquad and so reduces the risk of injury.
(Total 6 marks)

Q10. (a) A chair lift carries two skiers, Greg and Jill, to the top of a ski slope. Greg weighs 700 N and Jill weighs 500 N .

(i) Write down the equation that links distance moved, force applied and work done.
\qquad
(ii) Calculate the work done to lift Greg and Jill through a vertical height of 200 m . Show clearly how you work out your answer and give the unit.
\qquad
\qquad
\qquad
work done =
\qquad
(b) The chair takes 5 minutes to move from the bottom to the top of the ski slope.

Use the following equation to calculate the power required to lift Greg and Jill to the top of the ski slope. Show clearly how you work out your answer.
power $=\frac{\text { work done }}{\text { time taken }}$
\qquad
\qquad
power = .. watts
(c) The chair lift is driven by an electric motor.
(i) Why would the power output of the electric motor need to be larger than your answer to part (b)?
\qquad
\qquad
(ii) Complete the following sentence.

When the ski lift is working \qquad energy supplied to the motor
is usefully transferred as gravitational \qquad energy.

Q11. (a) The diagram shows three identical go-karts, \mathbf{P}, \mathbf{Q} and \mathbf{R}, travelling at different speeds along the straight part of an outdoor racetrack.

Which go-kart, \mathbf{P}, \mathbf{Q} or \mathbf{R}, has the greatest momentum?
\qquad
Give the reason for your answer.
\qquad
\qquad
(b) The total mass of go-kart \mathbf{Q} and the driver is 130 kg .
(i) Use the equation in the box to calculate the total momentum of go-kart \mathbf{Q} and the driver.

```
momentum = mass }\times\mathrm{ velocity
```

Show clearly how you work out your answer.
\qquad
\qquad
Momentum =
\qquad
(ii) Which of the following is the unit of momentum?

Draw a ring around your answer.

J / s	$\mathrm{kg} \mathrm{m} / \mathrm{s}$	Nm

(c) To race safely at high speed, a go-kart driver must have fast reaction times and the outdoor racetrack should be dry.
(i) How would being tired affect a driver's reaction time?
\qquad
(ii) How would a wet track affect the braking distance of a go-kart?

Q12. The diagram below shows one way of lifting a bucket of bricks.

(a) When the free end of the rope is pulled down, the load is lifted.

Complete the following sentence.
The work done in pulling the rope down is used to increase the \qquad energy of the \qquad and bricks.
(b) The weight of the bricks is 100 N and they are lifted 3 m .

Calculate the work done on the bricks.
\qquad
\qquad

Q13. The diagram shows a supermarket worker stacking jars of coffee onto a shelf.

(a) The mass of each jar of coffee is 0.4 kg .

Calculate the weight of each jar of coffee.

$$
\text { gravitational field strength }=10 \mathrm{~N} / \mathrm{kg}
$$

Write down the equation you use, and then show clearly how you work out your answer.
\qquad
\qquad
\qquad
\qquad

$$
\text { Weight = } \mathrm{N}
$$

(b) The distance between the floor and the middle shelf is 1.2 m .

Calculate the work done to lift one jar of coffee from the floor onto the shelf.
Write down the equation you use, and then show clearly how you work out your answer and give the unit.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Work done $=$

Q14. A forklift truck was used to stack boxes on to a trailer.
It lifted a box weighing 1900 N through 4.5 m .

Calculate the work done on the box. Show your working.
\qquad
\qquad
\qquad
\qquad

Q15. (a) The weightlifter in the picture has lifted a weight of 2250 newtons above his head. The weight is held still.

(i) In the box are the names of three forms of energy.

gravitational potential	kinetic	sound

Which one of these forms of energy does the weight have?
\qquad
(ii) What force is used by the weightlifter to hold the weight still?
Size of force =
\qquad
Give a reason for your answer \qquad
\qquad
\qquad
(b) To lift the weight, the weightlifter does 4500 joules of work in 3.0 seconds.

Use the following equation to calculate the power developed by the weightlifter. Show clearly how you work out your answer.

$$
\text { power }=\frac{\text { work done }}{\text { time taken }}
$$

\qquad watts

Q16. A cyclist accelerates from a set of traffic lights.
The driving force of the back tyre on the ground is 250 N .
(a) How much work is done by this force when the cyclist travels 5 metres? (Show your working.)
\qquad
\qquad
\qquad
Answer joules (J)
(b) What happens to the energy transferred by this force?
\qquad
\qquad
\qquad

M1. (a) Zero / 0
Accept none
Nothing is insufficent
velocity / speed $=0$
accept it is not moving
paintball has not been fired is insufficient
(b) 0.27
allow 1 mark for correct substitution, ie $p=0.003(0) \times 90$ provided no subsequent step
(c) equal to

M2. (a) 450
allow 1 mark for correct substitution, ie $18 \times 10 \times 2.5$ provided no subsequent step shown
(b) (i) friction between child ('s clothing) and slide accept friction between two insulators
accept child rubs against the slide accept when two insulators rub (together)
causes electron / charge transfer (between child and slide)
accept specific reference, eg electrons move onto / off the child / slide
reference to positive electrons / protons / positive charge / atoms transfer negates this mark
answers in terms of the slide being initially charged score zero
(ii) all the charges (on the hair) are the same (polarity)
accept (all) the charge/hair is negative / positive
accept it is positive/negative
charges / hairs are repelling
both parts should be marked together
(iii) charge would pass through the metal (to earth)
accept metal is a conductor
accept metal is not an insulator
accept there is no charge / electron transfer
accept the slide is earthed
accept metals contain free electrons

M3. (a) potential
(b) (i) 13200
allow 1 mark for correct substitution, ie 660×20 provided no subsequent step shown
(ii) 16.5
allow 1 mark for correct
or
$\frac{\text { their (b)(i) }}{800}$ correctly calculated
substitution, ie $\frac{13200}{800}$ or $\frac{\text { their (b)(i) }}{800}$
provided no subsequent step shown

M4. (a) gravitational / gravity / weight
do not accept gravitational potential
(b) accelerating
accept speed / velocity increases
the distance between the drops increases
but the time between the drops is the same
accept the time between drops is (always) 5 seconds accept the drops fall at the same rate

1
(c) (i) any one from:

- speed / velocity
- (condition of) brakes / road surface / tyres
- weather (conditions)
accept specific examples, eg wet / icy roads
accept mass / weight of car friction is insufficient
reference to any factor affecting thinking distance negates this answer
(ii) 75000
allow 1 mark for correct substitution, ie 3000×25 provided no subsequent step shown
or allow 1 mark for an answer 75
or allow 2 marks for
75 k(+ incorrect unit), eg 75 kN
joules / J
do not accept j
an answer 75 kJ gains 3 marks
for full marks the unit and numerical answer must be consistent

M5. (a) D-E
reason only scores if $D-E$ chosen
shallowest slope / gradient
accept smallest distance in biggest time
accept longest time to travel the same distance
accept the line is not as steep
accept it is a less steep line
do not accept the line is not steep
(b) 80000
allow 1 mark for correct substitution, ie 16000×5 provided no subsequent step shown
(c) (i) straight line starting at origin accept within one small square of the origin
passing through $t=220$ and $d=500$
(i) 186
accept any value between 180 and 188
accept where their line intersects given graph line correctly read $\pm 4 \mathrm{~s}$

M6. (a) 572
allow 1 mark for correct substitution,
ie 220×2.6
allow 1 mark for
$220 \times 260=57200$
or
$220 \times 2600=572000$
but to score this mark the entire calculation must be shown
(b) (i) smooth curve drawn
accept a line that is extrapolated back to 0 degrees, but not through the origin
accept a straight line of best fit (point at 40 degrees can be treated as anomalous and line may stop at 30 degrees)
do not accept straight lines drawn 'dot to dot' or directly from first to last point or a line going through the origin
(ii) increases
accept a positive correlation
do not accept proportional
(iii) long plank
no mark for this, the marks are for the explanation
makes the angle small(er) (than a short plank)
accept increases the distance
accept small(er) slope
a small(er) force is needed
or
short plank
no mark for this, the marks are for the explanation
a large(r) force is used over a short(er) distance (1)
less work done (1)
accept less energy transfer

M7. (a) mass and speed
(b) (i) A
reason cannot score if B or C chosen

$$
\text { velocity }=0(\mathrm{~m} / \mathrm{s})
$$

accept speed for velocity accept not moving accept lowest velocity / speed
(ii) 220
allow 1 mark for correct substitution, ie 55×4 provided no subsequent step shown

M8. (a) (i) 4.5
allow 1 mark for correct substitution i.e. $9 \div 2$
(ii) $\mathrm{m} / \mathrm{s}^{2}$
accept answer given in (a)(i) if not contradicted here
(iii) speed
(iv) straight line from the origin passing through ($2 \mathrm{~s}, 9 \mathrm{~m} / \mathrm{s}$)
allow 1 mark for straight line from the origin passing through to $t=2$ seconds
allow 1 mark for an attempt to draw a straight line from the origin passing through $(2,9)$
allow 1 mark for a minimum of 3 points plotted with no line provided if joined up would give correct answer. Points must include $(0,0)$ and $(2,9)$

2

1

1
(b) (i) \mathbf{B}
if \boldsymbol{A} or \boldsymbol{C} given scores $\mathbf{0}$ marks in total
smallest (impact) force
on all/ every/ any surfaces
these marks are awarded for comparative answers
[5]
(ii) (conditions) can be repeated
or
difficult to measure forces with human athletes
accept answers in terms of variations in human athletes e.g. athletes may have different weights area / size of feet may be different difficult to measure forces athletes run at different speeds accept any answer that states or implies that with humans the conditions needed to repeat tests may not be constant
e.g.
athletes unable to maintain constant speed during tests (or during repeat tests)
do not accept the robots are more accurate
removes human error is insufficient fair test is insufficient

1
[10]

M9. (a) (i) 16000
allow 1 mark for correct substitution ie 3200×5
2
(ii) 16000 or their (a)(i)
(iii) less than
(b) increases
decreases
correct order only
1

M10. (a) (i) work (done) $=$ force (applied) \times distance (moved)
accept $W=F \times s$ or $W=F \times d$
accept A provided subsequent method is correct
(ii) 240000
allow 1 mark for correct substitution or correct use of 1200 (N)
1
joules
accept J
do not accept j / Nm
(b) 800 (watts)
accept 0.8 kW
accept their (a)(ii) $\div 300$ correctly evaluated for 2 marks
allow 1 mark for correct substitution
(a)(ii) $\div 5$ correctly evaluated for 1 mark
(c) (i) any one from:

- needs to raise the chair / lift
- lifting more than one chair
allow lifting more than 2 people
implication of a heavier weight
- energy transfer to the surroundings
correctly qualified
accept loss for transfer
do not accept motor inefficient
do not accept motor gets hot
do not accept friction unless the location is specified as external to the motor
(ii) electrical
accept electric
potential
both answers required for the mark

M11. (a) $\quad \mathbf{R}$
has the greatest speed / velocity
accept it is going at $28 \mathrm{~m} / \mathrm{s}$
answer should be comparative
(b) (i) 3250
allow 1 mark for correct substitution of 130 and 25
ie 130×25
accept 2600 or 3640 for 1 mark
(ii) $\mathrm{kg} \mathrm{m} / \mathrm{s}$
accept answer given in (b)(i) if no answer given here
(c) (i) increase it
accept make it slower
accept slow it down
accept make it longer
accept (reactions) would be slower
do not accept if the answer clearly refers to distance comparative answers expected
(ii) increase it
accept make it longer
do not accept if the answer clearly refers to time comparative answers expected
(b) 300
gains 2 marks
else working
gains 1 mark

M13. (a) $4(\mathrm{~N})$
allow 1 mark for correct substitution into correct equation ie 0.4×10
(b) 4.8
their (a) $\times 1.2$ correctly calculated gains 2 marks
allow 1 mark for substitution into correct equation ie 4×1.2 or their (a) (i) $\times 1.2$
joule or J
(b) 1500

1 mark for correct substitution
correct answer with no working = 3
if incorrect, allow 1 mark for work = force $/$ weight \times distance, 2
marks for $=1900 \times 4.5$
N.B. correct answer from the incorrectly recalled relationship mass x distance $=2$ marks

M15. (a) (i) gravitational potential
accept gravitational
accept potential
(ii) $2250(\mathrm{~N})$
forces must be balanced
or
forces are equal and opposite
do not accept because it is not moving
do not accept 'equilibrium' by itself
do not accept 'it is not balanced'
do not accept 'forces are equal'
do not accept 'forces are the same'

M16. (a) [NB e.c.f not allowed from incorrect formula] work done $=$ force \times distance or 250×5
gains 1 mark

but

1250
gains 2 marks
(b) - (mainly) transferred as kinetic / movement energy [not makes bike move]

- (some) lost / wasted / transferred as heat / sound or
used to overcome friction / air resistance
each • for 1 mark

Page 36 of 36

