

Exampro GCSE Physics

P2 Foundation - Calculating Energy and Momentum Self Study Questions Name:

Class:

Aut	hor:			
Dat	e:			
Tim	e:	95		
Mar	·ks:	95		
Con	nments:			

Q1. A paintball gun is used to fire a small ball of paint, called a paintball, at a target.

The figure below shows someone just about to fire a paintball gun.

The paintball is inside the gun.

	Momentum = kg m / s	(2)
	Use the correct equation from the Physics Equations Sheet.	
	Calculate the momentum of the paintball just after the gun is fired.	
	The paintball has a mass of 0.0030 kg.	
(b)	The gun fires the paintball forwards at a velocity of 90 m / s.	
		(2)
	Give a reason for your answer.	
(a)	What is the momentum of the paintball before the gun is fired?	

(c) The momentum of the gun and paintball is conserved.

Use the correct answer from the box to complete the sentence.

equal to	greater than	less than
	3	

The total momentum of the gun and paintball just after the gun is fired

will be the total momentum of the gun and paintball

before the gun is fired.

(1) (Total 5 marks)

Q2. The figure below shows a slide in a children's playground.

(a) A child of mass 18 kilograms goes down the slide.

The vertical distance from the top to the bottom of the slide is 2.5 metres.

Calculate the decrease in gravitational potential energy of the child sliding from the top to the bottom of the slide.

Gravitational field strength = 10 N / kg

Use the correct equation from the Physics Equations Sheet.

.....

(b) The slide is made of plastic.

(i)	The child becomes electrically charged when he goes down the slide.	
	Explain why.	
		(2)
(ii)	Going down the slide causes the child's hair to stand on end.	
	What conclusion about the electrical charge on the child's hair can be made from this observation?	
	Give a reason for your answer.	
		(2)
(iii)	Why would the child not become electrically charged if the slide was made from metal?	
		(1) Irks)

Q3. The diagram shows a climber part way up a cliff.

		20 m	
(a)	Com	nplete the sentence.	
	Whe	en the climber moves up the cliff, the climber	
	gains	s gravitational	(4)
			(1)
(b)	The	climber weighs 660 N.	
	(i)	Calculate the work the climber must do against gravity, to climb to the top of the cliff.	
		Use the correct equation from the Physics Equations Sheet.	
	(ii)	Work done = J It takes the climber 800 seconds to climb to the top of the cliff.	(2)
		climber.	
		Calculate the power of the climber during the climb.	
		Use the correct equation from the Physics Equations Sheet.	
		Power =W	(2) arks)

Q4.	A road	A car has an oil leak. Every 5 seconds an oil drop falls from the bottom of the car onto the .					
	(a)	What force causes the oil drop to fall towards the road?					
	(b)	The	diagram shows the spacing of the oil drops left on the road during part of a journey	(1			
			A B				
		Des	scribe the motion of the car as it moves from A to B .				
		Ехр	lain the reason for your answer.				
				(3)			
	(c)	Whe	en the brakes are applied, a braking force slows down and stops the car.				
		(i)	The size of the braking force affects the braking distance of the car.				
			State one other factor that affects the braking distance of the car.				
				(1)			
		(ii)	A braking force of 3 kN is used to slow down and stop the car in a distance of 25 m.				
			Calculate the work done by the brakes to stop the car and give the unit.				
			Use the correct equation from the Physics Equations Sheet.				
			Work done =				
			(Total 8 ma	(3) rks)			

Q5. Part of a bus route is along a high street.

The distance-time graph shows how far the bus travelled along the high street and how long it took.

(a) Between which two points was the bus travelling the slowest?

Put a tick (\checkmark) in the box next to your answer	•

Points	Tick (√)
A – B	
C – D	
D – E	

Give a reason for your answer.

.....

.....

(b) The bus travels at 5 m/s between points A and B. The bus and passengers have a total mass of 16 000 kg.

Use the equation in the box to calculate the momentum of the bus and passengers between points ${\bf A}$ and ${\bf B}$.

		momentum = mass x velocity	
	Sho	w clearly how you work out your answer.	
		Momentum = kg m/s	(2)
(c)	A cy The secc	clist made the same journey along the high street. cyclist started at the same time as the bus and completed the journey in 220 onds. The cyclist travelled the whole distance at a constant speed.	
	(i)	Draw a line on the graph to show the cyclist's journey.	(2)
	(ii)	After how many seconds did the cyclist overtake the bus?	
		The cyclist overtook the bus after seconds.	(4)
			(Total 7 marks)

Q6. (a) The diagram shows a builder using a plank to help load rubble into a skip.

The builder uses a force of 220 N to push the wheelbarrow up the plank.

Use information from the diagram and the equation in the box to calculate the work done to push the wheelbarrow up the plank to the skip.

work done = force applied \times distance moved in the direction of force

Show clearly how you work out your answer.

(b) A student investigated how the force needed to pull a brick up a slope, at a steady speed, depends on the angle of the slope.

The apparatus used by the student is shown in the diagram.

The student used the results from the investigation to plot the points for a graph of force used against the angle of the slope.

How does the force used to pull the brick up the slope change as the angle of the (ii) slope increases?

(1)

(1)

(iii)	Consider the results from this experiment.
	Should the student recommend that the builder use a long plank or a short plank to
	help load the skip?

Draw a ring around your answer.

	long plank	short plank	
Explain the reas	son for your answer.		
			(2) (Total 6 marks)

Q7. The picture shows three skateboarders, **A**, **B** and **C**.

Skateboarder A is not moving.

Skateboarder **B** is moving towards the ramp at a constant speed. Skateboarder **C** is moving on the ramp at a constant speed.

(a) The skateboarders have different amounts of kinetic energy.

Which two factors affect the kinetic energy of the skateboarders?

Put a tick (\checkmark) in the box next to your answer.

direction and mass	
mass and speed	
speed and direction	

- (b) The skateboarders also have different amounts of momentum.
 - (i) Which one of the skateboarders has the smallest amount of momentum?

Draw a ring around your answer.

Q8. (a) The diagram shows an athlete at the start of a race. The race is along a straight track.

In the first 2 seconds, the athlete accelerates constantly and reaches a speed of 9 m/s.

(i) Use the equation in the box to calculate the acceleration of the athlete.

		accelleration	$n = \frac{\text{change in } v}{\text{time taken for } v}$	elocity change		
	Show clearly	how you work out	your answer.			
			Acceleration	=	(2))
(ii)	Which one o	f the following is th	ne unit for acceler	ation?		
	Draw a ring a	around your answe	er.			
	J/s	m/s	m/s²	Nm	(1))
(iii)	Complete the	e following sentend	ce.			
	The velocity of	of the athlete is the			of the	
	athlete in a gi	ven direction.			(1)	,

(iv) Complete the graph to show how the velocity of the athlete changes during the first 2 seconds of the race.

(b) Many running shoes have a cushioning system. This reduces the impact force on the athlete as the heel of the running shoe hits the ground.

The bar chart shows the maximum impact force for three different makes of running shoe used on three different types of surface.

(i) Which **one** of the three makes of running shoe, **A**, **B** or **C**, has the best cushioning system?

Explain the reason for your answer.

(ii) The data needed to draw the bar chart was obtained using a robotic athlete fitted with electronic sensors.

Why is this data likely to be more reliable than data obtained using human athletes?

.....

(1) (Total 10 marks)

(3)

Q9. (a) A van has a mass of 3200 kg. The diagram shows the van just before and just after it collides with the back of a car.

Just before the collision, the van was moving at 5 m/s and the car was stationary.

(i) Use the equation in the box to calculate the momentum of the van just before the collision.

momentum = mass × velocity

Show clearly how you work out your answer.

(ii) The collision makes the van and car join together.

What is the total momentum of the van and the car just after the collision?

(1)

(iii) Complete the following sentence by drawing a ring around the correct line in the box.

	more than	
The momentum of the car before the collision is	the same as	the
	less than	

momentum of the car after the collision.

(1)

(b) A seat belt is one of the safety features of a car.

In a collision, wearing a seat belt reduces the risk of injury.

Use words or phrases from the box to complete the following sentences.

In a collision, the seat belt stretches. The time it takes for the person held by the seat belt to lose momentum compared to a person not wearing a seat belt,

The force on the person's body an reduces the risk of injury.	d so

(2) (Total 6 marks)

Q10. (a) A chair lift carries two skiers, Greg and Jill, to the top of a ski slope. Greg weighs 700 N and Jill weighs 500 N.

	(i)	Write down the equation that links distance moved, force applied and work done.	
			(1)
	(ii)	Calculate the work done to lift Greg and Jill through a vertical height of 200 m. Show clearly how you work out your answer and give the unit.	
		work done =	(3)
(b)	The	chair takes 5 minutes to move from the bottom to the top of the ski slope.	
	Use the	e the following equation to calculate the power required to lift Greg and Jill to the top of ski slope. Show clearly how you work out your answer.	
	pow	er = work done time taken	
		power = watts	(2)
(c)	The	chair lift is driven by an electric motor.	
	(i)	Why would the power output of the electric motor need to be larger than your answer to part (b)?	
			(1)
	(ii)	Complete the following sentence.	
		When the ski lift is working energy supplied to the motor	
		is usefully transferred as gravitational	(1)
		(Total 8 ma	rks)

Q11. (a) The diagram shows three identical go-karts, **P**, **Q** and **R**, travelling at different speeds along the straight part of an outdoor racetrack.

(ii) How v	vould a wet trac	k affect the braking	distance of a go-kart?
------------	------------------	----------------------	------------------------

.....

(1) (Total 7 marks)

Q12. The diagram below shows one way of lifting a bucket of bricks.

(a) When the free end of the rope is pulled down, the load is lifted.

Complete the following sentence.

The work done in pulling the rope down is used to increase the

energy of the and bricks.

(b) The weight of the bricks is 100 N and they are lifted 3 m.

Calculate the work done on the bricks.

> (2) (Total 4 marks)

Q13. The diagram shows a supermarket worker stacking jars of coffee onto a shelf.

(a) The mass of each jar of coffee is 0.4 kg.

Calculate the weight of each jar of coffee.

gravitational field strength = 10 N/kg

Write down the equation you use, and then show clearly how you work out your answer.

Weight = N

(b) The distance between the floor and the middle shelf is 1.2 m.

Calculate the work done to lift one jar of coffee from the floor onto the shelf.

Write down the equation you use, and then show clearly how you work out your answer and give the unit.

Work done =	(0)
	(3) (Total 5 marks)

Q14. A forklift truck was used to stack boxes on to a trailer.

It lifted a box weighing 1900 N through 4.5 m.

Œ	 ~			
			\mathbb{D}_{45m}	ļ
				-

Calculate the work done on the box. Show your working.

Work done = J	⁻ otal 3 marks)

Q15. (a) The weightlifter in the picture has lifted a weight of 2250 newtons above his head. The weight is held still.

(b)

(i) In the box are the names of three forms of energy.

	gravitational potential kinetic sound	
	Which one of these forms of energy does the weight have?	
		(1)
(ii)	What force is used by the weightlifter to hold the weight still?	
	Size of force =N	
	Give a reason for your answer	
		(2)
To l	ift the weight, the weightlifter does 4500 joules of work in 3.0 seconds.	
Use clea	e the following equation to calculate the power developed by the weightlifter. Show orly how you work out your answer.	
ром	ver = <u>work done</u> time taken	
	Power = watts	
	(Total 5	(2) narks)

Q16. A cyclist accelerates from a set of traffic lights.

The driving force of the back tyre on the ground is 250 N.

M1.		(a)	Zero / 0		
			Accept none		
			Nothing is insufficent	1	
		vel	ocity / speed = 0		
			accept it is not moving		
			paintball has not been fired is insufficient	1	
	(b)	0.2	27		
	()		allow 1 mark for correct substitution, ie p = 0.003(0) × 90 provided no subsequent step		
				2	
	(c)	eai	ual to		
	(9)	541		1	
					[5]

M2.		(a)	450		
			allow 1 mark for correct substitution,		
			ie 18 \times 10 \times 2.5 provided no subsequent step shown	2	
	(b)	(i)	friction between child ('s clothing) and slide		
			accept friction between two insulators		
			accept child rubs against the slide		
			accept when two insulators rub (together)	1	
			causes electron / charge transfer (between child and slide)		
			accept specific reference, eg electrons move onto / off the child / slide		
			reference to positive electrons / protons / positive charge / atoms transfer negates this mark		
			answers in terms of the slide being initially charged score zero	1	
		(ii)	all the charges (on the hair) are the same (polarity)		
			accept (all) the charge/hair is negative / positive		
			accept it is positive/negative	1	
			charges / hairs are repelling		
			both parts should be marked together	1	
		(iii)	charge would pass through the metal (to earth)		
			accept metal is a conductor		
			accept metal is not an insulator		
			accept there is no charge / electron transfer		
			accept the slide is earthed		
			accept metals contain free electrons	1	
				[7]
Mo			notontial		
1913.		(a)	potential	1	
	(b)	(i)	13 200		
			allow 1 mark for correct substitution, ie 660 × 20 provided no subsequent step shown	2	
				2	

M4.

allow 1 mark for correct

or

		01		
		their 80	(b)(i) substitution, ie <u>13 200</u> or <u>their (b)(i)</u> 800 provided no subsequent step shown	2
	(a)	gravitat	tional / gravity / weight do not accept gravitational potential	1
(b)	acce	eleratin	ng accept speed / velocity increases	1
	the	distanc	ce between the drops increases	1
	but	the time	e between the drops is the same accept the time between drops is (always) 5 seconds accept the drops fall at the same rate	1
(c)	(i)	any	one from:	
		•	speed / velocity	
		•	(condition of) brakes / road surface / tyres	
		•	weather (conditions) accept specific examples, eg wet / icy roads accept mass / weight of car friction is insufficient reference to any factor affecting thinking distance negates this answer	1
	(ii)	75 00	00 allow 1 mark for correct substitution, ie 3000 × 25 provided no subsequent step shown or allow 1 mark for an answer 75 or allow 2 marks for 75 k(+ incorrect unit), eg 75 kN	2

[5]

jou	iles / J		
	do not accept j		
	an answer 75 kJ gains 3 marks		
	for full marks the unit and numerical answer must be consistent	1	[8]
(a) D – E	E		
. ,	reason only scores if D – E chosen	1	
shallowe	est slope / gradient		
	accept smallest distance in biggest time		
	accept longest time to travel the same distance		
	accept the line is not <u>as</u> steep		
	do not accept the line is not steep		
		1	
(b) 80 000			
	allow 1 mark for correct substitution, ie 16 000 × 5 provided no		
	subsequent step shown	2	
		2	
(c) (i) st	raight line starting at origin		
	accept within one small square of the origin		
		1	
ра	ssing through t = 220 and d = 500		
		1	
(i) 10			
(1) 18			
	accept any value between 180 and 188		
	±4 s		
		1	
			[7]
(a) 570			
(a) 572			
	allow 1 mark for correct substitution,		
	allow 1 mark tor		
	$220 \times 260 = 57200$		
	or		
	$220 \times 2600 = 572\ 000$		
	but to score this mark the entire calculation must be shown		

M5.

M6.

	(b)	(i)	smooth curve drawn		
			accept a line that is extrapolated back to 0 degrees, but not through the origin		
			accept a straight line of best fit (point at 40 degrees can be treated as anomalous and line may stop at 30 degrees)		
			do not accept straight lines drawn 'dot to dot' or directly from first to last point or a line going through the origin		
				1	
		(ii)	increases		
			accept a positive correlation		
			do not accept proportional	1	
				1	
		(iii)	long plank		
			no mark for this, the marks are for the explanation		
			makes the angle small(er) (than a short plank)		
			accept increases the distance		
			accept small(er) slope		
				1	
			a small(er) force is needed		
			or		
			short plank		
			no mark for this, the marks are for the explanation		
			a large(r) force is used over a short(er) distance (1)		
			less work done (1)		
			accept less energy transfer		
				1	[6]
M7.		(a)	mass and speed		
				1	
	(b)	(i)	Α		
			reason cannot score if B or C chosen		
				1	
			velocity = 0 (m/s)		
			accept speed for velocity		

accept not moving

accept lowest velocity / speed

(ii) 220

allow 1 mark for correct substitution,
ie 55 \times 4 provided no subsequent step shown

[5]

M8.		(a)	(i)	4.5 allow 1 mark for correct substitution i.e. 9 ÷ 2	2
		(ii)	m/s²	accept answer given in (a)(i) if not contradicted here	1
		(iii)	spe	ed	1
		(iv)	<u>strai</u>	ght line from the <u>origin passing</u> through (2s, 9m/s) allow 1 mark for <u>straight</u> line from the origin passing through to $t = 2$ seconds allow 1 mark for an attempt to draw a straight line from the origin passing through (2,9) allow 1 mark for a minimum of 3 points plotted with no line provided if joined up would give correct answer. Points must include(0,0) and (2,9)	2
	(b)	(i)	В	if A or C given scores 0 marks in total	1
			sma	ll <u>est</u> (impact) force	1
			on <u>a</u> l	II/ every/ any surfaces these marks are awarded for comparative answers	1

(ii) (conditions) can be repeated

or

difficult to measure forces with human athletes

accept answers in terms of variations in human athletes e.g.
athletes may have different weights area / size of feet may be different difficult to measure forces athletes run at different speeds accept any answer that states or implies that with humans the conditions needed to repeat tests may not be constant
e.g.
athletes unable to maintain constant speed during tests (or during repeat tests)
do **not** accept the robots are more accurate
removes human error is insufficient
fair test is insufficient

[10]

[6]

M9.		(a)	(i)	16 000 allow 1 mark for correct substitution ie 3200 × 5	2
		(ii)	16	000 or their (a)(i)	1
		(iii)	les	s than	1
	(b)	incr	ease	S	1
		dec	rease	es correct order only	1

M10. (a) (i) work (done) = force (applied) × distance (moved) accept $W = F \times s$ or $W = F \times d$

240 000 allow **1** mark for correct substitution **or** correct use of 1200 (N)

joules

accept J do **not** accept j / Nm

(b) 800 (watts)

(ii)

accept 0.8 kW accept their (a)(ii) \div 300 correctly evaluated for **2** marks allow **1** mark for correct substitution (a)(ii) \div 5 correctly evaluated for **1** mark

(c) (i) any **one** from:

- needs to raise the chair / lift
- lifting more than one chair allow lifting more than 2 people implication of a heavier weight
- energy transfer to the surroundings correctly qualified accept loss for transfer do **not** accept motor inefficient do **not** accept motor gets hot do **not** accept friction unless the location is specified as external to the motor
- (ii) electrical

accept electric

potential

both answers required for the mark

[8]

1

1

1

2

1

2

M11. (a) R

reason cannot score if R is not chosen

	has the gre		eat <u>est</u> speed / velocity		
			accept it is going at 28 m/s answer should be comparative	1	
(b)	(i)	3250	allow 1 mark for correct substitution of 130 and 25 ie 130 × 25 accept 2600 or 3640 for 1 mark	2	
	(ii)	kg m/	's accept answer given in (b)(i) if no answer given here	2	
(c)	(i)	increa	ase it accept make it slower accept slow it down accept make it longer accept (reactions) would be slower do not accept if the answer clearly refers to distance comparative answers expected	1	
	(ii)	increa	ase it accept make it longer do not accept if the answer clearly refers to time comparative answers expected	1	[7]
M12.	(a)	poten	tial; bucket/pulley for 1 mark each	2	
(b)	300)	gains 2 marks		
	else	e workir	ng gains 1 mark	2	[4]

M13. (a) 4 (N)

allow **1** mark for correct substitution into correct equation ie 0.4×10

(b) 4.8

their (a) \times 1.2 correctly calculated gains **2** marks allow **1** mark for substitution into correct equation ie 4 \times 1.2 or their (a)(i) \times 1.2

joule or J

2

1

1

2

[5]

M14. 8550 correct answer with no working = 3 if incorrect, allow 1 mark for work = force / weight × distance, 2

marks for = 1900×4.5 N.B. correct answer from the incorrectly recalled relationship mass \times distance = 2 marks

[3]

M15. (a) (i) gravitational potential accept gravitational accept potential

(ii) 2250 (N)

(b)

	1
forces must be balanced	
or	
forces are equal and opposite	
do not accept because it is not moving do not accept 'equilibrium' by itself do not accept 'it is not balanced' do not accept 'forces are equal' do not accept 'forces are the same'	1
	-
1500	

1 mark for correct substitution

[5]

M16.	 (a) [NB e.c.f <u>not</u> allowed from incorrect formula] work done = force × distance or 250 × 5 gains 1 mark 		
	ut 250 <i>gains 2 marks</i>		
(b)	 (mainly) transferred as kinetic / movement energy [not makes bike move] (some) lost / wasted / transferred as heat / sound or used to everseme friction / air resistance 		
	each • for 1 mark	2	[4]