exampro

Exampro GCSE Physics

P3 Foundation - Transformers and Fields Self Study Questions

Name:

Class:

Author:

Date:

Time:
91

M arks:
91

Comments:

Q1. (a) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

There are two types of traditional transformer; step-up and step-down.
Describe the similarities and differences between a step-up transformer and a step-down transformer.

You should include details of:

- construction, including materials used
- the effect the transformer has on the input potential difference (p.d.).

You should not draw a diagram.
\qquad
Extra space \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The figure below shows a mobile phone and charger.

Mobile phone chargers use a different type of transformer, which is smaller and lighter than a traditional transformer.

What name is given to the type of transformer used in a mobile phone charger?
\qquad

Q2. A student is investigating the strength of electromagnets.
Figure 1 shows three electromagnets.
The student hung a line of paper clips from each electromagnet.
Figure 1

No more paper clips can be hung from the bottom of each line of paper clips.
(a) (i) Complete the conclusion that the student should make from this investigation.

Increasing the number of turns of wire wrapped around the nail will \qquad the strength of the electromagnet.
(ii) Which two pairs of electromagnets should be compared to make this conclusion?

Pair 1: Electromagnets \qquad and \qquad
Pair 2: Electromagnets \qquad and \qquad
(iii) Suggest two variables that the student should control in this investigation.

1 \qquad

2 \qquad
(b) The cell in electromagnet \mathbf{A} is swapped around to make the current flow in the opposite direction. This is shown in Figure 2.

Figure 2

What is the maximum number of paper clips that can now be hung in a line from this electromagnet?

Draw a ring around the correct answer.
fewer than $4 \quad 4$ more than 4
Give one reason for your answer.
\qquad
\qquad
\qquad
(c) Electromagnet \mathbf{A} is changed to have only 10 turns of wire wrapped around the nail.

Suggest the maximum number of paper clips that could be hung in a line from the end of this electromagnet.

Maximum number of paper clips = \qquad

Q3. The diagram shows the apparatus used by a student to investigate a transformer.

(a) The transformer made by the student would not have worked if the core had been made from aluminium and not iron.

Why?
\qquad
\qquad
(b) The student made changes to the number of turns used to make the secondary coil. He then measured the potential difference across the secondary coil after each change. The graph shows the student's results.

(i) What range of values was used for the number of turns on the secondary coil?

From \qquad to \qquad
(ii) When he drew the line of best fit, the student ignored one of the data points.

Why?
\qquad
\qquad
(iii) What is the minimum number of turns needed on the secondary coil for the transformer to act as a step-up transformer?
\qquad
Give a reason for your answer.
\qquad
\qquad
(c) A radio can be used with a 9 V battery or it can be plugged into the 230 V mains electricity supply using an adapter. The mains adapter contains a transformer.

Why must the mains adapter contain a transformer?
\qquad
\qquad

Q4. (a) The diagram shows the structure of a traditional transformer.
Use words from the box to label the diagram.

aluminium	brass	iron	large	primary	secondary

(b) Batteries inside laptop computers are charged using laptop chargers. The laptop charger contains a traditional transformer.

The laptop charger contains a step-down transformer.
What does a step-down transformer do?
\qquad
\qquad
(c) The transformer used in a modern mobile phone charger is a switch mode transformer. This is different to the traditional transformer used in the laptop charger.

Give one advantage of using a switch mode transformer, rather than a traditional transformer.
\qquad
\qquad
(d) Laptop batteries and mobile phone batteries can only be recharged a limited number of times. When a battery cannot be recharged, it is better to recycle the battery than to throw it away.

Draw a ring around the correct answer to complete the sentence.

Q5. The diagram shows a USB power adapter which plugs into a 230 V a.c. mains socket.

The adapter contains a small step-down transformer.
(a) The core of the transformer is made of laminated soft iron.

Why is iron used?
\qquad
\qquad
(b) The coils of the transformers are made of insulated copper wire.

Why is the wire insulated?
\qquad
\qquad
(c) There are 500 turns on one coil of the transformer and 20000 turns on the other coil.

Use the equation in the box to calculate the p.d. across the secondary coil.

$$
\frac{\text { p.d. across primary }}{\text { p.d. across secondary }}=\frac{\text { number of turns on primary }}{\text { number of turns on secondary }}
$$

Show clearly how you work out your answer and give the unit.
\qquad
\qquad
\qquad
p.d. across the secondary = \qquad

Q6. The diagram shows a 'G-machine'. The G-machine is used in astronaut training.

The G-machine moves the astronaut in a horizontal circle.
(a) In which direction, \mathbf{A}, \mathbf{B} or \mathbf{C}, does the centripetal force on the astronaut act?

Write your answer in the box.

(b) The centripetal force on the astronaut is measured.

Graph \mathbf{X} shows how the centripetal force is affected by the speed of rotation.
The radius of rotation is kept the same.

(i) Use Graph \mathbf{X} to determine the centripetal force on the astronaut when rotating at a speed of 30 metres per second.

Centripetal force = newtons
(ii) Complete the following sentence to give the conclusion that can be made from Graph X.

Increasing the speed of rotation of a G-machine will \qquad
the centripetal force on the astronaut.
(iii) Graph \mathbf{Y} shows how the centripetal force is affected by the radius of rotation, when the speed of rotation is kept the same.

Complete the following sentence to give the conclusion that can be made from Graph Y.

The greater the radius of rotation, the \qquad the centripetal force on the astronaut.
(c) The G-machine is rotated by an electric motor. The diagram shows a simple electric motor.

The following statements explain how the motor creates a turning force. The statements are in the wrong order.
\mathbf{M} - The magnetic field interacts with the magnetic field of the permanent magnets.
\mathbf{N} - A magnetic field is created around the coil.
\mathbf{O} - The power supply applies a potential difference across the coil.
\mathbf{P} - This creates a force that makes the coil spin.
Q - A current flows through the coil.
Arrange the statements in the correct order. Two of them have been done for you.

(d) The electric motor produces a turning force.

Give two ways of increasing the turning force.
1 \qquad
\qquad
2 \qquad
\qquad
(e) Draw a ring around the correct answer to complete the sentence.

It costs a lot of money to send astronauts into space.

Q7. The diagram shows the equipment used by a student to investigate the strength of five different electromagnets.

The stronger the electromagnet, the more paper clips it will hold.
(a) Why is it important that the paper clips used in the investigation are all the same size?
\qquad
\qquad
\qquad
(b) The five electromagnets, J, K, L, M and \mathbf{N}, used by the student are shown below.

Each electromagnet was made by wrapping lengths of insulated wire around identical iron nails.

The student wants to find out how the strength of an electromagnet depends on the number of turns of wire in the coil.

Which electromagnets should the student compare in order to do this?
\qquad
(c) The student concluded:
"The strength of an electromagnet is always directly proportional to the number of turns on the coil."
(i) Explain how the data from the investigation supports the student's conclusion.
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) The student makes one more electromagnet by winding 100 turns onto a nail.

Before testing the electromagnet, the student predicted the number of paper clips that the electromagnet would hold when the current is 1 amp .

How many paper clips should the student predict that the electromagnet would hold?
Show clearly how you work out your answer.
\qquad
\qquad
\qquad
number of paper clips $=$ \qquad
(iii) When the student tested the electromagnet it held 20 paper clips.

This is not what the student predicted.
Explain what the student should do when new data does not seem to support the prediction that was made.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q8. (a) The diagram shows a simple transformer made by a student. The student has designed the transformer to light a 3.0 V lamp using a 1.0 V power supply.

(i) What name is given to the part of the transformer that is made of iron?

Draw a ring around your answer.

> centre connector core
(ii) When the power supply is switched on, the lamp is not very bright.

Suggest one change that the student can make to increase the brightness of the lamp.
The 1.0 V power supply cannot be changed.
\qquad
\qquad
(b) The diagram shows part of the National Grid system. The transformers, J, K, L and M, are an essential part of the system.

(i) Which transformer, $\mathbf{J}, \mathbf{K}, \mathbf{L}$ or \mathbf{M}, is a step-up transformer?

Write your answer in the box. \square
(ii) Some scientists claim to have found evidence to suggest that children living near to overhead power lines are more likely to develop leukaemia. However, the scientists are not sure that the power lines are the cause of the problem.

The evidence from this and other investigations may worry some people.
What do you think scientists should do?
Put a tick (\checkmark) in the box next to your answer.

Scientists should always publish the evidence from investigations immediately.

Scientists should ignore any evidence from investigations that may worry people.

Scientists should publish the evidence from an investigation only when they have found out as many facts as possible.
\square
\square
(1)
(Total 4 marks)

Q9. (a) The basic structure of a transformer is a primary coil of insulated wire, an iron core and a secondary coil of insulated wire.

(i) Why is the core made of iron?
\qquad
\qquad
(ii) Explain how a transformer works.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) A small step-down transformer is used in the charger for an electric screwdriver.

The input to the transformer is 230 V a.c. mains supply and the output is 5.75 V a.c. There are 3200 turns on the primary coil.

Use the equation in the box to calculate the number of turns on the transformer's secondary coil.
$\frac{\text { p.d. acrossprimary }}{\text { p.d.acrosssecondary }}=\frac{\text { number of turns on primary }}{\text { number of turns on secondary }}$

Show clearly how you work out your answer.
\qquad
\qquad
Number of turns $=$ \qquad

Q10. A student investigates the electromagnetic force acting on a wire which carries an electric current. The wire is in a magnetic field.

The diagram shows the circuit which the student uses.
(a) Draw an \mathbf{X} on the diagram, with the centre of the \mathbf{X} in the most strongest part of the magnetic field.

(b) Give one change that she can make to the magnets to decrease the electromagnetic force on the wire.
\qquad
\qquad
(c) The student wants to change the electromagnetic force on the wire without changing the magnets or moving their position.
(i) Give one way in which she can increase the electromagnetic force.
\qquad
\qquad
(ii) Give one way in which she can reverse the direction of the electromagnetic force.
\qquad
\qquad

Q11. (a) Name a material that could be used to make the outside case of the plug.

Give a reason for your choice.
\qquad
\qquad
(b) To gain full marks in this question you should write your ideas in good English. Put them into a sensible order and use the correct scientific words.

Some electrical circuits are protected by a circuit breaker. These switch the circuit off if a fault causes a larger than normal current to flow. The diagram shows one type of circuit breaker. A normal current (15 A) is flowing.

Source: adapted from V. PRUDEN and K. HIRST, AQA GCSE Sceince Reproduced by permission of Hodder and Soughton Educational Ltd

Explain what happens when a current larger than 15A flows. The answer has been started for you.

When the current goes above 15 A , the electromagnet becomes stronger and
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q12. A teacher demonstrates a small transformer.

(a) (i) What is the core made of?

Draw a ring around the correct word in the box.

aluminium	copper	iron

(ii) The potential difference (p.d.) across the secondary coil is less than the p.d. across the primary coil.

What sort of transformer is it?
\qquad
(b) Where is a step-up transformer used as part of the National Grid?
\qquad
(c) The teacher writes a note about the transformer but leaves five spaces.

Use the correct words from the box to complete the spaces.

coil	core	current	ends	field	wire

A transformer works because an alternating in the primary \qquad produces a changing magnetic
\qquad in the \qquad and then in the
secondary coil.
This induces an alternating potential difference across the \qquad
of the secondary coil.
(5)
(Total 8 marks)

Q13. The diagram below shows a door lock which can be opened from a flat inside a building.

(a) Explain how the door is unlocked when the switch is closed.
\qquad
\qquad
\qquad
\qquad
(b) State two changes which would increase the strength of the electromagnet.

1
2 \qquad
(c) Why is the spring needed in the lock?
\qquad
\qquad
(d) The connections to the coil were accidentally reversed. Would the lock still work?
\qquad

Explain your answer.

\qquad
\qquad

Q14. When a conductor carrying an electric current is placed in a magnetic field a force may act on it.

(a) State two ways in which this force can be increased.

1

2 \qquad
(b) State two ways in which this force can be made to act in the opposite direction.

1
2 \qquad
(c) In what circumstance will no force act on a conductor carrying an electric current and in a magnetic field?
\qquad
\qquad

Show clearly how you work out your answer.
\qquad
\qquad
Kinetic energy = ... J

M1. (a) Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also apply a 'best-fit' approach to the marking.

0 marks

No relevant / correct content.

Level 1 (1-2 marks)

Either there is an attempt at a description of the construction of a transformer
or
a correct statement of the effect of one type of transformer on the input p.d.

Level 2 (3-4 marks)

There is a description of the construction of a transformer and
a correct statement of the effect of one type of transformer on the input p.d.

Level 3 (5-6 marks)

There is a clear description of the construction of a transformer
and
there is a correct description of how transformers affect the input p.d.

details of construction:

extra information
a (laminated) core
core is made from a magnetic material / iron
2 coils
the coils are made from an electrical conductor / copper
the coils are covered in plastic / insulation
the coils are (usually) on opposite sides
step-up transformer has more turns on secondary coil than (its) primary (or vice versa)
step-down transformer has fewer turns on secondary coil than (its) primary (or vice versa)
effect on input p.d. :
step-up transformer, the output p.d. is greater (than the input p.d.)
accept voltage for p.d.
step-down transformer, the output p.d. is lower (than the input p.d.)
(b) switch mode (transformer)

M2. (a) (i) increase
(ii) A and B
and
B and C
both required for the mark
either order
1
(iii) any two from:

- size of nail
or
nail material
allow (same) nail
- current
allow (same) cell
allow p.d.
same amount of electricity is insufficient
- (size of) paper clip
- length of wire
accept type / thickness of wire
(b) 4

B picks up the same number as C, so this electromagnet would pick up the same number as A
or
direction of current does not affect the strength of the electromagnet allow it has got the same number of turns as A
(c) 2
allow 1 or 3

M3. (a) aluminium cannot be magnetised accept aluminium is not magnetic "it" refers to aluminium do not accept aluminium is not easily magnetised reference to conduction and aluminium negates mark iron can be magnetised is insufficient
(b) (i) 10 to 50
either order
(ii) (data is) anomalous
accept does not fit the pattern
it is an error is insufficient
(iii) 21
accept 22
do not accept any fraction of a turn ie 20.1

M4. (a) iron
correct positions only
(b) (it) decreases the p.d.
accept it would increase current
accept voltage for p.d.
the voltage goes from 230(V) to 20(V) is insufficient do not accept decreases current / energy / power do not accept decreases p.d. / voltage and current
primary
secondary
secondary p.d. (just) larger than primary p.d.
accept output (just) larger than input/2V
or
there must be more turns on the secondary coil than primary coil
do not accept coil for turns

1

1

1
(c) to reduce/step-down the (input) p.d./voltage mains p.d. is too high is insufficient step-down transformer is insufficient answers in terms of changing/ stepping-up current or fuse blowing or not working with 230 volts are insufficient
any mention of step-up negates mark
stepping down both voltage/p.d. and current negates mark
(c) any one from:

- lighter accept it is easier to carry around
- smaller
- use (very) little power / current / energy when switched on and no load / phone not connected
accept no power / current / energy is drawn do not accept electricity for power / current / energy
- more efficient accept does not get as hot or less heat produced
(d) an environmental

M5. (a) (it is) magnetic
or will carry (an alternating) magnetic field
or magnetises and demagnetises (easily)
reference to conduction negates the mark
(b) so the current / electricity does not flow through the iron / core accept 'so the current / electricity / wires do not short (circuit)' responses in terms of heat insulation negate the mark ignore references to safety
(c) 5.75 or 5.8 or $6(.0)$
allow for 1 mark either
$\frac{230}{\text { p.d. }}=\frac{20000}{500}$
or
p.d. $=230 \div 40$

V/volt(s)

M6. (a) A
(b) (i) 9000
(ii) increase
accept other comparative terms, eg give a bigger affect / change is insufficient
(iii) smaller accept other comparative terms, eg less
(c) QNM
all three in correct boxes one statement in correct box gains 1 mark
(d) any two from:

- increase the current / p.d. (supplied to the coil) accept reduce the resistance of the coil or increase cross sectional area of wire accept more cells / batteries or turn up the power supply increase power is insufficient
- increase number of turns (on the coil)
- increase the area (of the coil) accept increase the width of the coil increase width / size is insufficient
- increase the (strength of the permanent) magnetic field accept move the magnets closer to the coil accept use stronger magnets do not accept use larger magnets
(e) an economic

M7. (a) so the results can be compared fairly fair test is insufficient
(b) $\mathrm{J} L \mathbf{M}$
all 3 required and no other
(c) (i) for a given current the number of paper clips increases by the same factor as the number of turns
plus a mathematical explanation using the data eg a current of 1 A with 10 turns picks up 3 clips, a current of 1 A with 20 turns picks up 6 clips
(ii) 30
allow 1 mark for showing correct use of figures eg 20 turns $\times 5=100$ turns
(iii) check the new data / repeat the experiment
to identify any anomalous results
1

1
then reconsider prediction / hypothesis in the light of new evidence
(ii) any four from:

- insulation prevents electricity/current flowing through the iron/core or 'insulation so electricity/current only flows in the wires/turns/coils'
- alternating current/a.c. in the primary (coil)
- produces a changing magnetic field (in the iron/core)
- (and hence magnetic) field in the secondary (coil)
- induces/generates/produces an alternating_potential difference/p.d./voltage across the secondary (coil)
- (and hence) alternating current/a.c. in the secondary (coil)
(b) 80 (turns)
or credit (1) for any equation which if correctly evaluated would give 80 example
example
$\frac{230}{5.75}=\frac{3200}{\text { numberof turns }}$
2
[7]

M10. (a) centre of the \mathbf{X} midway between the poles intention correct as judged by eye example

(b) move the poles further apart
accept turn for move
accept ends / magnets for poles
accept use weaker magnets
do not accept use smaller magnets
(c) (i) add more cells (to the battery)
do not accept 'use a bigger battery'
accept increase the potential difference / voltage
accept increase the current
or
reduce the resistance (of the variable resistor)
do not accept any changes to the magnets, to the wire or to their relative positions
(ii) reverse (the polarity of) the battery
accept turn the battery / cells round
accept swap the connections to the battery
do not accept any changes to the magnets, to the wire or to their relative positions

M11. (a) plastic or rubber
accept any named plastic
do not accept wood
it is a (good) insulator or it is a poor conductor ignore mention of heat if in conjunction with electricity

1

1
(b) The answer to this question requires ideas in good English in a sensible order with correct use of scientific terms. Quality of written communication should be considered in crediting points in the mark scheme. Maximum of 2 marks if ideas not well expressed.
pulls iron bolt down or attracts the iron bolt or moves bolt out of plunger answers in terms of charges attracting or repelling gain no credit
plunger pushed / moved to the right (by spring) or plunger released
push switch opens / goes to off / goes to right
accept circuit is broken
for maximum credit the points must follow a logical sequence 3 correct points but incorrect sequence scores 2 marks only ignore reset action

M12. (a) (i) iron
(ii) step-down (transformer)
(b) any one from:

- after the power station
- after the generator
- before the power lines
- before the pylons

1
(c) each correct (1)
in its correct place
current
coil
field
core
ends

M13. (a) current flows
coil / core magnetised / electromagnet activated / energised / turned on attracts iron bar causing bolt to be pulled out
each for 1 mark
(b) more turns
bigger current / e.m.f
softer iron core
any two for 1 mark each
(c) to relock door / return iron bar / to lock door for 1 mark
(d) iron bar would still be attracted / coil still magnetised so still works for 1 mark each

```
yes + wrong answer
    O marks
yes + current still flows
    1 \text { mark}
yes + still magnetised / iron bar still attracted
    2 marks
```

(c) either
increase the magnetic field (strength) (1)
credit 'have stronger magnet(s)
do not credit 'bigger magnets' either order
(b) either reverse polarity
or connect the battery the other way round
either reverse direction of the magnetic field
or put the magnet the other way round / reverse the magnet
do not give any credit to a response in which both are done at the same time
either order
credit increase the p.d./voltage credit reduce the resistance credit have thicker wiring credit add extra / more cells
conductor parallel to the magnetic field
or lines of magnetic force and path of electricity do not cross
[9]

Page 34 of 34

