exampro

Exampro GCSE Biology

B2.2 Photosynthesis
Foundation tier

Class:

Author:

Date:

Time:
76

Marks:
76

Comments:

Q1. Some students investigated the distribution of dandelion plants in a grassy field. The grassy field was between two areas of woodland.

Figure 1 shows two students recording how many dandelion plants there are in a 1 metre $\times 1$ metre quadrat.

Figure 1

© Science Photo Library
Figure 2 shows a section across the area studied and Figure $\mathbf{3}$ shows a bar chart of the students' results.

Figure 2

Figure 3

Distance in m
(a) How did the students use the quadrat and the 30-metre tape measure to get the results in Figure 3?

Use information from Figure 1.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) (i) Suggest one reason why the students found no dandelion plants under the trees.
\qquad
\qquad
(ii) Suggest one reason why the students found no dandelion plants at 16 metres.
\qquad
\qquad
(c) The teacher suggested that it was not possible to make a valid conclusion from these results.

Describe how the students could improve the investigation so that they could make a valid conclusion.
\qquad
\qquad
\qquad
\qquad

Q2. Some students wanted to find the number of thistle plants growing on a lawn.
The students placed 10 quadrats at different positions on the lawn.
Each quadrat measured 1 metre $\times 1$ metre.
The students counted the number of thistle plants in each quadrat.
(a) Which method should the students use to decide where to place the 10 quadrats?

Tick (\checkmark) one box.
Place the quadrats as evenly as possible around the lawn.

Place 5 quadrats in areas with many thistle plants and 5 quadrats in areas with only a few thistle plants.

Place all the quadrats randomly on the lawn.
(b) The diagram shows the lawn with the positions of the thistle plants and the students' 10 quadrats.

(i) Complete the table to show:

- how many thistle plants the students found in each of the first four quadrats
- the total number of thistle plants found in all 10 quadrats.

Quadrat number	Number of thistle plants in each quadrat
1	
2	
3	1
4	3
5	0
6	0
7	2
8	1
10	
Total	

(ii) Calculate the mean number of thistle plants in one quadrat.
\qquad
Mean =
(iii) The lawn measured 12 metres long and 10 metres wide.

Use your answer from part (b)(ii) to estimate the number of thistle plants on the lawn.
\qquad
\qquad
Estimated number of thistle plants $=$ \qquad
(c) How could the students make their estimate more accurate?
\qquad
\qquad

Q3. Duckweed is a plant. Duckweed grows in ponds. The leaves of duckweed float on the surface of the water and its roots hang down in the water.

The drawing shows a duckweed plant.

(a) Duckweed roots absorb nitrate ions from the water.

The nitrate ions help the duckweed to grow.
Draw a ring around the correct answer to complete the sentence.

Duckweed needs nitrate ions to make | carbohydrate. |
| :--- |
| fat. |
| protein. |

(b) Some students grew duckweed plants in three different solutions of mineral ions, A, B and \mathbf{C}, and in distilled water (D).

Table 1 shows the concentrations of mineral ions in each of $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} at the start of the investigation.

Table 1

Mineral ion	Concentration of mineral ions in ${\mathrm{mg} \text { per } \mathrm{dm}^{3}}^{3}$ at the start of the investigation			
	A	B	C	D
	1000	4	4	0
Phosphate	300	0	0	0
Magnesium	200	84	24	0

The students counted the number of duckweed leaves in $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} at the start of the investigation and after 28 days.

Table 2 shows their results.

Table 2

	A	B	C	D
Number of leaves at start	4	4	4	4
Number of leaves after 28 days	50	27	14	6

(i) Using Table 1 and Table 2, describe the effect of magnesium ions on the growth of duckweed.
\qquad
\qquad
(ii) Solution \mathbf{A} contained the highest concentration of nitrate ions.

One student said, 'The results show that nitrate ions are needed for the growth of duckweed.'

What evidence in Table 2 supports what the student said?
\qquad
\qquad
(c) The students measured the growth of the duckweed by counting the number of leaves.
(i) Suggest a better method of measuring the growth of the duckweed.
\qquad
\qquad
(ii) Suggest why your method is better than the students' method.
\qquad
\qquad

Q4. A class of students was set the task of estimating the number of dandelions on the school field.

To do this, they decided to use sampling squares called quadrats.
Each quadrat had an area of $1 \mathrm{~m}^{2}$.
The diagram shows the dimensions of the school field.

(a) Which is the best way of using quadrats in this investigation?

Tick (Σ^{\prime}) one box.

Statement	Tick $\left(v^{\prime}\right)$
Place all the quadrats where there are lots of plants.	
Place all the quadrats randomly in two different sample areas.	
Place all the quadrats where all four types of plant are growing.	

(b) Each student collected data by using 10 quadrats.

These are the results for one student, Mary.

Quadrat number	Number of dandelions
1	3
2	3
3	6
4	2
5	1
6	2
7	0
8	3
9	2
10	0

Calculate the mean number of dandelions per quadrat counted by Mary. Show clearly how you work out your answer.
\qquad
\qquad

> Mean number of dandelions
\qquad
(c) Another student, Sharon, calculated a mean of 2.8 dandelions per quadrat from her results.

Estimate the number of dandelions in the whole field by using:

- a mean of 2.8 dandelions per quadrat
- information from the diagram on the opposite page
- the equation below.

Show clearly how you work out your answer.

estimated number of
dandelions on field
:---:
dandelions per quadrat
:---:
would fit into the field

\qquad

Q5. A gardener grows tomato plants.
The tomato plants develop yellow leaves.
(a) What would be the best way of improving the growth of these plants? Tick (\checkmark) one box.

Add mineral ions to the soil

Water the plants more

Add glucose to the soil \square
(b) Most tomatoes are grown in greenhouses.

By Giancarlo Dessì (Own work) [GFDL or CC-BY-SA-3.0-2.5-2.0-1.0], via Wikimedia Commons
Tomato growers alter the conditions in greenhouses to make tomato plants grow faster.
Which changes in conditions will make tomato plants grow faster?
Tick (\checkmark) two boxes.

Increasing the temperature \square

Increasing the oxygen concentration in the air \square

Increasing the nitrogen concentration in the air \square

Turning lights on at night \square

Q6. (a) A student carried out the following investigation using a plant with variegated leaves. A variegated leaf has green and white stripes.

The student:

- left the plant in the dark for 3 days to remove the starch
- fixed two pieces of card to a leaf on the plant
- left the plant in the light for 2 days
- removed the leaf from the plant
- tested the leaf for starch.

Figure 1 shows how the two pieces of card were attached to the leaf.
Figure 1

Leaf without card

Leaf with card

Key

White parts of leaf \square Green parts of leaf

Figure 2 shows the same leaf after 2 days in the light.
The leaf has been tested for starch.
Figure 2

Give two conclusions from this investigation.
Tick (\checkmark) two boxes.
Carbon dioxide is needed for photosynthesis.

Chlorophyll is needed for photosynthesis.

Light is needed for photosynthesis.

Water is needed for photosynthesis.

(b) Scientists investigated the effect of light intensity on the rate of photosynthesis.

Figure 3 shows the scientists' results.
Figure 3

Describe the effect of increasing light intensity on the rate of photosynthesis.
You should include numbers from Figure 3 in your description.
..
\qquad
\qquad
\qquad
\qquad
\qquad
(c) At a light intensity of 250 arbitrary units, light is not a limiting factor of photosynthesis.
(i) What is the evidence for this in Figure 3?
\qquad
\qquad
(ii) Give two factors that could be limiting the rate of photosynthesis at a light intensity of 250 arbitrary units.

1 \qquad
2 \qquad

Q7. Red squirrels live in trees. They eat seeds from the cones of conifer trees. Squirrels store cones in 'larders' on the ground. These larders provide food through the winter. Each red squirrel makes and defends one larder.

Scientists monitor squirrel numbers to find the best habitats for the squirrel's survival. In one investigation, scientists estimated the numbers of squirrels in different types of woodland. Each woodland contains a different species of conifer tree.

Here is their method.

- Ten woods of each type of woodland were surveyed.
- In each wood scientists measured out two transects (strips), each 600 m long and 10 m wide.
- A scientist walked slowly down the centre of each transect, recording the number of squirrel larders he could see.

(a) (i) How many transects all together did the scientists survey in each type of woodland?

Number of transects \qquad
(ii) What was the total area surveyed in one wood?
\qquad
Area m^{2}
(b) Name one variable that was controlled in this investigation.
\qquad
(c) (i) The scientists recorded the number of larders instead of the number of squirrels they saw.

Explain how this could have increased the accuracy of the investigation.
\qquad
\qquad
(ii) This method of counting the number of larders could have led to an inaccurate estimate of the number of squirrels.

Explain how.
\qquad
\qquad
\qquad
\qquad
(d) The results of the investigation are shown in the graph.

Density of squirrels, in number of larders per hectare

The horizontal mark on each bar represents the mean number of larders per hectare of woodland.

The range of the number of larders observed for Douglas fir woodland was 0 to 1.9 per hectare.
(i) What was the range of the number of larders per hectare in the Spruce fir woodland?
(ii) The highest mean number of larders per hectare was found in Blue spruce woodland.

Suggest one explanation for this.
\qquad
\qquad
(Total 8 marks)

Q8. Some students were asked to investigate the distribution of clover in a field of grass. They noticed that the clover grew in patches amongst the grass.
(a) The students decided to use quadrats.

Describe how the students should decide where to place the quadrats to investigate the distribution of the clover.
\qquad
\qquad
\qquad
\qquad
(b) The diagram shows one of the quadrats the students used.

Key
Area covered with clover
(i) Estimate the number of squares of the quadrat covered with clover.
\qquad
\qquad
Number of squares $=$ \qquad
(ii) Describe how you worked out your answer to part (b)(i).
\qquad
\qquad
\qquad
(iii) Use your answer from part (b)(i) to calculate the percentage of the quadrat covered by the clover.
\qquad
\qquad
\qquad
Answer = .. \%
(c) Suggest one factor that could account for the distribution of the clover plants.

Q9. Some students investigated the effect of light intensity on the rate of photosynthesis.
They used the apparatus shown in Diagram 1.
Diagram 1

The students:

- placed the lamp 10 cm from the pondweed
- counted the number of bubbles of gas released from the pondweed in 1 minute
- repeated this for different distances between the lamp and the pondweed.
(a) The lamp gives out heat as well as light.

What could the students do to make sure that heat from the lamp did not affect the rate of photosynthesis?
\qquad
\qquad
(b) The table shows the students' results.

Distance in cm	Number of bubbles per minute
10	84
15	84
20	76
40	52
50	26

(i) At distances between 15 cm and 50 cm , light was a limiting factor for photosynthesis.

What evidence is there for this in the table?
\qquad
\qquad
(ii) Give one factor that could have limited the rate of photosynthesis when the distance was between 10 cm and 15 cm .
\qquad
(c) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Diagram 2 shows a section through a plant leaf.
Diagram 2

Describe the structure of the leaf and the functions of the tissues in the leaf. You should use the names of the tissues in your answer.
\qquad

Q10. This question is about photosynthesis.
(a) Plants make glucose during photosynthesis. Some of the glucose is changed into insoluble starch.

What happens to this starch?
Tick (\checkmark) one box.

The starch is converted into oxygen.

The starch is stored for use later.

The starch is used to make the leaf green. \square
(b) A student investigated the effect of temperature on the rate of photosynthesis in pondweed.

The diagram shows the way the experiment was set up.

(i) The student needed to control some variables to make the investigation fair.

State two variables the student needed to control in this investigation.

1. \qquad
2. \qquad
(ii) The bubbles of gas are only produced while photosynthesis is taking place.

What two measurements would the student make to calculate the rate of photosynthesis?

1. \qquad
2. \qquad
(c) The graph shows the effect of temperature on the rate of photosynthesis in the pondweed.

(i) Name the factor that limits the rate of photosynthesis between the points labelled \mathbf{A} and \mathbf{B} on the graph.
\qquad
(ii) Suggest which factor, carbon dioxide, oxygen or water, might limit the rate of photosynthesis between the points labelled \mathbf{C} and \mathbf{D} on the graph.
(1)
(Total 7 marks)

Q11. Red squirrels live in trees. They eat seeds from the cones of conifer trees. Squirrels store cones in 'larders' on the ground. These larders provide food through the winter. Each red squirrel makes and defends one larder.

Scientists monitor squirrel numbers to find the best habitats for the squirrel's survival. In one investigation, scientists estimated the numbers of squirrels in different types of woodland. Each woodland contains a different species of conifer tree.

Here is their method.

- Ten woods of each type of woodland were surveyed.
- In each wood scientists measured out two transects (strips), each 600 m long and 10 m wide.
- A scientist walked slowly down the centre of each transect, recording the number of squirrel larders he could see.

(a) Name one variable that was controlled in this investigation.
\qquad
(b) (i) The scientists recorded the number of larders instead of the number of squirrels they saw.

How could this have increased the accuracy of the investigation?
\qquad
\qquad
(ii) This method of counting the number of larders could have led to an inaccurate estimate of the number of squirrels.

Explain how.
\qquad
\qquad
\qquad
\qquad
(c) The results of the investigation are shown on the graph.

Each bar represents the range of the number of larders in each type of woodland.
The horizontal mark on each bar represents the mean number of larders per hectare of woodland.
(c) A student concluded 'You will always find more squirrels in spruce woodland than in fir woodland.'

Is the student's conclusion justified by the data in the graph?
Explain the reasons for your answer.
\qquad
\qquad
\qquad
\qquad
\qquad

Q12. The diagram shows a section through a plant leaf.

(a) Use words from the box to name two tissues in the leaf that transport substances around the plant.

epidermis	mesophyll	phloem	xylem

and
(b) Gases diffuse between the leaf and the surrounding air.
(i) What is diffusion?
\qquad
\qquad
\qquad
\qquad
(ii) Name one gas that will diffuse from point \mathbf{A} to point \mathbf{B} on the diagram on a sunny day.
\qquad

M1. (a) any three from:

- place $30-\mathrm{m}$ tape measure across field / from one wood to the other
- place quadrat(s) next to the tape
- count / record the number / amount of dandelions / plants in the quadrat ignore 'record the results'
ignore measures / estimates dandelions
- repeat every 2 metres
allow every metre / at regular intervals
(b) (i) low light / it is shady
allow no light
ignore sun / rays
or
not enough water / ions / nutrients
accept correct named ion
ignore no water / ions / nutrients
or
wrong pH of soil
accept competition with trees for light / water / ions
ignore competition for space and competition unqualified
accept soil too acidic / too alkaline
ignore temperature
(ii) sensible suggestion for a small area, eg chance variation / anomaly / poisoned by animal waste / wrong pH of soil / eaten (by animals) / cut down / footpath
(c) repeat (transect) / compare with the results of other groups
allow 'do it in two different locations' for 2 marks
at different / random location(s) / elsewhere (across the field)
do not allow 'in other fields'

M2. (a) place all the quadrats randomly on the lawn
(b) (i) 14

22
32
40
all 4 counts correct

Total $=15$
total correct for their figures
(ii) 1.5
allow ecf from (b)(i)
(iii) 180
correct answer with or without working
if answer incorrect, allow 1 mark for $\frac{15}{10} \times 120$ or 15×20
or $\frac{15}{10} \times 12 \times 10$
or $1.5 \times 12 \times 10$ or 1.5×120
allow ecf from (b)(ii)
allow 1 mark if only 1 error
(c) use a larger sample size / more quadrats
ignore repeats but allow repeat in different places
ignore 'count them all'
or
use bigger quadrats

M3. (a) protein
(b) (i) (more) magnesium gives more growth / more leaves / more duckweed if converse must be clear that less magnesium gives less growth
(ii) A gave highest number of leaves / plants or more than others
it equals ' A '
use of numbers must compare \boldsymbol{A} with at least one other
or
A gave most growth / most duckweed or more than others
allow faster / fastest / better / best growth
allow more growth with nitrate / less growth without nitrate do not allow 'no' growth without nitrate
(c) (i) mark (c) as a whole
sensible method:
e.g. mass / weighing ignore dry or fresh
allow other sensible method involving measuring eg length of roots - ignore 'size' of roots or measure roots unqualified
(ii) corresponding explanation:
ignore accuracy
e.g. includes roots / includes whole plant
or
leaves vary in size
or
(length / mass / surface area given in $c(i)$) is a continuous variable

M4. (a) place all the quadrats randomly in two different sample areas. extra boxes ticked cancels the mark
(c) 15120
correct answer gains 2 marks
if answer incorrect, evidence of correct substitution gains 1 mark
correct answer gains 2 marks
if answer incorrect, evidence of correct method gains 1 mark allow only 1 mark for a rounded mean
(b) 2.2

M5. (a) add mineral ions to the soil
(b) increasing the temperature
turning lights on at night
(ii) 12000
(ii) any two from:

- carbon dioxide (concentration)
- temperature / heat
- (amount of) chlorophyll / chloroplasts
allow water
allow ions / nutrients
ignore ref to surface area of the leaf
(c) (i) higher light intensity does not increase rate of photosynthesis
accept the graph stays level (above this value) allow stops increasing allow the rate of photosynthesis stays the same (above this value)
goes up to / reaches a maximum / levels off at (a rate of) 200 (arbitrary units)
or
levels off at 225-240 (light units) ignore references to other numerical values
levels off / reaches a maximum / remains constant / stays the same / plateaus do not allow stops / stationary / peaks allow stops increasing
grove

M6. (a) chlorophyll is needed for photosynthesis

1 \square
 \square 1 (
(b) area of strips
or
length / width / size of transect
or
number of transects
(c) (i) since squirrels mobile
or
squirrels could be counted twice
or
squirrels hide
(ii) any two from:

- numbers of larders observed likely to be lower than actual do not accept squirrels share larders or squirrels have more than one larder
- since unlikely that all could be spotted if 5 m away
- old larder
- squirrels moved on / died
- young squirrels
- haven't made a larder

M8. (a) chose places randomly
method of obtaining randomness, e.g. (grid and) random numbers
allow thrown qualified e.g. over shoulder, eyes shut allow max 1 for mention of a transect with sampling at regular or random intervals
(b) (i) 7 or 8
allow fractions / decimals between 7 and 8
(ii) count number of whole squares and add estimate of area covered by part squares
allow reference to counting squares with $1 / 2$ cover or more allow clear working on diagram and / or (b)(i)
(iii) $28-32$ (in range)
allow ecf
if answer incorrect allow 1 mark for reasonable reference to divided by 25 or multiplied by 4
(c) nutrients / minerals / ions / fertiliser / water
allow light / pH / trampling / soil texture / grazing / mowing / weed killer / where seeds originally fell
ignore pollution / soil / competition if unqualified
ignore temperature / wind

M9. (a) any one from:
ignore 'check temperature'

- add a water bath
- heat screen
- use LED
- low energy bulb / described
(b) (i) rate / number of bubbles decreases
accept converse with reference to increasing light or shorter distance
or
less oxygen / gas released ignore reference to rate of photosynthesis
(ii) temperature $/ \mathrm{CO}_{2}$ (concentration)

$$
\begin{aligned}
& \text { accept 'it was too cool' or not enough } \mathrm{CO}_{2} \\
& \text { accept number of chloroplasts / amount of chlorophyll } \\
& \text { allow heat } \\
& \text { allow } \mathrm{CO} \\
& \text { do not allow } \mathrm{CO}^{2}
\end{aligned}
$$

(c) Marks awarded for this answer will be determined by the Quality of Written

Communication (QWC) as well as the standard of the scientific response.
Examiners should also refer to the information in the Marking guidance, and apply a 'best-fit' approach to the marking.

0 marks

No relevant content.

Level 1 (1-2 marks)

There is a brief description of at least 1 tissue or at least 1 function of an indicated part of the leaf.

The account lacks clarity or detail.

Level 2 (3-4 marks)

There is a clear description which includes at least 1 named tissue and at least 1 correct function described for an indicated part of the leaf.

Level 3 (5-6 marks)

There is a detailed description of most of the structures and their functions.

Examples of responses:

- epidermis
- cover the plant
- mesophyll / palisade
- photosynthesises
- phloem
- xylem
- transport.

The following points are all acceptable but beyond the scope of the

 specification:- (waxy) cuticle - reduce water loss
- epidermis - no chloroplasts so allows light to penetrate
- stomata / guard cells - allow CO_{2} in (and O_{2} out) or controls water loss
- palisade (mesophyll) - many chloroplasts to trap light
- near top of leaf for receiving more light
- \quad spongy (mesophyll) - air spaces for rapid movement of gases

M10. (a) The starch is stored for use later no mark if more than one box is ticked
(b) (i) any two from:
do not accept temperature
apply list principle
ignore reference to time

- carbon dioxide (concentration)
- light intensity
- light colour / wavelength
allow 1 mark for light if neither intensity or colour are awarded
- pH
- size / amount of pondweed / plant
- same / species / type pondweed
- amount of water in the tube
ignore amount of water alone
(ii) number / amount of bubbles or amount of gas / oxygen
allow volume of bubbles (together)
ignore 'the bubbles' unqualified
(relevant reference to) time / named time interval
allow how long it bubbles for
do not accept time bubbles start / stop
ignore speed / rate of bubbling
ignore instruments
do not accept other factors eg temperature accept how many bubbles per minute for $\mathbf{2}$ marks
(c) (i) temperature
allow heat / cold / ${ }^{\circ} \mathrm{C}$
(ii) carbon dioxide / CO_{2} allow CO2 do not accept CO 2

[7]

M11. (a) area of strips / length of transects / number of transects
(b) (i) since squirrels are mobile and could be missed / counted twice
(ii) numbers of larders observed likely to be lower than actual do not accept squirrels share larders or squirrels have more than one larder
since unlikely that all could be spotted if 5 m away or old larders or squirrels moved on / died

1
(c) (no)
the bars show the range of the number of squirrel larders in the different types of woodland
although spruce woodlands have the larger ranges, some spruce woodlands will have very low numbers of larders
(b) (i) movement / spreading out of particles / molecules / ions / atoms ignore names of substances / 'gases'
either order
allow words ringed in box
allow mis-spelling if unambiguous

Page 37 of 37

