

Exampro GCSE Physics P2 Radioactivity Self Study Questions Higher tier Class: Author: Date: Time: 80 Marks: 80 Comments:

Q1.		A be	eta particle is a high-energy electron.	
	(i)	Wh	hich part of an atom emits a beta particle?	
	(ii)		ow does the composition of an atom change when it emits a beta particle?	(1)
			((1) Total 2 marks)
Q2.		(a)	(i) Describe the structure of alpha particles.	
				(2)
		(ii)	What are beta particles?	(2)
	(b)	De	escribe how beta radiation is produced by a radioactive isotope.	(1)
				(1) Total 4 marks)

		When (Th ²³⁴)	atoms of uranium 238 (U ²³⁴) decay they produce another radionuclide called thorium	
	Tho	rium 2	234 (Th ²³⁴) decays by emitting beta radiation.	
	(i)	Wha	at does beta radiation consist of?	
				(1)
	(ii)	Tho	rium 234 (Th ²³⁸) decays to form protactinium 234 (Pa ²³⁴).	
			at differences are there between the nucleus of a protactinium 234 (Pa ²³⁴) atom and nucleus of a thorium 234 (Th ²³⁴) atom?	
			(Total 3 m	(2) narks)
Q4.	(a) ·	There are many isotopes of the element molybdenum (Mo).	
Q4.	(There are many isotopes of the element molybdenum (Mo). at do the nuclei of different molybdenum isotopes have in common?	
Q4.	((1)
Q4.	(b)	Wha		(1)
Q4.	·	Wha	at do the nuclei of different molybdenum isotopes have in common? isotope molybdenum-99 is produced inside some nuclear power stations from the	(1)
Q4.	·	Wha	isotope molybdenum-99 is produced inside some nuclear power stations from the ear fission of uranium-235.	(1)
Q4.	·	Wha	isotope molybdenum-99 is produced inside some nuclear power stations from the ear fission of uranium-235. What happens during the process of nuclear fission?	(1)
Q4.	·	Wha	isotope molybdenum-99 is produced inside some nuclear power stations from the ear fission of uranium-235. What happens during the process of nuclear fission?	

(c)	When the nucleus of a molybdenum-99 atom decays, it emits radiation and changes into a nucleus of technetium-99.	
	$^{99}_{42}MO \longrightarrow ^{99}_{43}TC + Radiation$	
	What type of radiation is emitted by molybdenum-99?	
	Give a reason for your answer.	
		(2)
(d)	Technetium-99 has a short half-life and emits gamma radiation.	
	What is meant by the term 'half-life'?	
		(1)

- (e) Technetium-99 is used by doctors as a medical tracer. In hospitals it is produced inside a technetium generator by the decay of molybdenum-99 nuclei.
 - (i) The figure below shows how the number of nuclei in a sample of molybdenum-99 changes with time as the nuclei decay.

A technetium generator will continue to produce sufficient technetium-99 until 80% of the original molybdenum nuclei have decayed.

After how many days will a source of molybdenum-99 inside a technetium-99 generator need replacing?

Show clearly your calculation and how you use the graph to obtain your answer.	
Number of days =	

(ii) Medical tracers are injected into a patient's body; this involves some risk to the patient's health.

Explain the risk to the patient of using a radioactive substance as a medical trace	r.

	(iii)		ugh there may be a risk, diagnosis and treatment		e radioactive substances for
		Suggest	why.		
					(1) (Total 11 marks)
I	n 201′	1 an eartho	quake caused severe da	mage to a nuclear pow	ver station in Japan.
The atmo	dama osphe	ge led to th	ne release of large amou	unts of radioactive iodin	ne-131 (¹³¹ ₅₃ I) into the
(a)	The	table gives	s some information abou	ut an atom of iodine-13°	1 (¹³¹ ₅₃ I).
	Com	plete the t	able.		
			mass number	131	
			number of protons	53	
			number of neutrons		
<i>(</i> 1.)	0				(1)
(b)		plete the s	protons in an atom is c	alled the proton number	or or
			number.	alled the proton numbe	a Oi
					(1)
(c)	An a	tom of iodi	ne-131 decays into an a	atom of xenon (Xe) by ϵ	emitting a beta particle.
	(i)	The deca	y of iodine-131 can be r	epresented by the equa	ation below.
		Complete	e the equation by writing	the correct number in	each of the two boxes.
			¹³¹ ₅₃ I -	Xe + beta parti	cle (2)
					(-)

Q5.

	(ii)	A sample of rainwater contaminated with iodine-131 gives a count rate of 1200 counts per second.	
		Calculate how many days it will take for the count rate from the sample of rainwater to fall to 75 counts per second.	
		Half-life of iodine-131 = 8 days	
		Show clearly how you work out your answer.	
		days	(2)
	(iii)	If people drink water contaminated with iodine-131, the iodine-131 builds up in the thyroid gland. This continues until the thyroid is saturated with iodine-131 and cannot absorb any more. The radiation emitted from the iodine-131 could cause cancer of the thyroid.	
		In Japan, people likely to be drinking water contaminated with iodine-131 were advised to take tablets containing a non-radioactive isotope of iodine.	
		Suggest why this advice was given.	
		(Total 8 n	(2) narks)
Q6.	(a)	A radioactive source emits alpha (α), beta (β) and gamma (γ) radiation.	
	(i)	Which two types of radiation will pass through a sheet of card?	
	(ii)	Which two types of radiation would be deflected by an electric field?	(1)
			(1)
	(iii)	Which type of radiation has the greatest range in air?	
			(1)

ho	sphorus-32	is a rad	ioact	ive is	otor	oe th	at en	nits l	oeta	radia	tion.				
i)	How is an phosphoru	atom of			·							he sta	able i	soto	pe
															•••
ii)	The graph time.	shows	how	the c	oun	t rate	e of a	sar	nple	of ph	ospho	orus-3	2 cha	ange	es with
		350 H													
		300													
		250	\setminus												
	Count rate in	200													
	counts per minute	150 -													
		100													
		50 -													
		0	5	Ш	10	15	20		25	30	35	40	Щ 45		
		Ü			10	13	Time			30	33	40	43		
	Use the gr	aph to c	alcul	ate th	he h	alf-li	fe of	phos	spho	orus-3	2.				

(iii) Plants use phosphorus compounds to grow. Watering the root system of a plant with a solution containing a phosphorus-32 compound can help scientists to understand the growth process.

Explain why phosphorus-32 is suitable for use as a tracer in this situation.	
	 (2) (Total 9 marks)
Q7. (a) Alpha particles (α), beta particles (β) and gamma rays (γ) are types of nucle radiation.	ear
(i) Which of the three types of radiation is the most strongly ionising?	
	(1)
(ii) What effect does nuclear radiation have on living cells?	(.,
(ii) What effect does hadeal fadiation have of living cells:	
	(1)

(b) The diagrams show a G-M tube and counter used to measure the radiation emitted from a source. Both diagrams show the reading on the counter one minute after it was switched on.

		magnet	
Explain why the cour	nter readings show that the source is	giving out only gamma radiation.	
			(2)
The box gives inform	ation about the radioactive isotope te	chnetium-99.	
	Type of radiation emitted: gamma		
	Half-life: 6 hours		
	Used as a medical tracer		
What is meant by the	e term <i>half-life</i> ?		

(c)

(1)

(d)	To study the blood flow in a patient's lungs, a doctor injects a small quantity of a technetium-99 compound into the patient. The radiation emitted by the technetium atoms is detected outside the patient's body.	-99
	Explain why a doctor would not use a radioactive isotope with a very short half-life as 2 seconds, as a medical tracer.	, such
		(2) (Total 7 marks)
((a) A teacher used a Geiger-Műller (GM) tube and counter to measure the <i>backgronadiation</i> in her laboratory.	ound
	The teacher reset the counter to zero, waited one minute and then took the count r The teacher repeated the procedure two more times.	eading.
	Counter	
	0000	
	GM tube	
	Reset to zero One minute later	
	(i) Background radiation can be either from natural sources or from man-made sources.	
	Name one man-made source of background radiation.	
		(1)

Q8.

(ii) The three readings taken by the teacher are given in the table.

Count after one minute
15
24
18

The readings given in the table are correct.

Why are the readings different?

areas with lower background radiation.

(b) Some scientists say they have found evidence to show that people living in areas of high natural background radiation are less likely to develop cancer than people living in similar

The evidence these scientists found does not definitely mean that the level of background radiation determines whether a person will develop cancer.

Suggest a reason why.

(1)

(1)

(c) An atom of the isotope radon-222 emits an alpha particle and decays into an atom of polonium.

An alpha particle is the same as a helium nucleus. The symbol below represents an alpha particle.

(i) How many protons and how many neutrons are there in an alpha particle?

Number of protons =

Number of neutrons =

(2)

(ii) The decay of radon-222 can be represented by the equation below.

Complete the equation by writing the correct number in each of the **two** boxes.

(d) The graph shows how, in a sample of air, the number of radon-222 nuclei changes with time.

.....

Use the graph to find the half-life of radon-222.

Show clearly on the graph how you obtain your answer.

- **Q9.** There are many different isotopes of gold. The isotope, gold-198, is radioactive. An atom of gold-198 decays by emitting a beta particle.
 - (a) Complete the following sentences.

(3)

(b) The graph shows how the count rate from a sample of gold-198 changes with time.

Use the graph to calculate the half-life of gold-198.

Show clearl	y on the	graph how	you obtain	your answer.
-------------	----------	-----------	------------	--------------

Half-life = days

(c) The diagram shows a map of a river and the river estuary.

Environmental scientists have found that water flowing into one part of the river estuary is polluted. To find where the pollution is coming from, the scientists use a radioactive isotope, gold-198.

The gold-198 is used to find where the pollution is coming from.

Explain how.	
	(2) (Total 7 marks)
	(Total 7 marks)

Q10. (a) Complete the following table for an atom of uranium-238 ($\frac{238}{92}$ U)

mass number	238
number of protons	92
number of neutrons	

(1)

(b) Complete the following sentence.

The name given to the number of protons in an atom is the proton number or the

(1)

(c)	An a	atom of uranium-238 ($\frac{238}{92}$ U) decays to form an atom of thorium-234 ($\frac{234}{90}$ Th).	
	(i)	What type of radiation, alpha, beta or gamma, is emitted by uranium-238?	
			(1)
	(ii)	Why does an atom that decays by emitting alpha or beta radiation become an atom of a different element?	
		(Total 4 ma	(1) ırks)

Q11.	In the early part of the 20th century	, scientists	used the	ʻplum	pudding'	model to	o explair	the
	structure of the atom.							

Following work by Rutherford and Marsden, a new model of the atom, called the 'nuclear' model, was suggested.

Describe the differences between the two models of the atom.	
	(Total 4 marks)

Q12. In the early part of the 20th century scientists used the 'plum pudding' model to explain the structure of the atom.

(a)	What did scientists think that the 'pudding' part of the atom was?

(1)

(b) The scientists Geiger and Marsden devised an experiment to test the 'plum pudding' model. They fired positively charged alpha particles at a very thin sheet of gold foil. They then measured the different paths taken by the alpha particles.

List A gives some of the observations from the experiment. **List B** gives the conclusions reached from the observations.

Draw one line from each observation in List A to the conclusion reached in List B.

List A Observation	List B Conclusion	
Most of the alpha particles go straight through the gold foil	Most of the atom is empty space	
Some alpha particles are deflected through a big angle	The nucleus of the atom is very small	
Only a very small number of alpha particles rebound backwards	The nucleus has a large positive charge	
Following the work of Geiger and New replaced by the 'nuclear model' of	Marsden, the 'plum pudding' model of the atom was	(2)
	ssary for scientists to replace a scientific model.	
	(Total 5 mark	(2) (S)

(c)

Q13.	(a)	Atoms of the isotope bismuth-212 decay by emitting either an alpha particle or a beta
	part	icle.

The equation represents what happens when an atom of bismuth-212 decays by beta emission into an atom of polonium-212.

$$_{83}^{212}$$
 Bi $\xrightarrow{212}$ Po + beta particle

polonium atom have the sa	me mass number (212)
!	polonium atom have the sai

What is the *mass number* of an atom?

(1)

(ii) Beta decay does **not** cause the mass number of an atom to change.

Explain why not.		

(b) When an atom of bismuth-212 emits an alpha particle, the atom decays into an atom of thallium.

An alpha particle is the same as a helium nucleus. The symbol below represents an alpha particle.

(i) The equation below represents the alpha decay of bismuth-212.

Complete the equation by writing the correct number in each of the two boxes.

(2)

(11)	the beta decay of bismuth-212.	ement as
	Explain why.	
		(2)
		(Total 7 marks)

M1.	(i) nucleus / neutron		
	do not accept shells or orbits	1	
	(ii) neutron changes to a proton or number of neutrons goes down 1 and the number of protons goes up by 1		
	do not accept becomes positive	1	[2]
M2.	(a) (i) two protons	1	
	2 neutrons if neither point gained allow 1 mark for helium nucleus	1	
	(ii) electron	1	
	(b) neutron splits (to form proton and electron)	1	[4]
М3.	(i) (fast moving) electrons (from the nucleus) (allow negatively charged particles) for 1 mark	1	
	(ii) protactinium has one neutron fewer protactinium has one proton more (<i>credit</i> has different numbers of neutrons / protons <i>with one mark</i>)		
	for 1 mark each	2	[3]

M4.		(a)) (same) number of protons		
			same atomic number is insufficient		
				1	
	(b)	(i)	nuclei split		
	` ,	()	do not accept atom for nuclei / nucleus		
			,	1	
		(ii)	(nuclear) <u>reactor</u>		
		(,	(Hadioar) <u>rodotor</u>	1	
	(0)	hot			
	(c)	bet	d.	1	
	any one from:atomic / proton number increases (by 1)				
		•	accept atomic / proton number changes by 1		
		•	number of neutrons decreases / changes by 1		
		•	mass number does not change		
			(total) number of protons and neutrons does not change		
		•	a neutron becomes a proton	1	
				-	
	(d)		erage) time taken for number of nuclei to halve		
		or (av	erage) time taken for count-rate / activity to halve		
		(5.1	orage, and tanenter countrate, demand	1	
	(e)	(i)	6.2 (days)		
	(0)	(1)	Accept 6.2 to 6.3 inclusive		
			allow 1 mark for correctly calculating number remaining as 20 000		
			allow 1 mark for number of 80 000 plus correct use of the graph (gives an answer of 0.8 days)		
			(gives an anone, or any of	2	
		(ii)	radiation causes ionisation		
		(11)	allow radiation can be ionising		
			and the same and t	1	
			that may then harm / kill healthy cells		
			accept specific examples of harm, eg alter DNA / cause cancer		
			accept specific criming of the Europe content	1	
		(iii)	benefit (of diagnosis / treatment) greater than risk (of radiation)		
		(111)	accept may be the only procedure available		
			deceptional, we are easy proceedance areamatic	1	
				[11]	
M5.		(a)	78		
		(-)		1	
	,				
	(b)	ato	mic	1	
				1	
	(c)	(i)	131		
			correct order only		
				1	

		(ii)	32 (days) allow 1 mark for showing 4 half-lives provided no subsequent step	2	
		(iii)	limits amount of iodine-131 / radioactive iodine that can be absorbed accept increases level of non-radioactive iodine in thyroid do not accept cancels out iodine-131	1	
			so reducing risk of cancer (of the thyroid) accept stops risk of cancer (of the thyroid)	1	[8]
M6.		(a)	(i) beta and gamma both answers required accept correct symbols		
		(ii)	alpha and beta both answers required accept correct symbols		
		(iii)	gamma accept correct symbol 1		
	(b)		ning (you do to a radioactive substance / source) changes the nt rate / activity / rate of decay / radiation (emitted) accept it = radiation emitted		
			(reducing) the temperature does not change the activity / count rate / rate of decay / ation (emitted)		
	(c)	(i)	has <u>one</u> more neutron correct answer only		
		(ii)	14 days no tolerance allow 1 mark for showing a correct method on the graph 2		

		()	•		
		•	beta particles / radiation can be detected externally		
		•	beta particles / radiation can pass out of / through the plant		
		•	long half-life gives time for phosphorus to move through the plant / be detected / get results		
		•	phosphorus-32 is chemically identical to phosphorus-31		
		•	phosphorus-32 is used in the same way by a plant as phosphorus-31		
				2	[9]
M7.		(a) (i)	alpha	1	
		(ii) daı	mages them / changes DNA		
			accept kills them / destroys		
			accept causes cancer		
			accept causes cell mutations		
			do not accept they ionise cells on its own		
			do not docopt andy formed come of the com	1	
	(b)	count is	(roughly) the same		
				1	
		gamma i	s not affected by magnetic field		
		ganina			
			accept magnet for magnetic field	1	
		or			
		alpha ar count wo	nd beta are deflected by a magnetic field (1) build go down significantly (1)		
	(c)	time take	en for number of nuclei to halve		
	()		do not accept time for radioactivity to halve		
		or			
		time take (its initial	en for count rate to fall to half value)		
		·	do not accept time for nuclei to halve	1	
				•	

(iii) any **two** from:

	(d)	not	enough time to take measurements / make observations	1	
		befo	ore level of radiation became insignificant	1	[7]
M 8.		(a)	(i) any one from:		
			nuclear power (stations) accept nuclear waste accept coal power stations		
			nuclear weapons (testing) accept nuclear bombs / fallout		
			 nuclear accidents accept named accident, eg Chernobyl or Fukushima accept named medical procedure which involves a radioactive source accept radiotherapy accept X-rays accept specific industrial examples that involve a radioactive source 		
			nuclear activity / radiation is insufficient smoke detectors is insufficient		1
		(ii)	(radioactive decay) is a random process accept an answer in terms of background / radiation varies (from one point in time to another)		1
	(b)	any	y one from:		
		•	(maybe) other factors involved accept a named 'sensible' factor, eg smoking		
		•	evidence may not be valid accept not enough data		
		•	may not have (a complete) understanding of the process (involved)		1
	(c)	(i)	2		1
			2		1
		(ii)	218 correct order only		1

				1	
	(d)	3.8 (days	allow 1 mark for showing correct method using the graph provided no subsequent steps correct answers obtained using numbers other than 800 and 400 gain 2 marks provided the method is shown	2	[9]
М9.		(a) proto	ons, electrons both required, either order	1	
		neutrons		1	
		electron,	nucleus both required, this order	1	
	(b)	2.7 (days	s) allow 1 mark for showing correct use of the graph	2	
	(c)	put sour	ce into water at one point on bank accept the idea of testing different parts of the river bank at different times	1	
		see if rac	diation is detected in polluted area accept idea of tracing		
		or			
			ce into water at three points on bank (1) diation is detected downstream of factory or farmland or sewage treatment)	1	[7]
M10.		(a) 146		1	
	(b)	atomic n	umber	1	

	(-)			1
		(ii) number of protons changes accept atomic number of accept loses or gains prodo not accept protons we protons and neutrons changes do not accept any reference.	otons vith any other particle e.g. number of nanges incorrect	1 [4
M11.		do not accept simple de	clear which model is being described scriptions of the diagram without	
	•	comparison nuclear model mass is concentrate accept the nuclear mode does not have a nucleus	el has a nucleus / the plum pudding model	
		plum pudding model mass is evenly	distributed (1)	
	•	nuclear model positive charge occu	pies only a small part of the atom (1)	
		plum pudding model positive charge	spread throughout the atom (1)	
	•	nuclear model electrons orbit some accept electrons in shell made with the plum pude	ls / orbits provided a valid comparison is	
		plum pudding electrons embedded i do not accept electrons	n the (mass) of positive (charge) (1) at edge of plum pudding	
	•	nuclear model the atom mainly emp	ty space (1)	
		plum pudding model is a 'solid' mas	s (1)	[4
M12.	•	(a) (mass of) positive charge		1

(c) (i)

alpha

(b) three lines correct

allow 1 mark for 1 correct line if more than 1 line is drawn from a box in List A then all those lines are incorrect

new scientific evidence / data is obtained (c)

which cannot be explained by the model

[5]

2

1

1

1

1

1

1

1

- M13. (a) (i) (total) number of protons plus neutrons accept number of nucleons accept amount for number do not accept number of particles in the nucleus
 - (ii) number of neutrons decreases by one

number of protons increases by one accept for both marks a neutron changes into a proton

208 (b) (i) 81

> correct order only 1

the number of protons determines the element (ii) accept atomic number for number of protons

Page 28 of 30

alpha and beta decay produce different changes to the number of protons there must be a comparison between alpha and beta which is more than a description of alpha and beta decay alone

OI

alpha and beta decay produce different atomic numbers ignore correct reference to mass number

[7]

1