M1. (a)	electrons transferred from	potassium to sulfur
· · · · · · · · · · · · · · · · · · ·	ciccii ons transici ca mom	potassiani to sanai

1

two potassium atoms each lose one electron

1

forming K⁺ / 1+ ions

1

sulfur atoms gain 2 electrons

1

forming S^{2-} / 2- ions

1

(b) there are no gaps / sticks between the potassium ions and sulfide ions

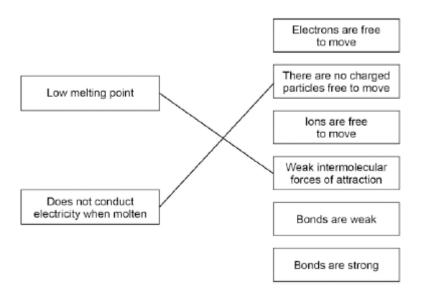
1

(c) (two) shared pairs between H and S

1

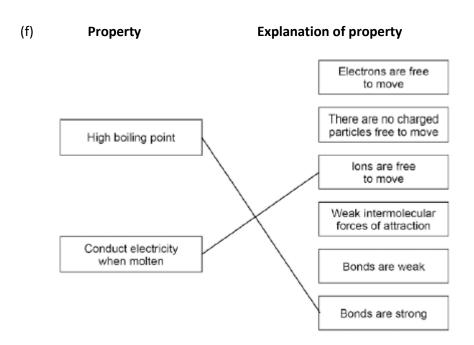
rest correct - no additional hydrogen electrons and two non-bonding pairs on sulfur second mark dependent on first

1


(d) 342

2

allow **1** mark for evidence of $(2 \times 27) + 3[32 + (16 \times 4)]$


(e) **Property**

Explanation of property

more than one line drawn from a variable negates the mark

2

more than one line drawn from a variable negates the mark

[14]

M2.(a) The forces between iodine molecules are stronger

1

(b) anything in range +30 to +120

1

(c) Brown

1

(d) $2 I^{-} + CI_{2} \rightarrow I_{2} + 2 CI^{-}$

1

(e) It contains ions which can move

1

1

(f) hydrogen iodine

[6]

M3. (a)	giant s	tructure / lattice / layers / close packed	
, ,	Ü	first 3 marks can be obtained from a suitably labelled diagram	
		incorrect structure or bonding or particle = max 3	
		medirect structure or bonding or particle - max 3	1
		made up of atoms / <u>positive</u> ions	
			1
		with delocalized / free electrons	
			1
		so electrons can move / flow through the metal	
		accept so electrons can carry charge through the metal	
		accept so electrons can form a current	1
	(b)	an alloy (is a metal which) has different types / sizes of atoms	
		accept converse for pure metal throughout	
		both marks can be obtained from suitable diagrams	
		allow made of different metals	
		allow mixture of metals / atoms / elements	
		ignore particles	
		ignore properties	
		do not accept compound	
			1
		alloy has distorted layers	
		allow layers are unable to slide	1
			-
	(c)	(i) can return to its original shape	
		accept shape memory alloy	
		accept smart alloy	
		ignore other properties	
			1
		(ii) (pure copper is too) soft	
		accept converse	
		accept malleable or bends	
		accept copper is running out	
		ignore references to strength and weakness	1
			_

(iii) aluminium oxide

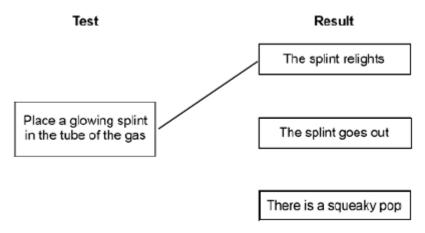
accept alumina accept Al_2O_3 ignore bauxite / aluminium ore

1

- (iv) any **one** from:
 - different conditions
 - different catalyst
 - different pressure allow different concentration
 - different temperature.

do **not** accept different monomers

1


- (d) any **two** from:
 - accurate
 - sensitive
 - rapid
 - small sample.

both needed for 1 mark

[11]

1

M4.(a)

more than one line from test negates the mark

(b) (i) place a lighted splint at the mouth of the tube

there is a squeaky pop

dependent on correct test

(ii) hydrogen is less reactive than magnesium accept converse accept magnesium is too reactive

- (c) (i) any **one** from:
 - to improve appearance or make it look nice
 - to prevent corrosion
 - to make it more durable
 - cheaper than solid silver

1

1

1

1

1

(ii)	solution must be silver nitrate or contain silver ions	1	
	otherwise copper will be deposited or silver will not be deposited	1	
	spoon must be the negative electrode / cathode	1	
	because silver ions have a positive charge or go to negative electrode or are discharged at the negative electrode.	1	
(iii)	because (plastic is an) insulator or does not conduct electricity accept does not contain mobile electrons	1	[10]

M5. (a)	(Chromi	ium =)	in correct order	1
		(Nic	kel =) 8 accept Chromium = 8 and Nickel = 20 for 1 mark	1
	(b)	(i)	(because iron is made up of only) one type of <u>atom</u>	1
		(ii)	not strong allow too soft or too flexible accept it rusts / corrodes or that it could wear away accept could change shape / bend accept layers / atoms could slide (over each other)	1
		(iii)	structure is different / distorted / disrupted accept not in layers or not regular	1
			so it is difficult for layers / atoms / particles to slip / slide (over each other) accept layers cannot slip / slide	

1

[6]

M6.	(a)	(i) covalent two different answers indicated gains 0 marks	1	
		(ii) carbon two different answers indicated gains 0 marks	1	
		(iii) 3 two different answers indicated gains 0 marks	1	
	(b)	layers can slide / slip	1	
		because there are no bonds between layers accept because weak forces / bonds between layers		
		or so (pieces of) graphite rubs / breaks off		
		or graphite left on the paper	1	[5]

M7. (a) • made of layers / rows (atoms / ions / particles) ignore free / delocalised electrons

1

which can slide / slip (over each other)
 reference to incorrect particles / covalency / intermolecular forces
 = max 1

or

particles / ions / atoms can slide over each other ignore malleable / ductile / weak bonds

1

(b) (i) sulfuric

accept sulphuric ignore formula ignore hydrogen sulfate

1

(ii) any **two** from:

list principle applies for incorrect observations

- (hydrogen) gas produced (or any indication of a gas such as bubbles etc.)
 ignore just hydrogen produced
 ignore cloudiness / colour changes
- magnesium / solid disappears / goes into solution
 accept magnesium / magnesium sulfate / solid / it dissolves
 accept forms a liquid / solution
- gets hot allow exothermic ignore floats

2

(iii) crystallisation

accept detailed answers such as: evaporate to half volume and then allow the solution to crystallise.

or

evaporation / heating / boiling / cooling ignore any references to filter

1

[6]