M1.(a) carbon allow C
(b) (i) (atoms are in) layers (that) can slide over each other
because between the layers there are only weak forces accept because there are no (covalent) bonds between the layers accept Van der Waals forces between the layers do not allow intermolecular bonds between the layers if no other marks are awarded allow weak intermolecular forces for 1 mark
(ii) because each atom forms four (covalent) bonds or (diamond is a) giant (covalent) structure or lattice or macromolecular
any reference to ionic / metallic bonding or intermolecular forces scores a maximum of 1 mark accept carbon forms a tetrahedral shape
(and) covalent bonds are strong
accept covalent bonds need a lot of energy / difficult to break
(iii) because graphite has delocalised electrons
allow sea of electrons
allow each carbon atom has one free electron
which can move through the whole structure (and carry the current / charge / electricity)

M2. (a) (i) covalent two different answers indicated gains $\mathbf{0}$ marks
(ii) carbon
two different answers indicated gains $\mathbf{0}$ marks
(iii) 3 two different answers indicated gains $\mathbf{0}$ marks
(b) layers can slide / slip
because there are no bonds between layers
accept because weak forces / bonds between layers
or so (pieces of) graphite rubs / breaks off
or graphite left on the paper

M3. (a) 2,4 (drawn as crosses) on shells accept dots /e / - etc.
(b) (i) hard

> allow rigid / high melting point
> do not allow references to bonding
> ignore strong
> ignore unreactive
> ignore structure
(ii) any three from
max 2 if ionic / metallic / molecule / intermolecular bonds or
incorrect number of bonds

- giant structure / lattice / macromolecular allow many bonds
- covalent (bonds)
- (covalent) bonds are strong accept needs lots of energy to break bonds (owtte)
- (each) carbon / atom forms four bonds
or
(each) carbon / atom bonded to four other atoms
(c) any three from:
max 2 if ionic / ions / metallic / molecule 'it' needs to be qualified
graphite
- has delocalised / free electrons
do not accept the electrons move unless qualified (around structure etc)
or
electrons that can move through / around the structure
- each carbon is joined to three other carbon atoms allow graphite has three bonds
or
one electron from each atom is free / delocalised
diamond
- has no free / delocalised electrons do not accept the electrons do not move
or
no electrons that move around the structure
- all the electrons are used for bonding allow diamond has 4 bonds
or
each carbon joined to four other carbon atoms

M4. (a) electric current / electricity
plus one from:

- is passed through ionic compound / substance / electrolyte
- passed through molten/aqueous compound / substance
must be linked to electricity
allow liquid compound / substance
do not allow solution / liquid alone
- causing decomposition
accept split up / breakdown / breaking up owtte
ignore separated
accept elements are formed
ignore new substances form
(b) hydrogen
accept H_{2}
do not accept $\mathrm{H} / \mathrm{H}^{2}$
is delocalised / free (to move)
must be linked to electrons
answers of delocalised / free electrons only, gains 1 mark
accept each carbon is bonded to three other carbon atoms leaving delocalised / free electrons $=\mathbf{2}$ marks
maximum 1 mark if graphite described as a metal / giant ionic lattice

