M1 .(a)	carbon	allow C
	(b)	(i)	(atoms are in) layers (that) can slide over each other
			because <u>between</u> the layers there are only weak forces accept because there are no (covalent) bonds <u>between</u> the layers accept Van der Waals forces between the layers do not allow intermolecular bonds between the layers if no other marks are awarded allow weak intermolecular forces for 1 mark
		(ii)	because each atom forms <u>four</u> (covalent) bonds or (diamond is a) giant (covalent) structure or lattice or macromolecular any reference to ionic / metallic bonding or intermolecular forces scores a maximum of 1 mark accept carbon forms a tetrahedral shape
			(and) <u>covalent</u> bonds are strong

1

1

1

1

1

1

(iii) because graphite has delocalised electrons

allow sea of electrons

allow each carbon atom has one free electron

accept <u>covalent</u> bonds need a lot of energy / difficult to break

which can move $\underline{\text{through the whole structure}}$ (and carry the current / charge / electricity)

1

M2.	(a)	(i) cova	alent two different answers indicated gains 0 marks	1	
		(ii) carbo	on two different answers indicated gains 0 marks	1	
		(iii) 3	two different answers indicated gains 0 marks	1	
	(b)	layers can s	lide / slip	1	
		because the			
		or graphite	left on the paper	1	[5]

M3. (a) 2,4 (drawn as crosses) on shells accept dots / e / - etc.

1

(b) (i) hard

allow rigid / high melting point do **not** allow references to bonding ignore strong ignore unreactive ignore structure

1

(ii) any three from

max **2** if ionic / metallic / molecule / intermolecular bonds **or** incorrect number of bonds

- giant structure / lattice / macromolecular allow many bonds
- covalent (bonds)
- (covalent) bonds are strong
 accept needs lots of energy to break bonds (owtte)
- (each) carbon / atom forms four bonds

or

(each) carbon / atom bonded to four other atoms

3

(c) any **three** from:

max **2** if ionic / ions / metallic / molecule 'it' needs to be qualified

graphite

has delocalised / free electrons

do **not** accept the electrons move unless qualified (around structure etc)

or

electrons that can move through / around the structure

 each carbon is joined to three other carbon atoms allow graphite has three bonds

or

one electron from each atom is free / delocalised

diamond

has no free / delocalised electrons
 do not accept the electrons do not move

or

no electrons that move around the structure

 all the electrons are used for bonding allow diamond has 4 bonds

or

each carbon joined to four other carbon atoms

3

[8]

M4. (a) electric current / electricity

plus one from:

- is passed through <u>ionic</u> compound / substance / electrolyte
- passed through molten/aqueous <u>compound</u> / <u>substance</u>
 must be linked to electricity
 allow liquid compound / substance
 do **not** allow solution / liquid alone
- causing decomposition

accept split up / breakdown / breaking up owtte ignore separated accept elements are formed ignore new substances form

(b) hydrogen

accept H_2 do **not** accept H/H^2

(c) one electron from each atom

accept each carbon is bonded to three other carbon atoms leaving one (unbonded) electron owtte

is delocalised / free (to move)

must be linked to electrons

answers of delocalised / free electrons only, gains 1 mark

accept each carbon is bonded to three other carbon atoms leaving

delocalised / free electrons = 2 marks

maximum 1 mark if graphite described as a metal / giant ionic

maximum 1 mark if graphite described as a metal / giant ionic lattice

[5]

1

1

1

1

1