M1. (a)	(i)	giant lattice allow each carbon atom is joined to three others	1	
		atoms in graphene are covalently bonded max. 2 marks if any reference to wrong type of bonding	1	
		and covalent bonds are strong or need a lot of energy to be broken allow difficult to break	1	
	(ii) because graphene has delocalised electrons allow each carbon atom has one free electron	1	
		which can move <u>throughout the structure</u> do not accept just electrons can move.	1	
(b)	be	ecause there are weak forces between molecules allow no <u>bonds</u> between the layers	1	
		so layers / molecules can slip / slide.	1	[7]

M2. (a)	because	atoms / ions / particles in alloy are different (sizes) do not allow reference to molecules ignore reference to compounds	1
		so layers distorted (and layers / atoms / ions / particles) don't slide or slide less easily accept all marking points in a suitably labelled or annotated diagram	
		if no other mark awarded accept an alloy is a mixture or contains different metals / elements for 1 mark	1
	(b)	giant structure or lattice or macromolecule max 3 marks if incorrect bonding	1
		strong bonds (between carbon / atoms)	1
		covalent (bonds)	1
		each carbon / atom forms 4 bonds accept tetrahedral if no other marks awarded, allow carbon (atoms) for 1 mark	1

(c) reference to incorrect bonding = max **3** reference to 'weak covalent bonds' = max **2** allow correctly drawn diagram for first two

marking points eg.	(tangled) lines with no cross-links	
chains or large molecules <i>ignore layers</i>		1
with intermolecular forces or allow bonds for f	forces between chains forces accept no cross-links	1
that are weak must relate to 2	a marking point	1
and are easily overcome/ bro accept molecules	ken (when heated) 5 / chains can flow / move	1

M3.	(a)) (i) ionic / molecules / metallic / (inter)molecular = max 2	
			because graphene / it has a giant structure / lattice / macromolecular accept <u>all</u> / <u>every</u> / <u>each</u> atom is <u>bonded to</u> 3 other atoms	1
			because graphene / it has covalent bonds / is covalent	1
			because in graphene / the bonds are strong or a lot of energy needed / hard to break the bonds	1
		(ii)	there are delocalised / free electrons	1
			because one (delocalised / free) electron <u>per atom</u> linked to first marking point accept because three <u>electrons per atom</u> used (in bonding) accept because one electron <u>per atom</u> not used (in bonding)	t 1
	(b)	ора	que (owtte) eg could not see through them	
			yers slide yers not aligned ignore thick	1

[6]

M4.	(a) Graphite:
	because the layers (of carbon atoms) in graphite can move / slide <i>it = graphite</i> 1
	this is because there are only weak intermolecular forces or weak forces between layers accept Van der Waals' forces allow no <u>covalent</u> bonds between layers 1
	Diamond:
	however, in diamond, each carbon atom is (strongly / covalently) bonded to 4 others allow diamond has three dimensional / tetrahedral structure 1
	so no carbon / atoms able to move / slide allow so no layers to slide or so diamond is rigid 1
(b)) because graphite has delocalised electrons / sea of electrons allow free / mobile / roaming electrons 1
	which can carry charge / current or move <u>through the structure</u> 1
	however, diamond has no delocalised electrons accept however, diamond has all (outer) electrons used in bonding 1

M5. any three from:

any reference to incorrect bonding = max 2

- giant structure / lattice / macromolecule
- covalent (bonds)
- bonds are (very) strong

 allow bonds difficult to break
 or takes a lot of energy to break bonds
- each atom / carbon joined to <u>four</u> others
 accept each atom / carbon forms <u>four</u> bonds

[3]

3

M6. (a) any four from:

max **3** marks if any reference made to covalent / ionic bonding / molecules or intermolecular forces **or** graphite / diamond **or** forces of attraction between electrons and then ignore throughout

- giant structure / lattice ignore layers
- <u>positive</u> ions
- sea of electrons **or** delocalised / free electrons *ignore electrons can move*
- awareness of outer shell / highest energy level electrons are involved
- (electrostatic) attractions / bonds between electrons and positive ions
- bonds / attractions (between atoms/ ions) are strong allow hard to break for strong ignore forces unqualified
- a lot of energy / heat is needed to break these bonds / attractions ignore high temperature

(b) (i) that they are <u>very</u> small accept tiny / really small / a <u>lot</u> smaller / any indication of very small eq microscopic, smaller than the eye can see

or

1–100 nanometres **or** a few (hundred) atoms ignore incorrect numerical values if very small is given

1

(ii) any **2** from:

- one (non-bonded) electron from each atom
- delocalised / free electrons allow sea of electrons ignore electrons can move

4

• electron carry / form / pass current / charge ignore carry electricity

[7]

2

- M7. five ideas from the following for one mark each
 - each carbon / atom joined / bonded to three other carbon / atoms
 or each carbon forms 3 bonds
 - in layers
 - only weak forces (of attraction) / bonds between layers
 allow weak electrostatic / intermolecular forces /bonds between layers
 - layers / atoms can slide over each other
 - one electron on each carbon is not used for bonding
 - electrons delocalised **or** electrons free *allow 'sea' of electrons*
 - electrons carry the charge / current
 - giant structure / lattice
 - covalent (bonds)
 - strong bonds **or** a lot of energy needed to break bonds

reference to ionic bonding = **max 4**

- diagrams could be used:
- to show layered structure
- to show that each carbon is bonded to three other carbon atoms
- to show giant structure (at least 3 rings required)