M1.	(a)	to speed up the reaction or it is a catalyst
		allow higher level answers such as to reduce the activation energy

ignore cost or yield

(b) (i) reaction is exothermic

accept reverse reaction is endothermic **or** high temperature causes decomposition of ammonia ignore reference to rate

1

1

(ii) more (gaseous) reactant molecules than (gaseous) product molecules accept 4 volumes / moles of reactant and 2 volumes / moles of product

accept lower volume of products **or** volume lower on right hand side

accept 'favours the reaction which produces fewer molecules' ignore incorrect number of moles ignore reference to 'amount' of product / reactant ignore references to rate

1

(c) (rate is) too slow / slower owtte

allow catalyst would not work
accept at higher temperature the rate is quicker
accept at lower temperatures particles
do not collide as often **or** fewer particles have the activation
energy **or** particles do not have the activation energy
ignore reaction would not work
ignore optimum / compromise type answers

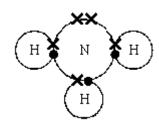
1

(d) cooled

allow ammonia / it is turned into a liquid **or** is condensed ignore references to boiling point

1

[5]


M2. (i) reversible (reaction)

1

(ii) (yield of ammonia) increases

1

(iii)

1

[3]

M3. (i) A = air

B = natural gas

for 1 mark each

2

(ii) nitrogen

both for 1 mark

1

(iii) catalyst / speed up reaction

for 1 mark

1

(iv) recycle unreacted gases / save money

for 1 mark

1

[5]

M4.	(a)	as a catalyst
		accept to speed up the reaction (equilibrium)

1

(b) nitrogen + hydrogen \rightleftharpoons ammonia $N_2 + H_2 \rightleftharpoons NH_3$

accept mixed formula / word equations ignore balancing

1

(c) (i) the reaction is reversible / an equilibrium

accept that ammonia can break down
again into nitrogen and hydrogen
accept reaction goes both ways
do **not** accept some nitrogen and
hydrogen do not react

1

(ii) (the gases are cooled)

no marks as given in the diagram accept correct formulae NH $_3$, N $_2$ H $_2$

1

- <u>ammonia</u> removed as a liquid accept ammonia liquefies **or** condenses
- nitrogen and hydrogen are recycled

 accept nitrogen and hydrogen are put
 back through the converter
 accept 'other gases' only if ammonia
 identified for first mark

1

[5]

M5.	(a)	endothe	rmic (reaction)		
			accept thermal decomposition		
				1	
	(b) g	gives out he	at (energy)		
			accept exothermic (reaction)		
				1	
	+	urns blue			
	·	uilis blue	accept goes to hydrated copper sulphate		
			accept goes to hydratea copper sulphate	1	
					[3]

M6.		(a)	(i)	gas	
				accept they are all gases	
					1
		(ii)	rev	versible (reaction)	
				accept can go either way accept ammonia can be decomposed (to nitrogen and hydrogen) accept could be (an) equilibrium do not credit just 'equilibrium'	1
		(iii)) (li	quid) air or atmosphere	1
		(iv)) saı	me number or amount or weight (of atoms) on each side (of the equation) accept "sums" for each side	
				accept same amounts of elements on each side	
				do not credit molecules or compounds do not credit both sides are the same unless explained	
					1
			of	the same type	
				or gives a correct example 'e.g. six hydrogen atoms' (on each side)	1
	(b)	(i)	nit	rate or sulphate or phosphate	
				if first left blank, second may be awarded	
				do not credit chloride	
			nit	tric or sulphuric or phosphoric	1
			-	nly if correct above, exception is for ammonium chloride followed by drochloric acid (1 mark))	
				as appropriate if only the formula is given this should be credited only if it is correct in every detail i.e. NH4NO3HNO3 (NH4)2SO4H2SO4 accept correct name with an incorrect version of the formula do not credit a correct formula with an incorrect version of the	

any **one** of

1

name e.g. 'nitrate/sulphite' etc

- * (solution) can be sprayed (on the fields **or** crops) accept more even distribution
- * dissolves in <u>soil</u> water **or** rain (water)

 accept soaks into soil (because soaks implies water)
- * can be taken up by (plant) roots

 do not credit can be added to water to "feed" the plants

(c) (i) elements **or** <u>different</u> atoms are bonded or joined **or** combined **or** reacted

do not credit just 'atoms' do not credit added **or** mixed

(ii) (pairs of) electrons are shared do not credit an electron is shared

[10]

1

1

1

M7.	(a)	(i) ammonia and hydrogen chloride	
		both required either order	
		accept formulae if correct in every detail	1
	(ii)	ammonium chloride / NH₄Cl	
	(,	do not credit ammonia chloride	
			1
	(iii)) the fumes / gases / are poisonous / toxic	
	\' ,	or ammonia and hydrogen chloride are	
		poisonous / toxic / lethal	
		accept just ammonia is poisonous / toxic accept just hydrogen chloride is	
		poisonous / toxic	
		accept vapour is poisonous / toxic	
		do not credit just fumes are dangerous or harmful	
		of narmy ar	1
	(iv) nitrogen	
		do not credit N/N ₂	
			1
		hydrogen	
		do not credit H/H ₂	1
			_
		molecule	
		do not credit compound or mole	1
		covalent	
		accept single / molecular	
		, , ,	1
((b) (i)	proton	
		neutron	
		electron	
		either all three correct	

or one or two correct
however do not credit a response
which is repeated

2

1

(ii) protons and neutrons both required in either order

[10]

M8. (a) (i) idea that it is a reaction in which the products can themselves react to reform the original substance or a reaction that can go in either direction (allow explanation in terms of the specific reaction in the question) for 1 mark 1 (ii) nitrogen, hydrogen and ammonia (allow formulae) for 1 mark 1 (b) (i) high pressure/400 atm low temperature/100 °C for 1 mark each 2 (ii) higher rate of reaction good rate of production or idea that more economic (ally viable) (allow catalyst more effective at higher temperature) for 1 mark each 2 (i) (c) ideas that it involves use of catalyst gains 1 mark but use of platinum catalyst gains 2 marks 2 high temperature/900 °C for 1 mark 1

(ii)

 $2 \text{ NO} + \text{O}_2 \rightarrow 2 \text{NO}_2$

for 1 mark each

1

(iii) $\underline{3} \text{ NO}_2 + \text{H}_2\text{O} \rightarrow \underline{2H} \text{NO}_3 + \text{NO}$ for 1 mark each

1

- (d) (i) references to
 - transport reductions
 - economic savings
 - saves time
 - guaranteed consumer/supplier for 1 mark each

2

- (ii) selection of site
 - design of plant
 - safe disposal of waste
 - make gas emissions safe(r)
 - monitoring/safety checks
 - reduction of waste gas emissions
 - research into more efficient processes
 - research into energy savings/use of cooling water
 - training of staff re: emergency procedures
 - warning/evacuation procedures for the community

(or any two sensible suggestions)

any two for 1 mark each

2

[15]