Q1. Ammonium nitrate is an important chemical. The diagram shows the main stages in the manufacture of ammonium nitrate.

Study the diagram and then answer the question.

(a)	Wha	t is the purpose of the iron in reactor 1?	
			(1)
(b)	Expla	nin why the best yield of ammonia at equilibrium is obtained:	
	(i)	at low temperature	

(1)

	(ii)	at high pressure.	
			(1)
(c)	The t	remperature used in reactor 1 is 450 °C.	
	Expla	ain why a much lower temperature is not used.	
	•••••		
			(1)
(d)	A mix	xture of ammonia, nitrogen and hydrogen leaves reactor 1.	
	In the	e separator, what is done to the mixture to separate the ammonia from the oths? $$	er
	•••••		
			(1) (Total 5 marks)

Q2. Transition metals are useful as catalysts. Iron is used as a catalyst in the manufacture of ammonia.

 $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$

(i) What is meant by in the chemical equation?

(iii) Draw a diagram to show the arrangement of the electrons in a molecule of ammonia. The electron arrangement of each atom is shown.

(1) (Total 3 marks)

(1)

Q3. The flow chart below shows the main stages in the production of ammonium nitrate.

(i) Name the **two** raw materials shown in the flow chart as **A** and **B** by choosing words from the list.

	air	coke	limestone	natural gas
Raw ma	terial A			
Raw ma	terial B			

(2)

(ii) Complete the word equation for the reaction which makes ammonia.

(1)	→ ammonia
	i) What is the purpose of the iron in the reactor?
(1)	
	v) What is the purpose of pipe C ?
(1) (Total 5 marks)	

Q4. The diagram shows the final stages in the manufacture of ammonia.

(a)	Why is iron used in the converter?	
		(1)
(b)	Write the word equation for the reaction in the converter.	
	+	(1)
(c)	The yield of ammonia is only about 15%.	
	(i) Why can the yield not be 100%?	

(1)

(ii)	Describe what happens to the mixture of gases after it leaves the converter.	
		(2)
		(Total 5 marks)

•	ed copper sulphate is a blue solid. When it is heated, white solid anhydrous copper s le. This is a reversible reaction.	ulphate is
	hydrated copper sulphate [+ heat energy] anhydrous copper sulphate + (blue) (white)	water
(a)	To make the forward reaction work, the hydrated copper sulphate must be heated time.	all the
	What type of reaction is this?	
		(1)
(b)	Anhydrous copper sulphate can be used in a test for water. What two things will h when water is added to anhydrous copper sulphate?	appen
	1	
	2	
		(2)
		(Total 3 marks)

Q6.		industry ammonia is produced from nitrogen and hydrogen. The equation for the ion is:	
$N_2(g)$ +	3H ₂ (g)	⇒ 2NH ₃ (g)	
	(i)	What does the symbol (g) represent?	(1)
	(ii)	What does the symbol	(1)
	(iii)	Nitrogen is used for the industrial production of ammonia. From what raw material does this nitrogen come?	(1)
	(iv)	Hydrogen is used for the industrial production of ammonia. It is obtained from the reaction between methane and steam. The equation for this reaction is: $CH_4 + H_2O \Rightarrow 3H_2 + CO$	
		Explain how you can tell that this equation is balanced.	
			(2)

(b)	Amn	monia is used to make ammonium salts which can be used as fertilisers.	
	(i)	Complete the names in the following sentence.	
		One example is ammonium which is made by reacting	
		ammonia with acid.	(2)
	(ii)	All ammonium salts are soluble in water. Why is this a useful property of a fertiliser?	
			(1)
(c)	Amn	nonia is a covalent, chemical compound.	
	(i)	Complete the following sentence to describe a chemical compound.	
		In a chemical compound, two or more	
			(1)
	(ii)	What is a covalent bond?	
		(Total 1	(1) 0 marks)
		(rotal 1	

Q7.	(a)	The equation for the reaction that takes place when ammonium chloride is heated is:
-----	-----	---

 $NH_4Cl(s)$ \longrightarrow $NH_3(g)$ + HCl(g) ammonium chloride ammonia hydrogen chloride

The diagram shows how a teacher demonstrated this reaction. The demonstration was carried out in a fume cupboard.

- (iii) Why was the demonstration carried out in a fume cupboard?

				(1)
<i>(</i> ,)				
(iv)	Complete the four sp	aces in the passage.		
	The chemical formula	a of ammonia is NH₃. Thi	s shows that there is one	atom of
		and three atoms o	of in	each
		of ammonia. These	e atoms are joined by bon	ds that
	are formed by sharin	g pairs of electrons. This	s type of bond is called	
	a	bond.		
				(4)
(b) Elect	trons noutrons and pro	otons are sub-atomic pai	rticles	
			rticles.	
(i)	Complete the three s	paces in the table.		
Name of su	b-atomic particle	Relative mass	Relative charge]
	b atomic particle	itciative illass	Melative charge	
Name or su	<u> </u>		_	
		1	+1	
		1	+1	
		11		
		1	0	
		11	0	(2)
		11	0	(2)
		11	0	(2)
		11	0	(2)
		1 1 1840	0 -1	(2)
		11	0 -1	(2)
	Which two sub-atom	$\frac{1}{1840}$ ic particles are in the nu	0 -1	
	Which two sub-atom	$\frac{1}{1840}$ ic particles are in the nu	0 -1 cleus of an atom?	

Ammonia is manufactured by the Haber Process, where nitrogen and hydrogen react together as follows:

$$N_2 + 3H_2 \Leftrightarrow 2NH_3$$

The reaction is reversible. A balance is eventually reached when ammonia is being formed at the same rate at which it is decomposing.

This point is called 'equilibrium'.

1				
	PERCENTAGE OF AMMONIA AT EQUILIBRIUM			
PRESSURE (ATM)	100° C	300° C	500° C	
25	91.7	27.4	2.9	
100	96.7	52.5	10.6	
400	99.4	79,7	31.9	

(i)	What is meant by a 'reversible reaction'?	
		(1)
/::\	Which substances are present in the mixture at equilibrium?	
(ii)	Which substances are present in the mixture at equilibrium?	
		(1)

(b) (i) Under what conditions shown in the table is the maximum yield of ammonia obtained?

(a)

				(2)				
	(ii)	The Haber Process is usually carried out at a higher temperature than that which would produce the maximum yield. Suggest why.						
				(2)				
(c)	Ammonia can be converted into nitric acid in three stages:							
	Stage	e 1	Ammonia reacts with oxygen from the air to form nitrogen monoxide and water					
			4NH ₃ + 5O ₂					
	Stage	e 2	On cooling, nitrogen monoxide reacts with oxygen from the air to form nitrogen dioxide.					
	Stage	e 3	Nitrogen dioxide reacts with water to form nitric acid and nitrogen monoxide.					
	(i)	Desc	ribe the conditions under which the reaction in Stage 1 takes place.					
				(3)				

	(ii)	Balance the equation for the reaction at Stage 2.	
		NO + O ₂ NO ₂	(1)
	(iii)	Balance the equation for the reaction at Stage 3. $NO_2 + H_2O \longrightarrow HNO_3 + NO$	(1)
(d)	The	chemical plant for manufacturing ammonia is often on the same site as plants	
(d)		ufacturing nitric acid and fertilisers.	
	(i)	What advantages will this have for the manufacturing company?	
			(2)
	(ii)	Briefly describe two important ways in which it is possible to reduce the environmental impact of such plants on the surrounding area.	
		1	
		2	
			(2) (Total 15 marks)