M1. (a)	both w	ater <u>vapour</u> and ethanol will condense allow steam for water vapour allow they both become liquids allow ethane condenses at a lower temperature allow some of the steam hasn't reacted allow it is a reversible reaction / equilibrium	1	
	(b)	amount will decrease	1	
		because the equilibrium will move to the left	1	
	(c)	more ethanol will be produced	1	
		because system moves to least / fewer molecules	1	[5]

M2. (a) (i) nitrogen - air accept atmosphere

hydrogen - north sea gas / natural gas / methane / CH₄ accept water / (crude) oil / coal / hydrocarbons / brine

(ii) *allow converse throughout*

• high temperature gives a low yield

• because reaction is exothermic *must be linked to first bullet point*

but at low temperatures the rate is (too) slow
 *if no other marks awarded accept 450°C is a compromise between
 yield and rate
 or
 450°C gives a reasonable yield in a reasonable time for 1 mark*

(iii) nitric (acid) accept HNO₃

1

1

1

1

1

1

(b) Ammonia / Haber process can be used to make fertiliser

1

with a specified economical reason

eg raw materials for Haber process readily available eg transport costs are lower or no need to import eg Haber process is a continuous process ignore employment / labour costs

[8]

M3. (a) same number of (gaseous) molecules / moles / volume on both sides of the equation

allow particles for molecules do **not** accept atoms ignore amount

(b) (forward) reaction is exothermic accept reverse answer

1

3

1

(c) any **three** from:

- particles gain energy
- particles move faster

 allow particles collide faster / quicker
 ignore move more / vibrate more
- particles collide more **or** more collisions
- more of the collisions are successful or more of the particles have the activation energy or particles collide with more force / energy

(d) any **two** from:

- more product (obtained in shorter time) accept better yield (of product)
- less fuel needed
 accept less energy / heat / electricity needed

or

lower fuel costs

ignore cheaper unqualified

less pollution caused by burning fuels

or

less specified type of pollution caused by producing heat / burning fuels

allow correct specified pollutants caused by burning fossil fuels eg CO₂ / greenhouse gases **or** correct effect of burning fossil fuels eg global warming accept thermal / heat pollution

using less fuel conserves resources
 accept sustainable
 accept fossil fuels are non-renewable

[7]

 M4.
 (a) fewer product molecules than reactant molecules (owtte) or

 accept forward reaction produces fewer molecules

 accept left hand side for reactants and right hand side for products

3 reactant molecules and 1 product or 3 volumes of gas becomes 1 volume of gas accept high pressure favours the side with fewer molecules ignore references to reaction rate

(b) any **three** from:

low temperature gives best yield
 accept <u>add</u> heat as increased temperature or 'less' as poor yield

or high temperature gives poor yield

- because the reaction is exothermic accept reverse argument if clearly expressed
- reaction too slow at low temperature
 or reaction faster at high temperature
 accept add heat and reaction goes faster
- temperature used gives a reasonable yield at a fast rate / compromise explained

allow get less product but it takes less time for **2** marks

1

- **M5.** (a) (i) any **one** from:
 - they are positive / cations
 - they are H⁺
 - opposite charges attract ignore atom

1

(ii) potassium is more reactive (or reverse)
 assume 'it' refers to hydrogen
 allow potassium reacts with water
 allow potassium is very reactive or most reactive metal / element
 allow hydrogen gains electrons more easily / is reduced more
 easily
 accept potassium is higher up the reactivity series

1

(b) 6 and 2

accept correct multiples and fractions

1

(c) (i) the reaction / it is reversible or a description of a reversible reaction allow 'it is an equilibrium' allow reversible symbol drawn correctly allow 'the reverse / back reaction'

1

(ii) lithium nitride

assume that 'it' or if they do not specify means lithium nitride

assume lithium / lithium nitrate refers to lithium nitride

 hydrogen is bonded / held / absorbed / has formed a compound / reacted with lithium nitride plus one of:

- does not explode / cause a fire
- is not free / less hydrogen
- is not under pressure
- does not leak
- is only released slowly

1

- compound of hydrogen with lithium nitride / product is (more) stable / less reactive / less chance of a reaction accept converse for hydrogen as below assume that gas / hydrogen means gas in the cylinder
 - hydrogen (in cylinder) / gas is not bonded / held absorbed / in a compound / reacted with lithium nitride

1

plus **one** of:

- can explode / cause a fire
- is free
- is under pressure
- can leak
- releases quickly
- (d) (i) loss of an electron **or** loses electrons do not accept any ref. to oxygen

1

1

(ii) full outer shell of 8 electrons on circle
 need not be paired
 can be ×, dot or e
 do not accept if extra electrons added to inner shell

[10]

M6.	(a)	 (i) <u>high</u> temperature accept temperature given if ≥ 400 °C ignore value if "high" stated, unless silly value 	1
			endothermic or reaction takes in energy or Δ H is +ve independent marks	1
		(ii)	<u>low</u> pressure or up to and including 10 atmospheres	1
			(low pressure) favours a reaction in which more molecules are formed $2 \text{ moles} \rightarrow 4 \text{ moles}$ $(2 \text{ molecules} \rightarrow 4 \text{ molecules})$ independent marks	1
		(iii)	<u>nickel</u> and it is a transition / transitional element / metal (owtte) or nickel and variable oxidation state / number or it is similar to other named transition elements e.g. iron	1
	(b)	(i)	(bonds broken =) 2005 (kJ)	1
			(bonds formed =) 2046 (kJ)	1
			energy change = 2005 – 2046 = (–)41 for correct subtraction ignore sign	1

(ii) (exothermic)

if in part (b)(i) answer is <u>not</u> 41 answer is consequential on endothermic or exothermic shown accept correct reasoning for incorrect answer from (b)(i)

energy given out forming new bonds

do **not** accept energy <u>needed</u> to form new bonds

1

1

greater than energy put in to break old bonds

accept exothermic **and** more energy given out than taken in for 1 mark accept negative value for energy change **or** energy in products less than energy in reactants for 1 mark

M7.	(a)	2 marks for comments related to temperature	
	low	//lower/lowest temperature (or 100 °C from graph)	
		ignore references to catalyst	1
	any	y one from:	
	•	(forward) reaction exothermic	
		or reverse reaction endothermic	
	•	if the temperature is increased the yield of product will decrease or reaction right to left	
		high temperature favours reverse reaction or reverse argument	
		the lower the temperature the greater the yield = 2 marks	
		2 marks for comments related to pressure	
	hig	h / higher / highest pressure (or greater than 200 atm. from graph)	1
	any	/ one from:	
	•	four reactant molecules but only two product molecules (owtte) reverse reaction goes from 2 molecules / moles / volumes to 4 molecules / moles / volumes	
	•	increase in pressure favours the reaction which produces the least number of molecules	
		decrease in pressure favours the back reaction because it produces the most molecules	1
(b)	any	/ three from:	
	•	at low temperatures the reaction is too slow	
	•	450 °C gives a reasonable yield at a fast rate / compromise between yield and rate (*)	

- 200 atm. gives a reasonable yield at a reasonable cost / safely / compromise between yield and cost / safety (*)
 (*) or 450°C and 200 atm / these are compromise conditions for 1 mark
- catalyst works better at higher temperature

•

- (very) high pressures could be dangerous (owtte) safety factor
- (very) high pressures are expensive (owtte)
- (yield is not too important because) unreacted gases can be recycled

M8.	(a reaction in which the products can be changed back to reactants 	
		accept a reaction that can go forwards or backwards	1
		under certain conditions	1
	(ii)	$M_r CaCO_3 = 100$	1
		$M_r CaO = 56$	1
		mass of CaO = 140 (tonnes)	1
		mark consequentially	

[5]