
Q1.

This question is about alkanes.

The table below shows information about some alkanes.

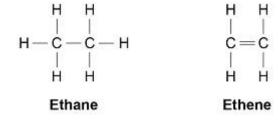
Number of carbon atoms in alkane molecule	Boiling point of alkane in °C
4	0
5	36
6	69
7	X
8	126
9	151

(a) Plot the data from the table above on the graph below.

(b) Predict the boiling point **X** of the alkane with seven carbon atoms in a molecule.

Use the table and the graph.

(2)


(1)

	The graph above is not suitable to show the boiling point of the alkane with three carbon atoms in a molecule.				
	Suggest one reason w	hy.			
d)	What is the state at 20 °C of the alkane with four carbon atoms in a molecule?				
	Use the table above.				
he	table in part (a) is repeat	ted below.	٦		
	mber of carbon atoms in alkane molecule	Boiling point of alkane in °C			
	4	0			
	5	36	1		
	6	69			
			7		
	7	X			
	7 8	126	-		
			_		
ne	8	126 151	is called nonane.		
	8 9	126 151 atoms in a molecule	is called nonane.		
	8 9 alkane with nine carbon	126 151 atoms in a molecule	is called nonane.		
	8 9 alkane with nine carbon	126 151 atoms in a molecule of nonane.	is called nonane.		
∋)	8 9 alkane with nine carbon Complete the formula o	126 151 atoms in a molecule of nonane. C ₉ H lower in a fractionatir	ng column during fractional		
The	8 9 alkane with nine carbon Complete the formula of	126 151 atoms in a molecule of nonane. C ₉ H lower in a fractionatir	ng column during fractional		

Q2.

		(, , , , , , , , , , , , , , , , , , ,
his	question is about hydrocai	bons.
	ane and hexene are hydrodecule.	carbons containing six carbon atoms in each
ex	ane is an alkane and hexer	ne is an alkene.
a)	Draw one line from each	hydrocarbon to the formula of that hydrocarbon.
	Hydrocarbon	Formula
		C ₆ H ₈
	Hexane	C ₆ H ₁₀
		C ₆ H ₁₂
	Hexene	C ₆ H ₁₄
		C ₆ H ₁₆
))	Bromine water is added to What would be observed hexene?	when bromine water is added to hexane and to
	Hexane	
	Hexene	
		(2
)	Ethane is an alkane and e	ethene is an alkene.

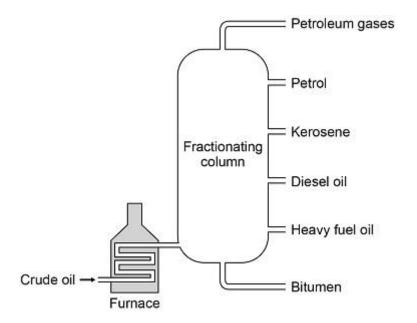
of ethene.

Compare ethane with ethene.

You should refer to:

- their structure and bonding
- their reactions.

(6)


(Total 10 marks)

Q3.

This question is about crude oil and hydrocarbons.

The figure below shows a fractionating column used to separate crude oil into fractions.

(2)

The following table gives information about some of the fractions.

Fraction	Boiling point range in °C
Petroleum gases	Below 30
Petrol	40-110
Kerosene	180-260
Diesel oil	260-320
Heavy fuel oil	320-400
Bitumen	400-450

(a)	Suggest a suitable temperature for the furnace in the figure.	
	°C	
		(1)
(b)	Explain why diesel oil collects above heavy fuel oil but below kerosene in the fractionating column.	
	Use the table above.	

(c) Suggest **two** reasons why bitumen is **not** used as a fuel.

Petroi co	ontains mainly alkanes.
\	
	f the following compounds is an alkane?
Tick (✔)	one box.
C ₂ H ₄	
C ₄ H ₈	
C ₆ H ₁₄	
C ₈ H ₁₆	
	rbon molecules in the diesel oil fraction are cracked to produce carbon molecules.
er hydrod Describe	arbon molecules in the diesel oil fraction are cracked to produce carbon molecules. e the conditions needed to crack hydrocarbon molecules from the I fraction.
er hydrod Describe	carbon molecules. e the conditions needed to crack hydrocarbon molecules from the
er hydrod Describe	carbon molecules. e the conditions needed to crack hydrocarbon molecules from the
er hydrod Describe	carbon molecules. e the conditions needed to crack hydrocarbon molecules from the
er hydrod Describe	carbon molecules. e the conditions needed to crack hydrocarbon molecules from the
Describe diesel oi	carbon molecules. e the conditions needed to crack hydrocarbon molecules from the

			(2)
	(g)	Complete the equation for the cracking of C ₁₅ H ₃₂	
		$C_{15}H_{32} \rightarrow C_{12}H_{26}$ +	
		(Total 11 mark	(1) (s)
Q4	_	question is about combustion of fuels.	
	(a)	Some central heating boilers use wood as a fuel.	
		Suggest two reasons why wood is more sustainable than natural gas as a fuel for central heating boilers.	
		1	
		2	
			(2)
	Natu	ral gas is mainly methane.	` ,
		n methane burns it can produce both carbon monoxide and carbon dioxide.	
	(b)	Explain the process by which carbon monoxide can be produced when methane is burned.	
	(c)	Balance the equation for the combustion of methane to produce carbon monoxide.	(2)
		$\frac{-CH_4(g) + O_2(g) \rightarrow CO(g) +}{H_2O(I)}$	(1)
	(d)	Propane burns to form carbon dioxide and water.	. ,
		The equation for the reaction is:	

 $C_3H_8(g) + 5 \ O_2(g) \rightarrow 3 \ CO_2(g) + 4 \ H_2O(I)$

Q5.

	Calculate the vo	olume of unreacted oxygen.	
	Give your answ	ver in cm ³	
			-
			-
			-
			-
			-
			_
	Volume o	of unreacted oxygen = cm	1 ³
		(Total 9	ma
s	question is abou	it fuels.	
	question is abou ane (C ₈ H ₁₈) is a hy	ut fuels. ydrocarbon in petrol.	
ta	nne (C ₈ H ₁₈) is a hy	ydrocarbon in petrol. s down large hydrocarbon molecules into smaller	
	ane (C ₈ H ₁₈) is a hy Cracking breaks hydrocarbon mo	ydrocarbon in petrol. s down large hydrocarbon molecules into smaller	
ta	ane (C ₈ H ₁₈) is a hy Cracking breaks hydrocarbon mo	ydrocarbon in petrol. s down large hydrocarbon molecules into smaller olecules.	
ta	cracking breaks hydrocarbon mo Which hydrocar	ydrocarbon in petrol. s down large hydrocarbon molecules into smaller olecules.	
	Cracking breaks hydrocarbon mo Which hydrocar Tick one box.	ydrocarbon in petrol. s down large hydrocarbon molecules into smaller olecules.	
	Cracking breaks hydrocarbon mo Which hydrocar Tick one box.	ydrocarbon in petrol. s down large hydrocarbon molecules into smaller olecules.	
	Cracking breaks hydrocarbon mowen which hydrocar Tick one box. C ₄ H ₈ C ₄ H ₁₀	ydrocarbon in petrol. s down large hydrocarbon molecules into smaller olecules.	

(b) What type of carbon compound is octane, C_8H_{18} ?

ick one box.			
Alcohol			
Alkane			
Carboxylic acid			
Ester			
Dxygen is needed to	burn fuels.		
lame the source of	the oxygen need	led to burn fuels.	
	ur dioxide are po	ollutants produced when some	e fuels
Particulates and sulf burn. Draw one line from o			e fuels
burn. Draw one line from o		the polluting effect.	e fuels
burn. Draw one line from o		the polluting effect. Polluting effect	e fuels
burn. Draw one line from o Pollutant		the polluting effect Polluting effect Acid rain	e fuels
burn. Draw one line from o Pollutant		the polluting effect. Polluting effect Acid rain Global dimming	e fuels
Draw one line from Pollutant Particulates		Polluting effect Acid rain Global dimming Global warming	e fuels
burn. Draw one line from one line from on	each pollutant to	Polluting effect Acid rain Global dimming Global warming Landfill Sewage sludge	e fuels
burn. Draw one line from one line from on	each pollutant to	Polluting effect Acid rain Global dimming Global warming Landfill	e fuels
burn. Draw one line from the second of th	each pollutant to	Polluting effect Acid rain Global dimming Global warming Landfill Sewage sludge	e fuels

	Carbon dioxide		
	Carbon monoxide		
	Nitrogen		
	Oxygen		
			(2)
(f)	Vehicles produce most of	f the atmospheric pollution in cities.	
	How could the atmosphe	eric pollution in cities be reduced?	
	Tick two boxes.		
	Build more roads in citie	es	
	Build new car factories		
	Develop fuel efficient er	ngines	
	Make car tax cheaper		
	Use electric cars		
			(2)
			(Total 9 marks)

Q6.

This question is about hydrocarbons.

The table gives information about four hydrocarbons.

The hydrocarbons are four successive members of a homologous series.

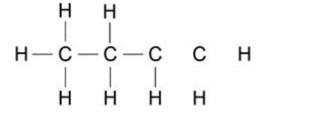
Hydrocarbon	Formula	Boiling point in °C
Α	C ₄ H ₁₀	0
В		36
С	C ₆ H ₁₄	69

D		C ₇ H ₁₆	98	
(a)	What is the form	ula of hydrocarbon B ?		
	Tick (√) one bo	х.		
	C ₄ H ₁₂			
	C ₅ H ₁₂			
	C ₅ H ₁₂			
	C ₆ H ₁₂			(4)
(b)	What is the simp hydrocarbon A ?	plest ratio of carbon : hy	ydrogen atoms in a m	(1) olecule of
	Ratio = 2 :			(4)
(c)	Which hydrocart	oon is a gas at room te	mperature (25 °C)?	(1)
	A B	5 6	D	(1)
(d)	Which hydrocarl	oon is most flammable	?	
	Tick (√) one bo	х.		
	А В	c	D	(1)
(e)	Which two subs	tances are produced w	hen a hydrocarbon c	
	Tick (✓) two box	ces.		
	Carbon			

	Carbon dioxide		
	Hydrogen		
	Sulfur dioxide		
	Water		
			(2)
The	diagram shows the di	splayed structure of a hydrocarbon molecule.	
		H H H H—C—C—C—H 	
(f)	What is the name of	f the hydrocarbon in the diagram above?	
	Tick (√) one box.		
	Butane		
	Ethane		
	Methane		
	Propane		
			(1)
(g)	Calculate the relativ above.	e formula mass ($M_{ m r}$) of the hydrocarbon in the diagram	
	Relative atomic mas	sses (A_r) : H = 1 C = 12	
		Relative formula mass $(M_r) = $	/e1
		(Total 9 m	(2) arks)

Q7.

This question is about alkenes and crude oil.

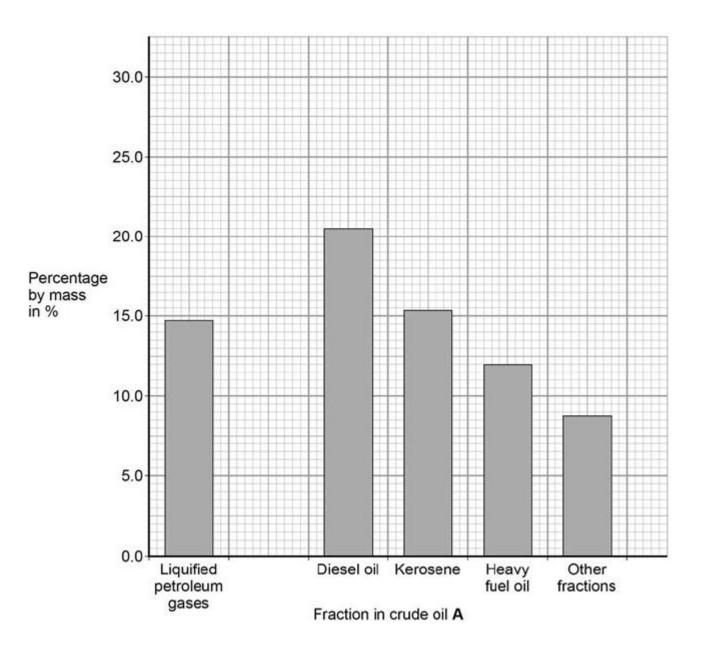

(a) Pentene is an alkene molecule containing five carbon atoms.

Complete the formula for pentene.

(b) Butene is an alkene molecule containing four carbon atoms.

The diagram shows all of the atoms and some of the bonds in the displayed formula for butene.

Complete the displayed formula by adding the remaining bonds.


(1)

Pentene and butene are produced from crude oil.

The table shows the percentages of different fractions in two samples of crude oil.

Fraction	Percentages by mass in %				
Fraction	Crude oil A	Crude oil B			
Liquefied petroleum gases	14.7	7.1			
Petrol	28.6	11.1			
Diesel oil	20.5	17.2			
Kerosene	15.4	38.5			
Heavy fuel oil	12.0	16.0			
Other fractions	8.8	10.1			

The graph shows the percentages of different fractions in crude oil **A**.

(c) Plot the data for petrol in the table above on the graph.

(1)

(d) What mass of crude oil **A** is needed to obtain 12 tonnes of heavy fuel oil?.

Use the table above.

10 tonnes

1000 tonnes

	10 000 tonnes
	(1
(e)	What mass of crude oil A is needed to obtain 12 tonnes of heavy fuel oil?.
	Calculate the total mass of car fuel that can be produced from 2000 kg of crude oil B .
	Use the table above.
(f)	Crude oil B is a better source of hydrocarbons for cracking than crude oil A .
	Suggest why.
	Use the table above.
(-)	(1
(g)	Alkenes are obtained from crude oil using fractional distillation followed by cracking.
	Explain how alkenes are produced using fractional distillation followed by cracking.
	(6) (Total 14 marks
Q8.	
Th	is question is about hydrocarbons.
(a)	The names and formulae of three hydrocarbons in the same homologous series are:
	Ethane C_2H_6 Propane C_3H_8 Butane C_4H_{10}

The next member in the series is pentane.

Which homologous series contains ethane, propane and butane?
Tick one box.
Alcohols
Alkanes
Alkenes
Carboxylic acids
Propane (C₃H₃) is used as a fuel.
Complete the equation for the complete combustion of propane.
C_3H_8 + $5O_2$ \rightarrow 3 + +
T
Octane (C ₈ H ₁₈) is a hydrocarbon found in petrol.
Explain why octane is a hydrocarbon.

Fuel	Relative	ollutants		
	Oxides of Nitrogen	Particulate matter	Carbon dioxide	
Diesel	31	100	85	
Petrol	23	0	100	

Compare the pollutants from cars using diesel with those from cars using petrol.

(3)

(f) Pollutants cause environmental impacts.

Draw **one** line from each pollutant to the environmental impact caused by the pollutant.

Pollutant	Environmental impact caused by the pollutant
	Acid rain
Oxides of nitrogen	Flooding
	Global dimming
Particulate matter	Global warming
	Photosynthesis
	(2) (Total 11 marks)

Q9.

This question is about organic compounds.

Hydrocarbons can be cracked to produce smaller molecules.

The equation shows the reaction for a hydrocarbon, C₁₈H₃₈

$$C_{18}H_{38} \quad \to \quad C_6H_{14} \quad + \quad C_4H_8 \quad + \quad 2 \; C_3H_6 \quad + \quad C_2H_4$$

(a) Which product of the reaction shown is an alkane?

(b)

(c)

Tick one box	,							
C ₂ H ₄								
C₃H ₆				Ī		j		
0.11]		
C₄H ₈				L]		
C ₆ H ₁₄								
						_		(1)
The table belocated C ₁₈ H ₃₈ compa								
	Boilir	ng point	Flan	nmability	,	Viscosity		
Α	hiç	ghest	I	owest		highest		
В	hiç	ghest	I	owest		lowest		
С	lo	west	h	ighest		highest		
D	lo	west	h	ighest		lowest		
Which letter, with the proper	erties of (es of C ₁₈ H ₃₈ c	ompare	
A								
В								
С								
D								
That			1 .	.•				(1)
The hydrocar				air.				
Incomplete co	ombustio	n occurre	ed.					
Which equation re		C or D , o	correc	tly represe	ents	the incomple	te	
A (C ₄ H ₈ +	40	\rightarrow	4CO	+	4H ₂		
В (C ₄ H ₈ +	402	\rightarrow	4CO	+	4H ₂ O		

	С	C_4H_8	+	6O ₂	\rightarrow	4CO ₂	+	$4H_2O$			
	D	C_4H_8	+	80	\rightarrow	4CO ₂	+	4H ₂			
	Tick one b	ox.									
	Α										
	В										
	С										
	D										
											(1)
(d)	Propanoic a	acid is a	carb	oxylic	acid.						
	Which struc	ture, A,	B, C	or D ,	shows	propanc	ic ac	id?			
Α		В				С				D	
H-C=0 0-H	H—C	-c= o-	О	H-	H — C —	H O-	=0 -H	н—	H - C - H	H H H	-C=O
	Tick one b	ox.									
	Α										
	В										
	С										
	D										
(e)	Propanoic a	acid is fo	rme	d by the	e oxid	ation of v	vhich	organic	comp	ound?	(1)
	Tick one b	ox.									
	Propane										
	Propene										

Propanol	
Polyester	
	(1)
	(Total 5 marks)

Q10.

This question is about hydrocarbons.

- (a) Most of the hydrocarbons in crude oil are alkanes.
 - (i) Large alkane molecules can be cracked to produce more useful molecules.

The equation shows the cracking of dodecane.

$$C_{12}H_{26} \longrightarrow C_4H_{10} + C_6H_{12} + C_2H_4$$

dodecane butane hexene ethene

Give **two** conditions used to crack large alkane molecules.

1.				
2				

(2)

(ii) The products hexene and ethene are alkenes.

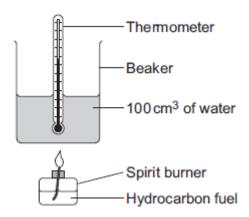
Complete the sentence.

When alkenes react with bromine water the colour changes

from orange to _____

(1)

(iii) Butane (C₄H₁₀) is an alkane.


Complete the displayed structure of butane.

(1)

(b) A group of students investigated the energy released by the combustion of four hydrocarbon fuels.

The diagram below shows the apparatus used.

Each hydrocarbon fuel was burned for two minutes.

Table 1 shows the students' results.

Table 1

	After two minutes				
Name and formula of hydrocarbon fuel	Mass of fuel used in g	Temperature increase of water in °C	Energy released by fuel in kJ	Energy released by 1.0 g of fuel in kJ	Relative amount of smoke in the flame
Hexane, C ₆ H ₁₄	0.81	40	16.80	20.74	very little smoke
Octane, C ₈ H ₁₈	1.10	54	22.68	20.62	some smoke
Decane, C ₁₀ H ₂₂	1.20	58	24.36		smoky
Dodecane, C ₁₂ H ₂₆	1.41	67	28.14	19.96	very smoky

	Energy released =	kJ
appara	est one improvement to the apparatus, or tatus, that would make the temperature incured uel more accurate.	
0:	reason why this is an improvement.	

The students noticed that the bottom of the beaker became covered in a black substance when burning these fuels.				
Name this black substance.				
Suggest why it is produced.				
A student concluded that hexane is the best of the four fuels.				
Give two reasons why the results in Table 2 support this conclusion.				
1				
2				

(c) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Most car engines use petrol as a fuel.

- Petrol is produced from the fractional distillation of crude oil.
- Crude oil is a mixture of hydrocarbons.
- Sulfur is an impurity in crude oil.

Car engines could be developed to burn hydrogen as a fuel.

- Hydrogen is produced from natural gas.
- Natural gas is mainly methane.

Table 2 shows information about petrol and hydrogen.

Table 2

Petrol	Hydrogen
--------	----------

State of fuel at room temperature	Liquid	Gas	
Word equation for combustion of the fuel	petrol + oxygen → carbon dioxide + water	hydrogen + oxygen → water	
Energy released from combustion of 1 g of the fuel	47 kJ	142 kJ	

Describe the **advantages** and **disadvantages** of using hydrogen instead of petrol in car engines.

Use the information given and your knowledge and understanding to answer this question.

(6)

(Total 18 marks)