1

Mark schemes

Q1.		
(a)	fuel	1
(b)	propene	1
(c)	$\frac{380}{400} \times 100$	
	= 95 (%)	1
(d)	some ethanol changes back into ethene and steam	1
	some ethanol escapes from the apparatus	1
(e)	$C_{2}H_{5}OH + 3 O_{2} \rightarrow$ $3 H_{2}O + 2 CO_{2}$ <i>allow multiples</i>	1
(f)	(advantages)	
	(fermentation) low energy usage	1
	(fermentation) uses renewable raw materials	1
	(disadvantages)	
	(fermentation) produces impure ethanol	1
	(fermentation) slow rate of reaction	1 [11]
Q2. (a)	(test) (add) bromine (water)	1
	(result) (changes from) brown / orange to colourless	

(b) C_nH_{2n-2} 1 (C) Cl Cl allow 1 mark for the structure of 1, 1-dichlorocyclohexane or 1, 3-dichlorocyclohexane or 1, 4-dichlorocyclohexane 2 (d) $(M_r (C_6 H_{10} C I_2) =) 153$ 1 (% chlorine=) $\frac{71}{153} \times 100$ allow correct use of an incorrectly calculated value of M_r 1 = 46.4 (%)allow 46.405228758 (%) correctly rounded to at least 2 significant figures 1 [8] Q3. (a) (steam / catalytic) cracking allow thermal decomposition 1 (b) high temperature 1 steam / catalyst allow a temperature in the range 300 -900 °C 1 Level 3: Relevant points (reasons/causes) are identified, given in (c) detail and logically linked to form a clear account. 5-6 Level 2: Relevant points (reasons/causes) are identified, and there are attempts at logical linking. The resulting account is not fully clear. 3-4

Level 1: Points are identified and stated simply, but their relevance is not clear and there is no attempt at logical linking.

1-2

No relevant content

0

1

1

1

1

Indicative content

Rate

- higher temperature gives higher rate
- because more frequent collisions
- higher pressure gives higher rate
- because more frequent collisions
- a catalyst can be used to give a higher rate
- because the activation energy is reduced

Yield

- higher temperature gives lower yield
- because the reaction is exothermic
- higher pressure gives higher yield
- because there are more molecules on left hand side

Other factors

- higher temperatures use more energy so costs increase
- higher pressures use more energy so costs increase
- higher pressures require stronger reaction vessels so costs
 increase

Compromise

- chosen temperature is a compromise between rate and yield
- chosen temperature is a compromise between rate and cost (of energy used)
- chosen pressure is a compromise between rate and cost (of energy used)
- chosen pressure is a compromise between yield and cost (of energy used)
- (d) fermentation

allow ferment(ing)

(e) warm

allow a value in the range 25 $^\circ C$ to 45 $^\circ C$

anaerobic (conditions) allow without oxygen / air

(f) (conversion) 200 km = 200,000 m

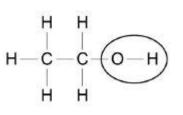
Page 4 of 12

$$(moles =) \frac{(moles =)}{200000 \times 1.95 (mol)}{1300}$$

allow correct use of incorrect / no
conversion for distance
1
= 300 (mol)
1
(g) C₄H₉OH + 6O₂ \rightarrow 4CO₂ + 5H₂O
allow C₄H₁₀O for C₄H₉OH
allow multiples
allow 1 mark for
C₄H₉OH + O₂ \rightarrow CO₂ + H₂O
with incorrect / no multipliers
ignore state symbols
2

[17]

1


1 1 1

1

1

Q4.

(a)

(b)

Name of element	Symbol for element	Number of atoms in one molecule of ethanol	
carbon	С	2	
hydrogen	н	6	
oxygen	0	1	

ignore O2

(c) a solvent

(d) sugar

allow named sugar allow saccharide

(e)	yeast	1
(f)	ethyl ethanoate	1
(g)	water ignore H ₂ O	1
(h)	400 cm ³ = 0.40 dm ³	1
	1.00 0.40 × 20 allow correct use of incorrectly converted or unconverted volume	1
	= 50 (g)	1
	alternative approach:	1
	$1.0 \text{ dm}^3 = 1000 \text{ cm}^3 (1)$	
	<pre>1000 400 × 20 (1) allow correct use of incorrectly converted or unconverted volume = 50 (g) (1)</pre>	
Q5. (a)	C ₆ H ₈ Hexane C ₆ H ₁₀ C ₆ H ₁₂	

1

[12]

additional line from a box on the left negates the mark for that box

C₆H₁₄

C₆H₁₆

1

(b) (remains) orange

Hexene

must be in this order

(c)

[10]

	allow no (colour) change	1
(bec	omes) colourless ignore initial colour ignore clear	1
whic	1 2: Scientifically relevant features are identified; the way(s) in h they are similar/different is made clear and (where appropriate) nagnitude of the similarity/difference is noted.	4–6
Leve	I: Relevant features are identified and differences noted.	1-3
No r	elevant content	0
Indic	cative content	
Stru	cture and bonding	
• • •	both are hydrocarbons both contain two carbon atoms (per molecule) ethane contains six hydrogen atoms (per molecule) (but) ethene contains four hydrogen atoms (per molecule)	
• • •	both have covalent bonds ethane contains a single C—C bond (but) ethene contains a double bond both contain C—H bonds	
•	both small molecules	
Read	ctions	
• • •	both react with oxygen in complete combustion reactions to produce water and carbon dioxide both react with oxygen in incomplete combustion reactions to produce water, carbon monoxide and carbon incomplete combustion is more likely with ethene	
•	ethene decolourises bromine water (but) ethane does not decolourise bromine water	
• • •	ethene is more reactive (than ethane) ethene can react with hydrogen (to produce ethane) ethene can react with water (to produce ethanol) ethene can react with halogens (to produce halogenoalkanes) ethene can undergo addition reactions ethene can polymerise (to produce poly(ethene)) ignore physical properties ignore references to flammability	

[12]

Q6.		
(a)	HCOOH allow HCO ₂ H	1
	propanoic acid	1
(b)	incomplete / partial ionisation allow incomplete / partial dissociation	1
	(because) reaction is reversible allow (because) reaction is in equilibrium	1
(c)	mass (of flask and contents) decreases	1
	(because) carbon dioxide is produced	1
	(and) carbon dioxide escapes (from the flask) allow 1 mark for the gas produced escapes (from the flask)	1
(d)	(0.01 mol/dm ³) methanoic acid has a lower pH allow converse argument for ethanoic acid allow (0.01 mol/dm ³) methanoic acid is a stronger acid	1
	(so 0.01 mol/dm ³) methanoic acid has a higher concentration of hydrogen ions	1
	(therefore) more collisions per unit time	1
(e)	ethyl ethanoate	1
(f)		1

Q7.

(a) formulation

(b)
$$\frac{23.3}{265.5+23.3+3.0+1.5} (\times 100)$$

$$allow \frac{23.3}{293.3} (\times 100)$$

$$= 7.9 (\%)$$

$$allow 7.944084555 (\%) rounded$$

$$correctly$$

$$an answer of 7.9 (\%) scores 2 marks$$
(c) to deter consumption / drinking (by people)
(d) any one from:
$$\cdot \quad fuel$$

$$\cdot \quad solvent$$

$$\cdot \quad antiseptic$$

$$allow specific uses e.g.$$

$$\cdot \quad fuel additive$$

$$\cdot \quad cleaning products$$

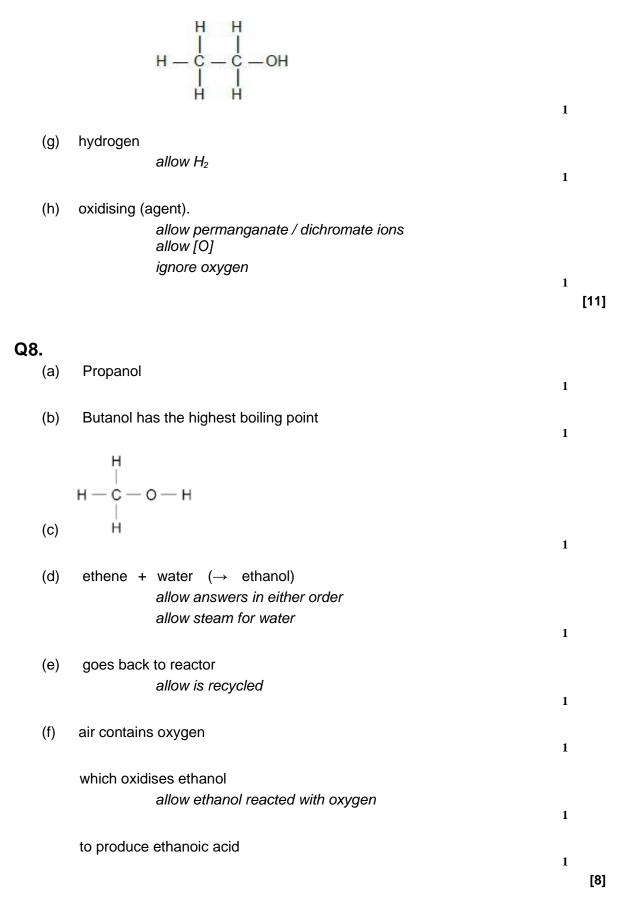
$$\cdot \quad hand-sanitisers$$

$$do not accept as an alcoholic drink
(e) ferment(ation)
$$ignore distillation$$

$$add yeast$$

$$anaerobic (conditions)
$$allow in the absence of oxygen$$

$$or warm$$


$$allow a temperature value in range 5 - 45°C inclusive allow room temperature ignore high temperature
$$ignore high temperature$$

$$1$$

$$H - C - C - O - H$$

$$(f) H + H$$$$$$$$

allow

(a)	(i)	fizz / effervescence / bubbles allow calcium carbonate decreases in size or dissolves	1
		because carbon dioxide produced / released allow because gas produced / released	1
		limewater turns cloudy / milky / white	1
		because (a precipitate of or solid) calcium carbonate forms allow because of carbon dioxide if not already credited	1
		H - C = O	
	(ii)	H O—H allow -OH do not allow lower case 'h'	1
	(iii)	acid must be in this order ignore any name of an acid	1
		ester(s)	1
(b)	whit	e (precipitate) no change	
	no c	change no change	
		all four correct 2 marks any two correct 1 mark	2
(c)	(i)	lilac allow purple	1
		red	1
		must be in this order	
	(ii)	colours are masked / changed by each flame colour	1

Q10.			
(a)	C ₆ H ₁₄	1	
(b)	Α	1	
(c)	В	1	
(d)	C	1	
(e)	Propanol	1	
			[5]