Q1		question is about organic compounds.		
	(a)	Butane is an alkane with small molecules.		
		Complete the sentence.		
		Choose the answer from the box.		
		fertiliser formulation fuel		
		Butane can be used as a	(1)	
	(b)	Poly(propene) is a polymer.	, ,	
		What is the name of the monomer used to produce poly(propene)?		
		Tick (✓) one box.		
		Propane		
		Propanoic acid		
		Propanol		
		Propene		
			(1)	
	Ethe	ne and steam react to produce ethanol.		
	The 6	equation for the reversible reaction is:		
		ethene + steam		
	(c)	The reaction produces a maximum theoretical mass of 400 kg of ethanol from 243 kg of ethene and 157 kg of steam.		
		A company produces 380 kg of ethanol from 243 kg of ethene and 157 kg of steam.		
	The percentage yield of ethanol is less than 100%			
		Calculate the percentage yield of ethanol.		
		Use the equation:		

ercentage yield of ethanol = ma	mass of ethanol actually made × 100 aximum theoretical mass of ethanol
	Percentage yield = %
What are two possible reasor than 100%?	ns why the percentage yield of ethanol is less
Tick (✓) two boxes.	
Ethanol is the only product of reaction.	f the
Ethanol is very unreactive.	
Some ethanol changes back ethene and steam.	into
Some ethanol escapes from apparatus.	the
Some ethanol reacts with ste	eam.
Ethanol burns in oxygen.	
Balance the equation for the r	reaction.
C ₂ H ₅ OH +	$O_2 \rightarrow 3 H_2 O + 2 CO_2$
Two processes for producing	ethanol are:

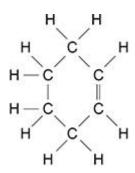
- - fermentation
 - hydration (reacting ethene with steam).

The table below shows information about the processes.

Footure	Process		
Feature	Fermentation	Hydration	
Raw material	sugar	crude oil	
Energy usage	low	high	

Q2.

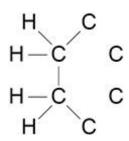
Rate of reaction	slow	fast
Purity of ethanol	15%	98%


	Name	Formula				
(b)	The table below	shows the name and	formula of three cycloalkene	(2) es.		
	Result					
	Test					
	Give the result	of the test.				
(a)	Describe a test molecules.	for the double carbon-	-carbon bond in cycloalkene			
Cycl	oalkenes react in	a similar way to alker	nes.			
	oalkenes are rinç on-carbon bond.	g-shaped hydrocarbon	molecules containing a doul	ble		
. This	question is abou	t cycloalkenes.				
				(4) (Total 11 marks)		
	Disadvantage o	of fermentation 1				
	Advantage of fermentation 2					
	Advantage of fermentation 1					
	on to					
	ethanol	15%	98%			

Cyclobutene	C ₄ H ₆	
Cyclopentene	C₅H ₈	
Cyclohexene	C ₆ H ₁₀	

Determine the general formula for cycloalkenes.

Figure 1 shows the displayed structural formula of cyclohexene, C₆H₁₀


Figure 1

Chlorine reacts with cyclohexene to produce a compound with the formula $C_6H_{10}Cl_2$

(c) Complete Figure 2 to show the displayed structural formula of C₆H₁₀Cl₂

Figure 2

(2)

(d) Calculate the percentage by mass of chlorine in a molecule of $C_6H_{10}Cl_2$ Relative atomic masses (A_r): H = 1 C = 12 Cl = 35.5

	Percentage by mass =
	(Total
•	
This	question is about alkenes and alcohols.
Ethe	ne is an alkene produced from large hydrocarbon molecules.
	e hydrocarbon molecules are obtained from crude oil by fractional ation.
(a)	Name the process used to produce ethene from large hydrocarbon molecules.
(b)	Describe the conditions used to produce ethene from large hydrocarbon molecules.
(c)	Ethanol can be produced from ethene and steam.
	The equation for the reaction is:
	$C_2H_4(g) + H_2O(g) \rightleftharpoons C_2H_5OH(g)$
	The forward reaction is exothermic.
	Explain how the conditions for this reaction should be chosen to produce ethanol as economically as possible.

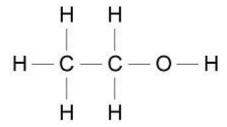
Ethanol can also be p Name this process.	produced from sugar solution by adding yeast.
Butanol can be produ	ced from sugar solution by adding bacteria.
Sugar solution is brok	ken down in similar ways by bacteria and by yeast.
Suggest the reaction solution by adding ba	conditions needed to produce butanol from sugar cteria.
ol and butanol can be	e used as fuels for cars.
	e used as fuels for cars. ge of 1.95 kJ of energy to travel 1 m
A car needs an avera	
A car needs an avera Ethanol has an energ Calculate the number	ge of 1.95 kJ of energy to travel 1 m
A car needs an avera Ethanol has an energ Calculate the number	ge of 1.95 kJ of energy to travel 1 m y content of 1300 kilojoules per mole (kJ/mol).
A car needs an avera Ethanol has an energ	ge of 1.95 kJ of energy to travel 1 m y content of 1300 kilojoules per mole (kJ/mol).
A car needs an avera Ethanol has an energ Calculate the number	ge of 1.95 kJ of energy to travel 1 m ly content of 1300 kilojoules per mole (kJ/mol).
A car needs an avera Ethanol has an energ Calculate the number	ge of 1.95 kJ of energy to travel 1 m y content of 1300 kilojoules per mole (kJ/mol).

(g) When butanol is burned in a car engine, complete combustion takes place.

Write a balanced equation for the complete combustion of butanol.

You do **not** need to include state symbols.

(2)


(Total 17 marks)

Q4.

This question is about ethanol and ethanoic acid.

Ethanol is an alcohol.

(a) The diagram below shows the displayed structural formula of ethanol.

Draw a circle on the diagram above around the alcohol functional group.

(1)

(b) An ethanol molecule contains atoms of three different elements.

Complete the table below to show:

- the name of each element
- the symbol for each element
- the number of atoms of each element in one molecule of ethanol.

Use the diagram above.

Name of element	Symbol for element	Number of atoms in one molecule of ethanol
Carbon	С	
Hydrogen		6
	0	1

(3)

(c) Ethanol removes grass stains from clothes.

What type of substance is ethanol when used to remove grass stains?

	Tick (✓) one box.	
	A solute	
	A solution	
	A solvent	
	Wine contains ethanol.	
	Wine is produced from grape juice by fermentation.	(1)
(d)	Complete the sentence.	()
	Grape juice can be fermented to produce wine because	
	grape juice contains	(4)
(e)	What is added to grape juice to cause fermentation?	(1)
(f)	Ethanol reacts with ethanoic acid to produce an ester. What is the name of the ester produced when ethanol reacts with ethanoic acid?	(1)
	Tick (✓) one box.	
	Ethane	
	Ethene	
	Ethyl ethanoate	
		(1)
(g)	Ethanoic acid reacts with sodium carbonate.	
	The equation for the reaction is:	
	2 CH ₃ COOH(aq) + Na ₂ CO ₃ (s) \rightarrow 2 CH ₃ COONa(aq) + H ₂ O(l) + CO ₂ (g)	
	What is the name of the liquid produced by this reaction?	

h)	Vinegar is a solution that contains ethanoic acid.	
	400 cm ³ of vinegar contains 20 g of ethanoic acid.	
	Calculate the mass of ethanoic acid in 1.0 dm³ of vinegar.	
	Mass =	9
	(Total 12	mar

Q5.

This question is about hydrocarbons.

Hexane and hexene are hydrocarbons containing six carbon atoms in each molecule.

Hexane is an alkane and hexene is an alkene.

(a) Draw **one** line from each hydrocarbon to the formula of that hydrocarbon.

Hydrocarbon	Formula	
	C ₆ H ₈	
Hexane	C ₆ H ₁₀	
	C ₆ H ₁₂	
Hexene	C ₆ H ₁₄	
	C ₆ H ₁₆	
		(2)

(b) Bromine water is added to hexane and to hexene.

TIEXAITE			
Hexene			
Ethane is an a	lkane and ethene is an a	alkene.	
The diagram bof ethene.	pelow shows the displaye	ed structural formulae of et	hane and
	H H 	H H	
	Ethane	Ethene	
Compare etha	ne with ethene.		
You should re their stru their rea	ucture and bonding		

(Total 10 marks)

Q6.

This question is about carboxylic acids.

Carboxylic acids belong to a homologous series.

The table below shows information about the first three carboxylic acids in this homologous series.

Name Formula		pH of a 0.01 mol/dm³ solution	
Methanoic acid		2.91	
Ethanoic acid	CH₃COOH	3.39	
	CH₃CH₂COOH	3.44	

Methanoic acid		2.91
Ethanoic acid	CH₃COOH	3.39
	CH₃CH₂COOH	3.44
(a) Complete the	e table above.	

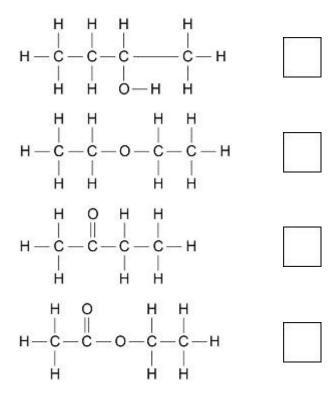
(2)

(b) Ethanoic acid ionises in water.

The equation for the reaction is:

$$CH_3COOH(aq) \rightleftharpoons CH_3COO^-(aq) + H^+(aq)$$

Explain how the equation shows that ethanoic acid is a weak acid.


(2)

A student adds a solution of ethanoic acid to zinc carbonate in an open (c) flask on a balance.

Explain what happens to the mass	of the flask ar	nd its contents	during the
reaction.			

)	The student compares the rates of the reaction of zinc carbonate with: 0.01 mol/dm³ methanoic acid 0.01 mol/dm³ ethanoic acid.					
	The rate of the reaction with methanoic acid is greater than the rate of the reaction with ethanoic acid. Explain why.					
	You should refer to ions in your answer.					
	Use the table above.					
ha	anoic acid reacts with ethanol to produce an ester.					
)	Give the name of the ester produced when ethanoic acid reacts with ethanol.					
	Hexanedioic acid and ethanediol join together to produce a polyester.					
	Ethanoic acid and ethanol join together in the same way to produce an ester.					
	Which is the displayed structural formula of the ester produced when ethanoic acid reacts with ethanol?					
	Tick (✓) one box.					

(1) (Total 12 marks)

Q7.

Methylated spirit is a useful product made from a mixture of substances.

The table below shows the mass of the substances in a sample of methylated spirit.

Substance	Mass in grams
Ethanol	265.5
Methanol	23.3
Pyridine	3.0
Methyl violet	1.5

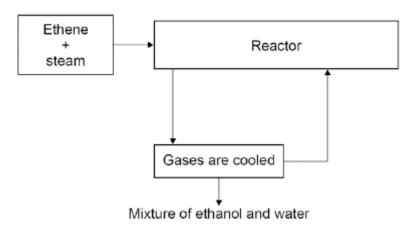
(b)	Calculate the percentage by mass of methanol in methylated spirit.	(•)
	Use the table above.	

	Percentage =
	ylated spirit contains ethanol and is available cheaply.
1	ylated spirit also contains:
	pyridine which has a very unpleasant smell
	methyl violet which makes the mixture purple.
	Suggest why pyridine and methyl violet are added to ethanol to make methylated spirit.
	Suggest one use of methylated spirit.
	Describe how ethanol is produced from sugar solution.
	Give the name of this process.
	The diagram below shows part of the displayed formula for ethanol.
	Complete the diagram.
	L
	7
	$H - \overset{\mid}{C} - C$
	H-11.


(g)	Name the ga	as produced when sodium is a	dded to ethanol.	
(h)	Methanol is	used to produce methanoic ac	id.	
What type of		f substance reacts with metha	nol to produce meth	anoic acid?
				(Total 11 mar
The		ives information about four alc		
	Alcohol	Formula	Melting point in °C	Boiling poin in °C
Met	hanol	CH₃OH	-94	65
Eth	anol	CH₃CH₂OH	-118	78
Pro	panol CH ₃ CH ₂ CH ₂ OH	CH ₃ CH ₂ CH ₂ OH	-129	97
Butanol		anol CH ₃ CH ₂ CH ₂ CH ₂ OH -8	-89	118
(a) (b)		nol in the table is liquid over the ment is correct?	e greatest temperatu	re range?
	Tick one bo	DX.		
	A molecule atoms	of ethanol has 5 hydrogen		
	atoms	of ethanol has 5 hydrogen s the highest boiling point		
	atoms Butanol has			

(c) A molecule of methanol has five single covalent bonds.

Draw the missing bonds in Figure 1 to complete the displayed formula for


(1)

methanol.

(d) Figure 2 shows a flow diagram of the process to produce ethanol.

Figure 2

Complete the word equation for the reaction to produce ethanol.

 +	 \rightarrow	ethanol	
			(1)

(e) What happens to the unreacted ethene?

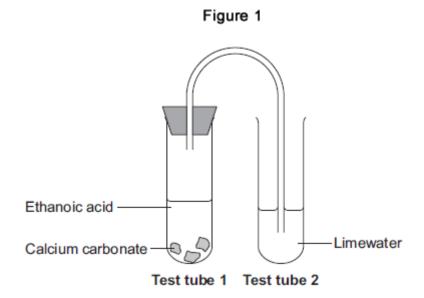
		(1)

(f) Wine contains ethanol.

A bottle of wine was left open in air.

After a few days, the wine tasted of vinegar.

Vinegar is a solution of ethanoic acid in water.


Explain how oxidation causes the wine to taste of vinegar after a few day	S.
	_
	_
	_

(:	3)
() (Total 8 marks)	, -\
i lotal x marks	S 1

Q9.

This question is about reactions of ethanoic acid and the analysis of salts.

(a) **Figure 1** shows the apparatus used to investigate the reaction of ethanoic acid with calcium carbonate.

(i) Describe a change that would be seen in each test tube.

Give a reason for each change.

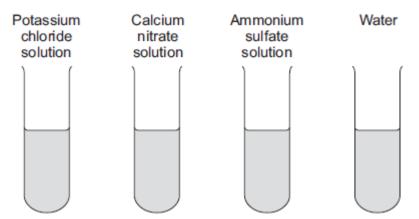
Test tube 1	 	
Test tube 2		

(4)

(ii) Complete the displayed structure of ethanoic acid.

(1)

(iii) Ethanoic acid is a carboxylic acid. Complete the sentence.


Carboxylic acids react with alcohols in the presence of an

	catalyst to produce pleasant-smelling compounds
called	

(2)

(b) **Figure 2** shows four test tubes containing three different salt solutions and water.

Figure 2

Each solution and the water was tested with:

- silver nitrate in the presence of dilute nitric acid
- barium chloride in the presence of dilute hydrochloric acid.

Complete the table of results.

	Potassium chloride solution	Calcium nitrate solution	Ammonium sulfate solution	Water
Test with silver nitrate in the			no change	no change

			ence of e nitric acid				
		in the	ım chloride e presence		no change	white precipitate	
(c) F	Flame	a tasts can ha	used to identify me	atal ions		(2)
(following sentence			
	`	-	•	lour for potassium		·	
			The flame co	lour for calcium ion	s is	·	
	(son why a flame te ım ions and calciun			(2) e of
Q10		uestic	on is about or	ganic compounds.		(Tot	(1) al 12 marks)
				cked to produce sr	maller molecules	S.	
٦	Γhe ec	quatio	on shows the	reaction for a hydro	ocarbon, C ₁₈ H ₃₈		
(C ₁₈ H ₃₈	\longrightarrow	→ C ₆ H ₁₄ +	C ₄ H ₈ + 2 C ₃ H ₆	+ C ₂ H ₄		
(a) \	Nhich	n product of th	ne reaction shown i	s an alkane?		
		Tick (one box.				
		C ₂ H ₄					
		C₃H ₆					
		C ₄ H ₈					

C ₆ H ₁₄	
	(1)

(b) The table below shows the boiling point, flammability and viscosity of $C_{18}H_{38}$ compared with the other hydrocarbons shown in the equation.

	Boiling point	Flammability	Viscosity
Α	highest	lowest	highest
В	highest	lowest	lowest
С	lowest	highest	highest
D	lowest	highest	lowest

Which letter, **A**, **B**, **C** or **D**, shows how the properties of $C_{18}H_{38}$ compare with the properties of C_2H_4 , C_3H_6 , C_4H_8 and C_6H_{14} ?

Tick one box.

A	
В	
С	
D	

(1)

(c) The hydrocarbon C₄H₈ was burnt in air.

Incomplete combustion occurred.

Which equation, **A**, **B**, **C** or **D**, correctly represents the incomplete combustion reaction?

Tick one box.

Α

	В					
	С					
	D					(1)
(d)	Propanoic acid is a carbo	xylic acid.				(1)
	Which structure, A, B, C	or D , shows	s propanoic a	cid?		
Α	В		С		D	
о—н н—с=о	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H — C — H	H -C-C=0 H O-H	H — C - H	H H	-с=о 0—н
	Tick one box.					
	Α					
	В					
	С					
	D					
						(1)
(e)	Propanoic acid is formed	by the oxid	ation of whicl	h organic com	pound?	
	Tick one box.					
	Propane					
	Propene					
	Propanol					
	Polyester					
					(Total 5	(1) marks)