M1.(a) water level above the start line and start line drawn in ink
allow water level too high
water level
food colours would dissolve into water
or
start line
the ink would 'run' on the paper
(b) (distance moved by A) 2.8 cm and 8.2 cm (distance moved by solvent) allow values in range $2.7-2.9 \mathrm{~cm}$ and $8.1-8.3 \mathrm{~cm}$
0.34
allow 0.33 or 0.35
allow ecf from incorrect measurement to final answer for $\mathbf{2}$ marks if given to 2 significant figures accept 0.34 without working shown for 3 marks
(c) 6.6 cm
allow values between 6.48 and 6.64 cm
(d) solvent moves through paper
different dyes have different solubilities in solvent
and different attractions for the paper
and so are carried different distances
(e) calcium ions
allow Ca^{2+}
sodium ions
allow Na^{+}
(f) two different colours
or
Ca^{2+} / one is orange-red and Na^{+}/ the other is yellow allow brick red for Ca^{2+} and / or orange for Na^{+} allow incorrect colours if consistent with answer to 7.5
(so) colours mix
or
(so) one colour masks the other
(g) (Student A was incorrect)
because sodium compounds are white not green
or
because sodium carbonate is soluble
so can't contain sodium ions
(Student B was incorrect)
because adding acid to carbonate produces carbon dioxide
so must contain carbonate not chloride ions

M2.(a) $\quad X:$

$\mathrm{Fe}^{2+} /$ iron(II), $\mathrm{SO}_{4}^{2-} /$ sulfate

allow iron(II) sulfate or FeSO_{4}

Y:
Na^{+}/ sodium, $\mathrm{I}^{-} /$iodide
allow sodium iodide or Nal

Z:
Fe^{3+} / iron(III), $\mathrm{Br} /$ bromide
allow iron(III) bromide
or FeBr_{3}
correct identification of any two ions = one mark correct identification of any four ions = two marks
(b) any five from:
allow converse arguments
method 1

- weighing is accurate
- not all barium sulfate may be precipitated
- precipitate may be lost
- precipitate may not be dry
- takes longer
- requires energy
allow not all the barium hydroxide has reacted
method 2
- accurate
- works for low concentrations
allow reliable / precise

M3.(a) (i) ionic (bonding)
(ii) ions cannot move in solid or are in fixed positions do not accept electrons / atoms / molecules ignore particles must mention ions
but can move in solution
(b) silver chloride formed
which is insoluble
(c) (i) aluminium
calcium
accept other metal ions that also give white precipitates (such as lead and zinc)
(ii) add excess sodium hydroxide solution
the second mark of each pair is dependent on the first mark being awarded.

precipitate remains

carry out a flame test
not red / orange
accept any colour that is not orange / red
give full credit for answers that correctly eliminate other cations in
(c)(i) that would give white precipitates with a few drops of NaOH

M4.Marks awarded for this answer will be determined by the Quality of Communication (QC) as well as the standard of the scientific response. Examiners should also apply a 'best-fit' approach to the marking.

0 marks

No relevant content

Level 1 ($\mathbf{1} \mathbf{- 2}$ marks)

Any description of a method used and / or a result given

Level 2 (3-4 marks)

Description of workable methods used, with results to identify positive or negative ions

Level 3 (5-6 marks)

Description of methods used to identify both positive and negative ions, with relevant results

examples of the points made in the response
 extra information

Test: add (platinum / nichrome) wire (for the flame test)
accept any method of introducing the solution into the flame, eg a splint soaked in the solution or sprayed from a bottle

Result: the sodium compounds result in a yellow / orange / gold flame or the potassium compound results in a lilac / purple / mauve flame
student could state that potassium carbonate gives a different colour to the three sodium compounds as long as it is clear that the flame test colour comes from Na^{+}or K^{+}

Test: add dilute nitric acid to all four solutions
allow any acid
Result: sodium carbonate and potassium carbonate will effervesce or sodium chloride and sodium iodide will not effervesce

Test: add dilute nitric acid followed by silver nitrate
Result: sodium chloride and sodium iodide produce a precipitate or sodium chloride produces a white precipitate and sodium iodide produces a yellow precipitate
accept sodium carbonate and potassium carbonate do not produce a precipitate

M5.(a) lithium
allow Li+ / Li
yellow
allow orange
(b) silver nitrate (solution)
incorrect test $=\mathbf{0}$ marks
ignore (nitric) acid
do not allow other named acids
white precipitate
(c) blue precipitate (with sodium hydroxide) indicates copper ions allow Cu^{2+}
and white precipitate (with barium chloride) indicates sulfate ions
allow SO_{4}^{2-}
accept compound X is copper sulfate / CuSO_{4} for 1 mark
but iron(II) ions produce a green precipitate (with sodium hydroxide)

M6.(a) (i) $\mathrm{Na}_{2} \mathrm{CO}_{3}: \mathrm{HCl} \rightarrow$ gas / effervescence / bubbles (1) CO_{2} / carbon dioxide / turns lime water milky (1)
$\mathrm{NaCl}: \mathrm{AgNO}_{3} \rightarrow$ white ppt (1) silver chloride (1)
$\mathrm{NaNO}_{3}: \mathrm{Al}+\mathrm{NaOH} \rightarrow$ pungent / sharp smell / choking gas
NH_{3} / ammonia / turns (red) litmus blue(1)
$\mathrm{Na}_{2} \mathrm{SO}_{4}: \mathrm{BaCl}_{2} \rightarrow$ white ppt (1) barium sulfate (1) each correct test and one result = 1 mark one other result for any test = 1 mark this mark can only be awarded once
(ii) all would give a yellow / yellow-orange (flame) / same coloured (flame) / same results allow orange (flame) 1
or
they all contain sodium
(b) any two from:
ignore cost/errors

- fast / quick or comment about speed allow precise
- small amounts/sensitive allow can be left to run/continuous analysis
- accurate
- ease of automation
accept operators do not need chemical skills
- \quad sample not used up
- reliable / efficient

