Q1. A student investigated food dyes using paper chromatography. This is the method used. - 1. Put a spot of food colouring **X** on the start line. - 2. Put spots of four separate dyes, **A**, **B**, **C** and **D**, on the start line. - 3. Place the bottom of the paper in water and leave it for several minutes. **Figure 1** shows the apparatus the student used. | (a) | Write down two mistakes the student made in setting up the experiment and explain what problems one of the mistakes would cause. | | |-----|---|-----| | | | | | | | | | | | | | | | (2) | (b) Another student set up the apparatus correctly. **Figure 2** shows the student's results. The result for dye **D** is not shown. Figure 2 Calculate the R_f value of dye \boldsymbol{A} Give your answer to two significant figures. | | R _f value = | (3) | |-----|--|-----| | | | | | | | | | (c) | Dye ${\bf D}$ has an R_f value of 0.80. Calculate the distance that dye ${\bf D}$ moved on the chromatography paper. | | | | | | Distance moved by dye **D** = (1) | (d) | Explain how the different dyes in X are separated by paper chromatography. | |-----|---| (e) Flame emission spectroscopy can be used to analyse metal ions in solution. **Figure 3** gives the flame emission spectra of five metal ions, and of a mixture of two metal ions. (4) Use the spectra to identify the **two** metal ions in the mixture. | | | (2) | |-----|---|---------------------| | | | , , | | (f) | Explain why a flame test could not be used to identify the two metal ions in the mixture | | | | | | | | | | | | | (2) | | (g) | Two students tested a green compound X . The students added water to compound X . Compound X did not dissolve. | | | | The students then added a solution of ethanoic acid to compound X . A gas was produced which turned limewater milky. | | | | Student A concluded that compound X was sodium carbonate. Student B concluded that compound X was copper chloride. | | | | Which student, if any, was correct? | | | | Explain your reasoning. | (To | (4)
al 18 marks) | | Q2. T | his c | question | is | about | chemical | analy | vsis. | |--------------|-------|----------|----|-------|----------|-------|-------| |--------------|-------|----------|----|-------|----------|-------|-------| (a) A student has solutions of three compounds, X, Y and Z. The student uses tests to identify the ions in the three compounds. The student records the results of the tests in the table. | | Test | | | | | |----------|-----------------|-------------------------------------|--|---|--| | Compound | Flame test | Add sodium
hydroxide
solution | Add hydrochloric acid and barium chloride solution | Add nitric acid and silver nitrate solution | | | х | no colour | green precipitate | white precipitate | no reaction | | | Υ | yellow
flame | no reaction | no reaction | yellow precipitate | | | z | no colour | brown precipitate | no reaction | cream precipitate | | | Identify the two ions present in each compound, X, Y and Z . | | | |---|--|--| | X | | | | Υ | | | | Z | | | | | | | (3) (b) A chemist needs to find the concentration of a solution of barium hydroxide. Barium hydroxide solution is an alkali. The chemist could find the concentration of the barium hydroxide solution using two different methods. #### Method 1 • An excess of sodium sulfate solution is added to 25 cm³ of the barium hydroxide solution. A precipitate of barium sulfate is formed. - The precipitate of barium sulfate is filtered, dried and weighed. - The concentration of the barium hydroxide solution is calculated from the mass of barium sulfate produced. #### Method 2 - 25 cm³ of the barium hydroxide solution is titrated with hydrochloric acid of known concentration. - The concentration of the barium hydroxide solution is calculated from the result of the titration. | Compare the advantages and disadvantages of the two methods. | | |--|-----------------| (5) | | | (Total 8 marks) | ## **Q3.**A | stude | ent wa | s investigating a magnesium salt, X . | | |-------|--------|---|----| | The | studer | nt found that X : | | | • | has a | high melting point | | | • | does | not conduct electricity | | | • | disso | lves in water and the solution conducts electricity. | | | (a) | (i) | What is the type of bonding in magnesium salt X ? | | | | | | (1 | | | (ii) | Explain why solid X does not conduct electricity but a solution of X does conduct electricity. | (2 | | | | | • | | (b) | The | student dissolved X in water. | | | | The | student added dilute nitric acid and silver nitrate solution to the solution of X . | | | | A wl | nite precipitate was formed. | | | | Salt | X contains chloride ions. | | | | Expl | ain why a white precipitate was formed. | | | | | | | | | | | | | The student dissolved X in water. | |---| | The student added a few drops of sodium hydroxide solution to the solution of \mathbf{X} . | | A white precipitate was formed. | | (i) Salt X contains magnesium ions. | | Name two other metal ions that would give a white precipitate when a few drops of sodium hydroxide solution are added. | | 1 | | 2(2) | | (ii) Describe the two further tests the student would have to do to show that salt X contains magnesium ions, and not the two metal ions you identified in part (c) (i). Give the expected results of each test. | | | | | | | | | | | | | | (4)
(Total 11 marks) | (c) # Q4.In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate. A group of students had four different colourless solutions in beakers **1**, **2**, **3** and **4**, shown in the figure below. The students knew that the solutions were - sodium chloride - sodium iodide - sodium carbonate - potassium carbonate but did not know which solution was in each beaker. The teacher asked the class to plan a method that could be used to identify each solution. She gave the students the following reagents to use: - dilute nitric acid - silver nitrate solution. The teacher suggested using a flame test to identify the positive ions. Outline a method the students could use to identify the four solutions. You should include the results of the tests you describe. | Extra space | | |-------------|-----------------| (Total 6 marks) | ## **Q5.**The colours of fireworks are produced by chemicals. © Igor Sokalski/iStock/Thinkstock (a) Information about four chemicals is given in the table. Complete the table below. | Chemical | Colour produced in firework | |-----------------|-----------------------------| | barium chloride | green | | carbonate | crimson | | sodium nitrate | | | calcium sulfate | red | (2) | (b) | Describe a test to show that barium chloride solution contains chloride ions | |-----|--| | | Give the result of the test. | | | | | | | | | | | | | (2) | (c) | A student did two tests on a solution of compound X . | | |-----|---|------------| | | Test 1 Sodium hydroxide solution was added. A blue precipitate was formed. | | | | Test 2 Dilute hydrochloric acid was added. Barium chloride solution was then added. A white precipitate was formed. | | | | The student concluded that compound X is iron(II) sulfate. | | | | Is the student's conclusion correct? | | | | Explain your answer. | (Total 7 mark | (3)
(s) | | | | | **Q6.**Four bottles of chemicals made in the 1880s were found recently in a cupboard during a Health and Safety inspection at Lovell Laboratories. The chemical names are shown below each bottle. - (a) You are provided with the following reagents: - aluminium powder - barium chloride solution acidified with dilute hydrochloric acid - dilute hydrochloric acid - silver nitrate solution acidified with dilute nitric acid - sodium hydroxide solution. - limewater - red litmus paper - (i) Describe tests that you could use to show that these chemicals are correctly named. In each case give the reagent(s) you would use **and** state the result. | Test and result for carbonate ions: | | |--|-----| | | | | | | | | | | | | | | | | Test and result for chloride ions: | | | | | | | | | | | | | | | | | | Test and result for nitrate ions: | | | | | | | | | | | | | | | | | | Test and result for sulfate ions: | | | | | | | | | | (4) | | | (4) | | | | | Suggest why a flame test would not distinguish between these four chemicals | | | | (1) | (ii) | (b) | Instrumental methods of analysis linked to computers can be used to identify chemicals. | |-----|---| | | Give two advantages of using instrumental methods of analysis. | | | | | | | | | | | | (2) | | | (Total 7 marks) |