exampro

New Document 1	Name:	
	Class:	
	Date:	

[^0]Comments:

Q1.

This question is about atoms and isotopes.
(a) Atoms contain protons, neutrons and electrons.

A lithium atom has the symbol ${ }_{3}^{7} \mathrm{Li}$
Explain, in terms of sub-atomic particles, why the mass number of this lithium atom is 7 .
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Amounts of substances can be described in different ways.

Complete the sentences.
One mole of a substance is the relative formula mass in
\qquad
The relative atomic mass of an element compares the mass of an atom of an element with the mass of an atom of
\qquad
(c) Two isotopes of oxygen are ${ }_{8}^{18} \mathrm{O}$ and ${ }_{8}^{16} \mathrm{O}$

Describe the similarities and differences between the isotopes ${ }_{8}^{18} \mathrm{O}$ and ${ }_{8}^{16} \mathrm{O}$
You should refer to the numbers of sub-atomic particles in each isotope.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q2.
Scientists found that a compound contained:
22.8\% sodium; 21.8\% boron; and 55.4\% oxygen.

Use the percentages to calculate the empirical formula of the compound.
Relative atomic masses $\left(A_{r}\right): \mathrm{B}=11 ; \mathrm{O}=16 ; \mathrm{Na}=23$
To gain full marks you must show all your working.
\qquad
Empirical formula $=$ \qquad
(Total 5 marks)

Q3.
This apparatus is used for the reaction of copper oxide (CuO) with methane $\left(\mathrm{CH}_{4}\right)$.

(a) The symbol equation for this reaction is shown below.

$$
4 \mathrm{CuO}(\mathrm{~s})+\mathrm{CH} 4(\mathrm{~g}) \rightarrow 4 \mathrm{Cu}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

The water and carbon dioxide produced escape from the test tube.
Use information from the equation to explain why.
\qquad
\qquad
(b) (i) Calculate the relative formula mass $\left(M_{r}\right)$ of copper oxide (CuO).

Relative atomic masses $\left(A_{r}\right): \mathrm{O}=16, \mathrm{Cu}=64$
\qquad
\qquad
\qquad
Relative formula mass $\left(M_{\mathrm{r}}\right)=$ \qquad
(ii) Calculate the percentage of copper in copper oxide.
\qquad
\qquad
\qquad
Percentage of copper $=$ \qquad \%
(iii) Calculate the maximum mass of copper that could be produced from 4.0 g of copper oxide.
\qquad
\qquad
Mass of copper produced $=$ \qquad g
(c) The experiment was done three times.

The mass of copper oxide used and the mass of copper produced were measured each time.

The results are shown in the table.

	Experiment		
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Mass of copper oxide used in g	4.0	4.0	4.0
Mass of copper produced in g	3.3	3.5	3.2

(i) Calculate the mean mass of copper produced in these experiments.

Mean mass of copper produced $=$
(ii) Suggest how the results of the experiment could be made more precise.
\qquad
\qquad
(iii) The three experiments gave different results for the amount of copper produced.

This was caused by experimental error.
Suggest two causes of experimental error in these experiments.

1. \qquad
\qquad
2. \qquad
\qquad

Q4.
Ammonia is produced from nitrogen and hydrogen.
The equation for this reaction is:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

(a) (i) A company wants to make 6.8 tonnes of ammonia.

Calculate the mass of nitrogen needed.
Relative atomic masses $\left(A_{r}\right): \mathrm{H}=1 ; \mathrm{N}=14$
\qquad
\qquad
\qquad
\qquad
\qquad
Mass of nitrogen $=$ \qquad tonnes
(ii) The company expected to make 6.8 tonnes of ammonia.

The yield of ammonia was only 4.2 tonnes.

Calculate the percentage yield of ammonia.
\qquad
\qquad
Percentage yield of ammonia $=$ \qquad \%
(iii) Use the equation above to explain why the percentage yield of ammonia was less than expected.
\qquad
\qquad
(b) Complete the diagram to show the arrangement of the outer shell electrons of the nitrogen and hydrogen atoms in ammonia.

Use dots (\bullet) and crosses (x) to represent the electrons.

(c) Ammonia dissolves in water to produce an alkaline solution.
(i) Which ion makes ammonia solution alkaline?
\qquad
(ii) Name the type of reaction between aqueous ammonia solution and an acid.
\qquad
(iii) Name the acid needed to produce ammonium nitrate.
\qquad
(iv) The reaction of ammonia with sulfuric acid produces ammonium sulfate.

Use the formulae of the ions on the Chemistry Data Sheet.
Write the formula of ammonium sulfate.

Mark schemes

Q1.

(a) because this lithium atom has

3 protons
and 4 neutrons
mass number is total of neutrons and protons
accept protons and neutrons have a mass of 1
accept number of neutrons $=7-3$ (protons)
ignore mass of electron is negligible
(b) grams
accept g
${ }^{12} \mathrm{C}$
allow carbon-12 or C-12
ignore hydrogen or H
(c) any three from:
max 2 if no numbers given
numbers if given must be correct

- both have 8 protons
accept same number of protons
- $\quad{ }^{18} \mathrm{O}$ has 10 neutrons
- ${ }^{16} \mathrm{O}$ has 8 neutrons
accept different number of neutrons or ${ }^{18} \mathrm{O}$ has two more neutrons for 1 mark
- both have 8 electrons.
accept same number of electrons

Q2.

Divide by A_{r} :

$\mathrm{Na}=22.8 / 23$
$B=21.8 / 11$
$\mathrm{O}=55.4 / 16$
if student has calculated moles upside down they can score mp 3 mp 4 and mp 5 as follows:
Na 23 / 22.8
B 11 / 21.8
O 16/55.4

Values
0.991
1.01
1.98
0.505
3.46
0.289

Divide by the smallest

$1: 2: 3.5$
Divide by the smallest (1)
3.5:1.75:1

Whole number ratio
2:4:7
Whole number ratio (1)
14:7:4

Empirical formula

$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$
Empirical formula (1)
$\mathrm{Na}_{14} \mathrm{~B}_{7} \mathrm{O}_{4}$
if no working shown allow 4 marks for $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$

Q3.
(a) because they are gases
ignore vapours / evaporate / (g)
allow it is a gas
(b) (i) $80 / 79.5$
correct answer with or without working = $\mathbf{2}$ marks ignore units
if no answer or incorrect answer then evidence of 64 / 63.5 + 16 gains 1 mark
(ii) 79.375-80
correct answer with or without working = $\mathbf{2}$ marks if no answer or incorrect answer then evidence of $\frac{64}{80}$ or $\frac{63.5}{79.5}(\times 100)$ gains 1 mark
accept (ecf) $\frac{64 \text { or } 63.5}{\text { answer }(b)(i)} \times 100$ for 2 marks
if answer correctly calculated.
if incorrectly calculated evidence of $\frac{64 \text { or } 63.5}{\text { answer (b)(i) }}(\times 100)$
gains 1 mark
(iii) 3.2
correct answer with or without working = $\mathbf{1}$ mark
allow (ecf)
$4 x((b)(i i) / 100)$ for 1 mark if correctly calculated
(c) (i) 3.3
accept 3.33........ or $31 / 3$ or 3.3.
or 3.3r
(ii) (measure to) more decimal places or (use a) more sensitive balance / apparatus
allow use smaller scale (division) or use a smaller unit ignore accurate / repeat
(iii) any two from:
ignore systematic / human / apparatus / zero / measurement / random / weighing / reading / recording errors unless qualified
different balances used or faulty balance ignore dirty apparatus
reading / using the balance incorrectly
accept incorrect weighing of copper / copper oxide
spilling copper oxide / copper
allow some copper left in tube
copper oxide impure
allow impure copper (produced)
not all of the copper oxide was reduced / converted to copper or not enough / different amounts of methane used
accept not all copper oxide (fully) reacted
heated for different times
heated at different temperatures
if neither of these points awarded allow different amounts of heat used
accept Bunsen burner / flame at different temperatures
some of the copper produced is oxidised / forms copper oxide
some of the copper oxide / copper blown out / escapes (from tube)
ignore some copper oxide / copper lost
some water still in the test tube

Q4.
(a) (i) M_{r} of $\mathrm{NH}_{3}=17$
correct answer with or without working gains 3 marks accept correct rounding of intermediate answers can be credited from correct substitution from step 2
or
2 (moles of) $\mathrm{NH}_{3}=34$
or
$14 \rightarrow 17$
or
$28 \rightarrow 34$
$(28 / 34) \times 6.8$
allow ecf from step 1
or
$(14 / 17) \times 6.8$
$=5.6$
allow ecf from step 1
(ii) 61.8
accept 61.76 or 62 or 61.76...
correct answer with or without working gains 2 marks
if answer is not correct evidence of $4.2 / 6.8 \times 100$ gains 1 mark
if answer not correct 0.618 or 0.62 gains 1 mark
1
(iii) reaction is reversible
accept reaction reaches equilibrium
allow reaction does not reach completion ignore some is lost
(b) 3 bonding pairs
do not accept extra electrons on hydrogen

1 lone pair
accept 2 non-bonding electrons on outer shell of nitrogen
(c) (i) hydroxide $/ \mathrm{OH}^{-}$
accept phonetic spelling
(ii) neutralisation
accept acid-base
allow exothermic
(iii) nitric (acid)
allow HNO_{3} ignore incorrect formula
(iv) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
allow $\left(\mathrm{NH}_{4}^{+}\right)_{2} \mathrm{SO}_{4}{ }^{2-}$

[^0]: Time:
 35 minutes

 Marks
 35 marks

