

New Documen	nt 1	Name:	
		Class:	 -
		Date:	 -
Time:	35 minutes		
Marks:	35 marks		
Comments:			

Q1.

This question is about atoms and isotopes.

(a) Atoms contain protons, neutrons and electrons.

A lithium atom has the symbol $\frac{7}{3}$ Li

Explain, in terms of sub-atomic particles, why the mass number of this lithium atom is 7.

(b) Amounts of substances can be described in different ways.

Complete the sentences.

One mole of a substance is the relative formula mass in

The relative atomic mass of an element	compares the mass of an atom of an
element with the mass of an atom of	

(c) Two isotopes of oxygen are $\frac{18}{8}$ o and $\frac{16}{8}$ o

Describe the similarities and differences between the isotopes	¹⁸ 80	and	¹⁶ 80
--	------------------	-----	------------------

You should refer to the numbers of sub-atomic particles in each isotope.

(3)

(2)

Q2.

Scientists found that a compound contained:

22.8% sodium; 21.8% boron; and 55.4% oxygen.

Use the percentages to calculate the empirical formula of the compound.

Relative atomic masses (A_r): B = 11; O = 16; Na = 23

To gain full marks you **must** show all your working.

Empirical formula = _____

(Total 5 marks)

Q3.

This apparatus is used for the reaction of copper oxide (CuO) with methane (CH₄).

(a) The symbol equation for this reaction is shown below.

 $4 \ \text{CuO}(s) \ \ + \ \ \ \text{CH4}(g) \ \ \rightarrow \ \ 4 \ \text{Cu}(s) \ \ + \ \ 2 \ \text{H}_2\text{O}(g) \ \ + \ \ \ \text{CO}_2(g)$

The water and carbon dioxide produced escape from the test tube.

Use information from the equation to explain why.

(i)	Calculate the relative formula mass (M_r) of copper oxide (CuO).
	Relative atomic masses (A_r): O = 16, Cu = 64
	Relative formula mass (<i>M</i> _r) =
(ii)	Calculate the percentage of copper in copper oxide.
	Percentage of copper =%
(iii)	Calculate the maximum mass of copper that could be produced from 4.0 g of copper oxide.
	Mass of copper produced = q

The mass of copper oxide used and the mass of copper produced were measured each time.

The results are shown in the table.

	Experiment			
	1	2	3	
Mass of copper oxide used in g	4.0	4.0	4.0	
Mass of copper produced in g	3.3	3.5	3.2	

(i) Calculate the mean mass of copper produced in these experiments.

	Mean mass of copper produced =
	Suggest how the results of the experiment could be made more precise.
•	The three experiments gave different results for the amount of copper produced.
	This was caused by experimental error.
	Suggest two causes of experimental error in these experiments.
	1
	2.
	(Total 10

Q4.

Ammonia is produced from nitrogen and hydrogen.

The equation for this reaction is:

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

(a) (i) A company wants to make 6.8 tonnes of ammonia.

Calculate the mass of nitrogen needed.

Relative atomic masses (A_r): H = 1; N = 14

(ii) The company expected to make 6.8 tonnes of ammonia.

The yield of ammonia was only 4.2 tonnes.

Calculate the percentage yield of ammonia.

Percentage yield of ammonia = _____ %

(iii) Use the equation above to explain why the percentage yield of ammonia was less than expected.

(1)

(2)

(b) Complete the diagram to show the arrangement of the outer shell electrons of the nitrogen and hydrogen atoms in ammonia.

Use dots (\bullet) and crosses (x) to represent the electrons.

- (c) Ammonia dissolves in water to produce an alkaline solution.
 - (i) Which ion makes ammonia solution alkaline?
 - (ii) Name the type of reaction between aqueous ammonia solution and an acid.

(1)

(1)

(2)

(iii) Name the acid needed to produce ammonium nitrate.

(1)

(iv) The reaction of ammonia with sulfuric acid produces ammonium sulfate.

Use the formulae of the ions on the Chemistry Data Sheet.

Write the formula of ammonium sulfate.

(Total 12 marks)

Mark schemes

Q1.

(a) because this lithium atom has

	3 prot	ons	1
	and 4	neutrons	1
	mass	number is total of neutrons and protons accept protons and neutrons have a mass of 1 accept number of neutrons = 7 - 3(protons) ignore mass of electron is negligible	1
(b)	gram	s accept g	1
	¹² C	allow carbon-12 or C-12 ignore hydrogen or H	1
(c)	any tl	n ree from: max 2 if no numbers given numbers if given must be correct	
	• • •	both have 8 protons <i>accept same number of protons</i> ¹⁸ O has 10 neutrons ¹⁶ O has 8 neutrons <i>accept different number of neutrons or</i> ¹⁸ O has two more <i>neutrons for</i> 1 mark both have 8 electrons.	
		accept same number of electrons	3

[8]

Q2.

Divide by A_r:

Na = 22.8 / 23

B = 21.8 / 11

O = 55.4 / 16

if student has calculated moles upside down they can score mp 3 mp 4 and mp 5 as follows: Na 23 / 22.8 B 11 / 21.8 O 16 / 55.4

					1	
	Valu	es				
	0.99 [,]	1	1.01			
	1.98		0.505			
	3.46		0.289			
	Divid	de by	he smallest		1	
	1:2	: 3.5	Divide by the smallest (1 3.5 : 1.75 : 1)	1	
	Who	le nu	nber ratio			
	2:4	:7	Whole number ratio (1) 14 : 7 : 4		1	
	Emp	irical	ormula			
	Na₂B	8 ₄ O ₇	Empirical formula (1) Na₁₄BァO₄ if no working shown allo	w 4 marks for Na ₂ B ₄ O ₇	1	[5]
Q3	8.					
	(a)	beca	se they are <u>gases</u> ignore vapours / evapora allow it is a gas	ate / (g)	1	
	(b)	(i)	80 / 79.5 correct answer with or w ignore units if no answer or incorrect 64 / 63.5 + 16 gains 1 m	ithout working = 2 marks answer then evidence of ark	2	
		(ii)	79.375 - 80 correct answer with or w if no answer or incorrect $\frac{64}{80}$ or $\frac{63.5}{79.5}$ (×100) gain	ithout working = 2 marks answer then evidence of as 1 mark	-	

		64 or 63.5	
		accept (ecf) answer (b)(i) \times 100 for 2 marks	
		if answer correctly calculated.	
		64 or 63.5	
		if incorrectly calculated evidence of $answer (b)(i)$ (× 100) gains 1 mark	2
	()		
	(111)	3.2 correct answer with or without working = 1 mark allow (ecf)	
		$4 \times ((b)(ii)/100)$ for 1 mark if correctly calculated	1
(c)	(i)	3.3 accept 3.33 or 3 1 / 3 or 3.3• or 3.3r	1
	(ii)	(measure to) more decimal places or (use a) more sensitive balance / apparatus	
		allow use small <u>er</u> scale (division) or use a small <u>er</u> unit ignore accurate / repeat	1
	(iii)	any two from:	
		ignore systematic / human / apparatus / zero / measurement / random / weighing / reading / recording errors unless qualified	
		different balances used or faulty balance	
		ignore dirty apparatus	
		reading / using the balance incorrectly	
		accept incorrect weighing of copper / copper oxide	
		spilling copper oxide / copper	
		allow some copper left in tube	
		copper oxide impure	
		allow impure copper (produced)	
		not all of the copper oxide was reduced / converted to copper or not enough / different amounts of methane used accept not all copper oxide (fully) reacted	
		<u>heated</u> for different times <u>heated</u> at different temperatures <i>if neither of these points awarded allow different amounts of</i> <i>heat used</i> <i>accept Bunsen burner / flame at different temperatures</i>	
		some of the copper produced is oxidised / forms copper oxide	
		some of the copper oxide / copper blown out / escapes (from tube) ignore some copper oxide / copper lost	

Q4.

(a)

(i) $M_r \text{ of } NH_3 = 17$

correct answer with or without working gains **3** marks accept correct rounding of intermediate answers can be credited from correct substitution from step 2

or

2 (moles of) $NH_3 = 34$ or $14 \rightarrow 17$ or $28 \rightarrow 34$ (28/34) × 6.8 *allow ecf from step 1*

or

(14/17) × 6.8

= 5.6

allow ecf from step 1

(ii) 61.8

accept 61.76 **or** 62 **or** 61.76... correct answer with or without working gains **2** marks if answer is not correct evidence of 4.2 / 6.8 × 100 gains **1** mark if answer not correct 0.618 or 0.62 gains **1** mark

(iii) reaction is reversible

accept reaction reaches equilibrium allow reaction does not reach completion ignore some is lost

(b) 3 bonding pairs do **not** accept extra electrons on hydrogen

1 lone pair

accept 2 non-bonding electrons on outer shell of nitrogen

2

1

1

1

2

1

1

[10]

(c)	(i)	hydroxide / OH ⁻ accept phonetic spelling	1
	(ii)	neutralisation accept acid-base allow exothermic	1
	(iii)	nitric (acid) allow HNO₃ ignore incorrect formula	1
	(iv)	(NH ₄) ₂ SO ₄ allow (NH ₄ ⁺) ₂ SO ₄ ²⁻	1 [12]