exampro

4.4 Bioenergetics Foundation / Higher

Name:

Class:

Date:
Time: 459 minutes
Marks:
453 marks

Comments:

Q1.

In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Deforestation affects the environment.
Deforestation is causing a change in the amounts of different gases in the atmosphere. This change causes global warming and climate change.

The image below shows an area of deforestation.

© Nivellen77/iStock/Thinkstock
Give the reasons why deforestation is taking place.
Describe how deforestation is causing the change in the amounts of different gases in the atmosphere.
\qquad
Extra space \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q2.

Some students investigated the effect of light intensity on the rate of photosynthesis.
They used the apparatus shown in Diagram 1.

Diagram 1

The students:

- placed the lamp 10 cm from the pondweed
- counted the number of bubbles of gas released from the pondweed in 1 minute
- repeated this for different distances between the lamp and the pondweed.
(a) The lamp gives out heat as well as light.

What could the students do to make sure that heat from the lamp did not affect the rate of photosynthesis?
\qquad
\qquad
(b) The table shows the students' results.

Distance in cm	Number of bubbles per minute

10	84
15	84
20	76
40	52
50	26

(i) At distances between 15 cm and 50 cm , light was a limiting factor for photosynthesis.

What evidence is there for this in the table?
\qquad
\qquad
(ii) Give one factor that could have limited the rate of photosynthesis when the distance was between 10 cm and 15 cm .
\qquad
(c) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Diagram 2 shows a section through a plant leaf.

Diagram 2

Describe the structure of the leaf and the functions of the tissues in the leaf.
You should use the names of the tissues in your answer.
\qquad

Q3.
The heart pumps the blood around the body. This causes blood to leave the heart at high pressure.

The graph shows blood pressure measurements for a person at rest. The blood pressure was measured in an artery and in a vein.

(a) Which blood vessel, \mathbf{A} or \mathbf{B}, is the artery?

Blood vessel \qquad
Give two reasons for your answer.
Reason 1 \qquad
\qquad
Reason 2 \qquad
\qquad
(b) Use information from the graph to answer these questions.
(i) How many times did the heart beat in 15 seconds?
(ii) Use your answer from part (b)(i) to calculate the person's heart rate per minute.
\qquad beats per minute
(c) During exercise, the heart rate increases.

The increased heart rate supplies useful substances to the muscles at a faster rate.
Name two useful substances that must be supplied to the muscles at a faster rate during exercise.

1. \qquad
2. \qquad

Q4.
A student investigates the rate of respiration in maggots.
Figure 1 shows the equipment he uses.
Figure 1

(a) Why does the student put the maggots on gauze?
\qquad
\qquad
(b) When maggots respire they take in a gas from the air and release a different gas.

Solution A absorbs the gas released.
At the start of the investigation the student records the distance of the water droplet from the bend in the capillary tube.

Explain what happens to the water droplet as the maggots respire.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) The table below shows the results the student calculated.

Temperature in ${ }^{\circ} \mathbf{C}$	Rate of respiration in units
5	2.2
10	3.5
20	7.5
30	8.4
40	14.0

The student uses his results to plot the graph in Figure 2.
Label the x and y axis.
Figure 2

(d) How could the student find out if the result at $30^{\circ} \mathrm{C}$ is anomalous?
\qquad
\qquad
(e) Suggest what the value at $30^{\circ} \mathrm{C}$ should be to fit the pattern of the graph.
\qquad
\qquad

Q5.

Infections by antibiotic resistant bacteria cause many deaths.
The bar chart below shows information about the number of deaths per year in England from Methicillin-resistant Staphylococcus aureus (MRSA) and from Clostridium difficile (C.difficile) over 4 years.

(a) (i) Describe the trend for deaths caused by C.difficile.
\qquad
\qquad
\qquad
\qquad
(ii) Suggest a reason for the trend you have described in part (a)(i).

Explain your answer.
\qquad
\qquad
\qquad
\qquad
(iii) Calculate the percentage change in deaths caused by MRSA from 2009 to 2010.
\qquad
\qquad
\qquad
Percentage change in deaths caused by MRSA $=$ \qquad \%
(iv) Numbers have not yet been published for 2011.

When the numbers are published, scientists do not expect to see such a large percentage change from 2010 to 2011 as the one you have calculated for 2009 to 2010.

Suggest one reason why.
\qquad
\qquad
(b) Before 2007 there was a rapid increase in the number of deaths caused by MRSA.

Describe how the overuse of the antibiotic methicillin led to this increase.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q6.
A student ran on a treadmill for 5 minutes.
The speed of the treadmill was set at 12 km per hour.
The graph below shows the effect of the run on the student's heart rate.

(a) (i) What was the student's heart rate at rest?
\qquad beats per minute
(ii) After the end of the run, how long did it take for the student's heart rate to return to the resting heart rate?
\qquad minutes
(b) During the run, the student's muscles needed larger amounts of some substances than they needed at rest.
(i) Which two of the following substances were needed in larger amounts during the run?

Tick (\checkmark) two boxes.

glucose

lactic acid

protein

(ii) Why are the two substances you chose in part (b)(i) needed in larger amounts during the run?

Tick (\checkmark) one box.

To help make more muscle fibres

To release more energy

To help the muscles to cool down

(c) After exercise, a fit person recovers faster than an unfit person.

Let the student's heart rate at the end of exercise $=\mathbf{a}$.
Let the student's heart rate after 2 minutes of recovery $=\mathbf{b}$.
The table below shows how the difference between \mathbf{a} and $\mathbf{b},(\mathbf{a}-\mathbf{b})$, is related to a person's level of fitness.

$(\mathbf{a}-\mathbf{b})$	Level of fitness
<22	Unfit
22 to 52	Normal fitness
53 to 58	Fit
59 to 65	Very fit
>65	Top athlete

What is the student's level of fitness?
Use information from the graph and the table.
$\mathrm{a}=$ \qquad beats per minute
b = \qquad beats per minute
$(\mathbf{a}-\mathbf{b})=$ \qquad beats per minute

Level of fitness = \qquad
(d) The student repeated the run with the treadmill set at 16 km per hour.

The student's heart rate took 3 minutes longer to return to the normal resting rate than when running at 12 km per hour.

Give reasons why it took longer to recover after running faster.
\qquad
(Total 12 marks)

Q7.
Plants produce glucose by a process called photosynthesis.
carbon dioxide + water $\underset{\text { chlorophyll }}{\text { light }}$ oxygen + glucose
The plant uses glucose to grow.
(a) The graph shows the change in concentration of carbon dioxide in a glasshouse full of plants over 24 hours.

Draw a line on the graph to show how the concentration of oxygen changes in the glasshouse.
(b)

Some plants have variegated leaves with white parts which contain no chlorophyll.
How do you think a variegated geranium would grow compared to a similar sized geranium with all green leaves?

Explain your answer \qquad
\qquad
\qquad
(Total 5 marks)

Q8.
The amount of carbon in the atmosphere is increasing.
The graph shows the mass of carbon in billions of tonnes involved in some processes in the carbon cycle each year.

(a) (i) Use information from the graph to calculate the total mass of carbon removed from the atmosphere each year.
\qquad
\qquad
\qquad billions of tonnes
(ii) The mass of carbon in the atmosphere is increasing by 5 billion tonnes each year.

One tonne of carbon is equivalent to 3.67 tonnes of carbon dioxide.
Calculate the increase in the mass of carbon dioxide in the atmosphere each year.
\qquad
\qquad
\qquad billion tonnes
(b) (i) Many scientists think the burning of fuels is the main cause of the increasing amount of carbon dioxide in the atmosphere. Other scientists disagree.

Use information from the graph to suggest why some scientists do not think that burning fuels is the main cause of the increase in carbon dioxide in the atmosphere.
\qquad
\qquad
\qquad
(ii) Some scientists think we should eat less meat and eat more food from plants.

Suggest how eating less meat and eating more food from plants could reduce the amount of carbon dioxide in the atmosphere.
\qquad
\qquad
\qquad
\qquad

Q9.

The table below shows a wheat farmer's calendar.

October	Winter Wheat is sown and germinates. Phosphate/potash fertiliser is applied.
March	Wheat plants resume growth. Nitrate fertiliser is applied.
April	Ammonium nitrate, the main fertiliser, is applied. Fungicide may be sprayed to control mildew or rust on wheat.
May	Extra ammonium nitrate fertiliser may be applied. A second spraying of fungicide may be needed. Dwarfing hormone sprayed to keep wheat straw (stalks) short.
June	Insecticide spray against aphids may be needed. Extra spraying of fungicide may be needed.
August	Wheat is harvested.
August/ Sep tember	Ground sprayed with weedkiller. Stubble (remains of wheat plants) is ploughed in ready for the next crop.

This process uses expensive fertilisers and pesticides to grow pest free crops which may be produced in excess.

What are the reasons for and against growing wheat in this way?
For \qquad
\qquad
\qquad

Against \qquad
\qquad
\qquad

Q10.

(a) (i) The table shows an athlete's breathing rate after the end of a race.

The results can be put onto a graph.
Three of the points are already plotted.
Plot the other points shown in the table.
Then draw the graph.

Time after end of race (minutes)	Breathing rate (litres per second)
0	4
1	2
2	1
3	1
4	1
5	1

(ii) What is the athlete's breathing rate $1 / 2$ (half) a minute after the end of the race?
\qquad
(b) One of the reasons for breathing is to get rid of carbon dioxide from your body. Choose words from the list to complete the sentences below about how your body does this.

> blood heart kidneys lungs urine

Carbon dioxide gets out of your body from your \qquad
The carbon dioxide is carried to this part of your body by your \qquad
(c) The bar charts show what happens in an athlete's muscles when running in two races of different distances.

(i) Compare what happens in the athlete's muscles when running in the two races.
\qquad
(ii) Use the information in the box to explain your answer to (i).

aerobic respiration	glucose + oxygen	$\ldots \ldots \ldots$	carbon dioxide + water
anaerobic respiration	glucose	$\ldots \ldots \ldots$	lactic acid

\qquad
\qquad
(Total 13 marks)

Q11.
(a) Balance the following equation for photosynthesis.
\qquad $\mathrm{CO}_{2}+$ \qquad $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+$ \qquad O_{2}
(b) Give two conditions necessary for photosynthesis apart from a suitable temperature range and the availability of water and carbon dioxide.

1. \qquad
2. \qquad
(a) Plants have leaves which contain guard cells and palisade cells. Explain how each of these kinds of cell assists photosynthesis.

Guard cells \qquad
\qquad
\qquad
\qquad

Palisade cells \qquad
\qquad
\qquad
\qquad
(d) Glucose is a product of photosynthesis. Give three uses which green plants make of glucose.
1.
2. \qquad
3. \qquad

Q12.

A young athlete trains and this makes her heart work harder. The table shows part of her training record.

Time measured in weeks from the start of training	0	8	16	24	32	40
Resting pulse rate measured in pulses per minute	75	69	66	63	61	60

(i) Give two changes to her heart resulting from this training.

1. \qquad
\qquad
2. \qquad
\qquad
(ii) The graph shows a smooth curve drawn to match the data from her training record.

Use the graph:
(A) to estimate her resting pulse rate, in pulses per minute, after 18 weeks of training;
(B) to predict her resting pulse rate, in pulses per minute, if she continues her training until the end of the year.
\qquad

Q13.

As they go higher up a mountain, mountaineers take less oxygen into their bodies with each breath.

This is shown in the table below.

	MILLIGRAMS OF OXYGEN TAKEN INTO LUNGS WITH EACH NORMAL BREATH	MILLIGRAMS OF OXYGEN TAKEN INTO BLOOD WITH EACH NORMAL BREATH
At bottom of mountain	300	60
At top of mountain	150	30

(a) At the top of the mountain, they only take half as much oxygen into their lungs with each breath as they did at the bottom.

How does this affect the amount of oxygen that gets into their blood with each breath?
\qquad
\qquad
(b) Why do the cells in the mountaineers' bodies need oxygen?
\qquad
\qquad

Q14.
(a) Respiration is a process which takes place in living cells. What is the purpose of respiration?
\qquad
\qquad
(b) (i) Balance the equation for the process of respiration when oxygen is available.
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\quad \mathrm{O}_{2} \rightarrow \quad \mathrm{CO}_{2}+\quad \mathrm{H}_{2} \mathrm{O}$
(ii) What is the name of the substance in the equation with the formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?
\qquad
(c) Oxygen is absorbed through the alveoli in the lungs.
(i) How are the alveoli adapted for this function?
\qquad
\qquad
\qquad
(ii) Name the gas which is excreted through the alveoli.
\qquad
(d) (i) What is the name of the process of respiration when oxygen is not available?
\qquad
(ii) Describe the process of respiration which takes place in human beings when oxygen is not available and give an effect.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(a) The diagram shows a cereal crop.

Complete spaces (i) and (ii).

(iii) What sort of weather may cause the cereal crop to wilt?
\qquad
(b) Describe the process of transpiration in plants.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q16.

Plants are grown in glasshouses to protect them from the weather or extend the growing season.

Plants make food by photosynthesis.

$$
6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \xrightarrow[\text { light }]{\text { energy from }} \text { glucose }_{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}}^{\text {gla }}
$$

In winter, when days are shorter, glasshouses are heated to keep the enzyme reactions in plants at optimum rates.

What else should a grower do to make sure that the plants are photosynthesising at the optimum rate? Give a reason for your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 3 marks)

Q17.
(a) The graph shows how the mass of oxygen you breathe in changes as you climb up a mountain.

Describe, in as much detail as you can, how the mass of oxygen in one breath changes as you climb from sea level to 3000 m .
\qquad
\qquad
\qquad
\qquad
(b) People who live high up in mountainous areas have more red blood cells than people who live at sea level. The graph below shows how the number of red blood cells changes with height above sea level.

(i) How many more red blood cells does a person living at 3000 m above sea level have than someone living at sea level? Show clearly how you work out your answer.
\qquad
\qquad
Increase in number of red blood cells = \qquad millions per m^{3}
(ii) What is the advantage of having more red blood cells?
\qquad
\qquad

Q18.

The graph shows the concentration of carbon dioxide in the air in a greenhouse full of tomato plants, measured over a period of 24 hours.

(a) Explain why the concentration of carbon dioxide in the air in the greenhouse increased between \mathbf{X} and \mathbf{Y}.
\qquad
\qquad
\qquad
\qquad
(b) Explain why the concentration of carbon dioxide in the air in the greenhouse decreased between \mathbf{Y} and \mathbf{Z}.
\qquad
\qquad
\qquad
\qquad

Q19.
Oxygen from our lungs is carried, by our blood, to cells in our body where aerobic respiration takes place.
(i) Complete the two spaces to balance the chemical reaction for aerobic respiration.

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}
$$

(ii) Name the substance with the formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$.
\qquad
(iii) Name the structures in the cytoplasm of our cells where aerobic respiration takes place.
\qquad
(Total 3 marks)

Q20.
(a) During respiration, sugar is oxidised to release energy. Complete the equation for respiration.

Sugar + \qquad $=$ \qquad $+$ \qquad + energy
(b) The photograph below shows an athlete using an exercise machine. The machine can be adjusted to vary the rate at which the athlete is required to work.

The athlete's heart rate and breathing rate were measured at different work rates.
The table below shows the results which were obtained.

WORK RATE (J/s)	HEART RATE (beats/min.)	BREATHING RATE (breaths/min.)
0	86	9.6
60	106	10.0
80	112	10.4
100	122	10.4
120	135	11.4
140	143	14.5

160	156	15.8
200	174	30.5

Plot the data on the graph paper below.

(3)
(c) Explain, as fully as you can, the advantages to the body in the change in breathing and heart rates.
\qquad
(d) This increase in the rate of heart-beat is a response to a stimulus. For this response suggest:
(i) the stimulus;
(ii) the co-ordinator; \qquad
(iii) the effector.
(Total 15 marks)

Q21.

In an investigation four groups of athletes were studied. The maximum rate of oxygen consumption for each athlete was measured and the mean for each group was calculated. The athletes then ran 10 mile races and the mean of the best times was calculated for each group. The results are shown in the table below.

GROUP OF ATHLETES	MAXIMUM RATE OF OXYGEN CONSUMPTION (cm³ per kg per min)	BEST TIME IN 10 MILE RACE (minutes)
A	78.6	48.9
B	67.5	55.1
C	63.0	58.7
D	57.4	64.6

(i) What is the relationship between maximum rate of oxygen consumption and time for a 10 mile race?
\qquad
\qquad
(ii) Suggest an explanation for this relationship.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q22.
Fermentation of sugar by yeast produces carbon dioxide.
The graph shows the effect of temperature on the production of carbon dioxide by fermentation.

(a) By how much did the volume of carbon dioxide collected change when the temperature was raised from $30^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$?
\qquad cm^{3}
(b) Complete the sentences to explain the shape of the curve between \mathbf{X} and \mathbf{Y}.

Raising the temperature \qquad the speed of the reacting particles.

These particles collide more \qquad and more \qquad .
(Total 4 marks)

Q23.

The graph shows the effect of temperature on photosynthesis.

(a) Between which temperatures is the rate of photosynthesis fastest?
\qquad and \qquad ${ }^{\circ} \mathrm{C}$
(b) Suggest why the rate of photosynthesis stays the same between these two temperatures.
\qquad
\qquad
\qquad
\qquad
(c) A greenhouse owner wants to grow lettuces as quickly and cheaply as possible in winter.

At what temperature should he keep his greenhouse in order to grow the lettuces as quickly and cheaply as possible?
\qquad ${ }^{\circ} \mathrm{C}$
Explain your answer.
\qquad
\qquad
\qquad
\qquad

Q24.
Green plants make food in their leaves.
(a) From where do the leaves get the energy that they need to make food?
\qquad
(b) The graph shows the effect of temperature on the rate of photosynthesis.

(i) Between which temperatures is the rate of photosynthesis fastest?
\qquad ${ }^{\circ} \mathrm{C}$
(ii) Suggest why the rate of photosynthesis stays the same between these two temperatures.
\qquad
\qquad
\qquad
\qquad
(iii) A greenhouse owner wants to grow lettuces as quickly and cheaply as possible in winter.

At what temperature should he keep his greenhouse in order to grow the lettuces as quickly and cheaply as possible?
\qquad ${ }^{\circ} \mathrm{C}$
Explain your answer.
\qquad
\qquad
\qquad

Q25.
(a) Complete the equation for photosynthesis.

(b) The diagram below is printed in a plant care manual.

Give them the light they need!

Amount of light essential for satisfactory development

Use information from the diagram to answer the following questions.
(i) Name one type of plant which could live on the floor of a dense forest in the middle of summer.
\qquad
(ii) Explain the reason for your answer to (i) above.
\qquad
\qquad
(iii) The drawing shows one type of plant with variegated leaves.

The manual says that these plants need direct sunlight.
Suggest and explain why this plant needs 'some direct sunlight' in order to develop satisfactorily.
\qquad
\qquad
(iv) The drawing shows a cactus.

Suggest and explain why cacti can only develop satisfactorily if they receive full sunlight.
\qquad
\qquad
\qquad
\qquad

Q26.
The graph shows the mean light intensity at different times of the year in an oak wood.

(a) (i) In which month would you expect the rate of photosynthesis in the oak trees to be greatest?
\qquad
(ii) There are plants living on the ground in the wood. In which month would you expect their rate of growth to be fastest?
\qquad
Explain your answer.
\qquad
\qquad
\qquad
\qquad
(b) Name two factors, other than light intensity, that would affect the rate of photosynthesis in the oak trees.

1. \qquad
2. \qquad

Q27.
Person A and Person B measured their pulse rates over a period of five minutes. For one minute of this time they exercised by stepping on and off a box. At other times they sat still. The graph shows the results for Person A.

(i) What does the graph tell you about the changes in the pulse rate of Person \mathbf{A} within the five minute period?
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) What was the pulse rate of Person \mathbf{A} at the end of the five minute period?
\qquad
(iii) The table shows the results obtained for Person B.

Time in minutes	Pulse rate per minute
0	68
1	68
2	110
3	96
4	80
5	68

Plot these results on the graph.

Q28.
A student breathed out into an empty breathing bag five times.

After breathing out five times the volume of air in the bag was measured. The volume was $3000 \mathrm{~cm}^{3}$.
(a) Complete the following sentences.

The air the student breathed in would contain more \qquad than the air the student breathed out.

The air the student breathed out would contain more \qquad than the air the student breathed in.
(b) The student then did some exercise for two minutes. The volume breathed out in five breaths was again measured. This time there was $9000 \mathrm{~cm}^{3}$ of air in the bag.

What does this tell you about the effect of exercise on breathing?
\qquad
\qquad
(c) (i) Name the chemical process that releases energy when it takes place in the cells of the body.
\qquad
(ii) Name the substances produced by this process.
\qquad
(iii) Explain as fully as you can why this process has to take place more rapidly during exercise.
\qquad
\qquad
\qquad
\qquad

Q29.

A plant with variegated (two-coloured) leaves was left in sunlight for several hours. Pieces of one of its leaves were then detached (removed) and tested for sugar. The diagram below shows the results.

Explain, as fully as you can, why the yellow region of the leaf had not produced sugar.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q30.
The diagram below shows the mass of carbon involved each year in some of the processes in the carbon cycle.

(a) Complete the equation for plant respiration.

(b) (i) Calculate the mass of carbon removed from the atmosphere each year. (Show your working.)

Answer \qquad billion tonnes
(ii) Calculate the percentage of this total which is removed by the photosynthesis of land plants. (Show your working.)

Answer \qquad \%
(iii) Calculate the net gain of carbon by the atmosphere in one year. (Show your working.)

Answer \qquad billion tonnes

Q31.
The diagram shows the human circulation system.

(a) (i) Give the letter of one blood vessel that is an artery. \square
(ii) Give the letter of one blood vessel that carries oxygenated blood. \square
(b) During exercise, the heart rate increases.

Explain, as fully as you can, why this increase is necessary.
\qquad

Q32.
Photosynthesis takes place the leaves of green plants.
(a) Write a balanced chemical equation for the formation of glucose by photosynthesis.
\qquad
(b) Describe two ways that the rate of photosynthesis can be decreased without lowering the temperature.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Some students decided to investigate the effect of temperature on the rate of photosynthesis in pond weed. They set up the apparatus and altered the temperature using ice and hot water. The counted the number of bubbles given off in a minute at different temperatures. They obtained the following results.

Results	
Temperature in ${ }^{\text {C }}$	Number af bubbles per minute
10	6
20	15
30	21
40	23
50	19

(i) Plot the points on the graph.

Number of
bubbles per minute

Temperature in ${ }^{\circ} \mathrm{C}$
(ii) Use your graph to predict the number of bubbles per minute at $25^{\circ} \mathrm{C}$.
\qquad
(iii) Suggest a reason why the rate of photosynthesis seems to decrease in this pondweed after $40^{\circ} \mathrm{C}$.
\qquad
\qquad
(Total 10 marks)

Q33.

Figure 1 shows an athlete running on a treadmill.
Figure 1

© Starush/istock/Thinkstock
After running for several minutes, the athlete's leg muscles began to ache.
This ache was caused by a high concentration of lactic acid in the muscles.
(a) The equation shows how lactic acid is made.

$$
\text { glucose } \longrightarrow \text { lactic acid (+ energy) }
$$

Name the process that makes lactic acid in the athlete's muscles.
\qquad
(b) Scientists investigated the production of lactic acid by an athlete running at different speeds.

In the investigation:

- the athlete ran on the treadmill at 4 km per hour
- the scientists measured the concentration of lactic acid in the athlete's blood after 2 minutes of running.

The investigation was repeated for different running speeds.
Figure 2 shows the scientists' results.
Figure 2

Concentration of lactic acid in the blood in mmol per dm^{3}

(i) How much more lactic acid was there in the athlete's blood when he ran at 14 km per hour than when he ran at 8 km per hour?
\qquad
\qquad
\qquad
Answer = \qquad mmol per dm ${ }^{3}$
(ii) Why is more lactic acid made in the muscles when running at 14 km per hour than when running at 8 km per hour?
\qquad
\qquad
\qquad

Q34.
(a) The volume of blood pumped out of the left ventricle at each beat was measured for a person during six different activities. These activities showed an increasing energy demand, with rest requiring the least energy and rowing a boat the most. The results of these measurements are shown on the bar chart.

(i) The pulse rate was also measured for the person during the same activities. The table shows the results that were obtained.

Activity	Pulse rate in beats per minute
Rest	70
Writing	85
Cleaning the floor	100
Wallpapering	120

Walking fast	132
Rowing a boat	153

On the graph paper below draw a bar chart of the results obtained for the measurements of the pulse rate.

(ii) Undertaking activities with increasing energy demand has an effect on the volume of blood pumped from the left ventricle (per beat) and on the pulse rate. What do the bar charts show these effects to be? Use only information shown in the bar charts in your answer.
\qquad
\qquad
\qquad
(b) The pulse rate changed when the activity changed. Explain the reason for this.
\qquad
\qquad
\qquad
(Total 6 marks)

Q35.
(a) Photosynthesis is a process that takes place in green plants.
(i) What type of energy is needed for this process?
\qquad
(ii) What substance in the plant absorbs this energy?
\qquad
(iii) In which part of the plant cell does photosynthesis take place?
\qquad
(iv) Write a balanced chemical equation for photosynthesis.
\qquad
(b) Describe two ways you could speed up photosynthesis.
\qquad
\qquad
\qquad
(c) The diagram shows the outline of a cross-section of a leaf. Name cells $\mathbf{1}$ and $\mathbf{2}$ and describe how they are involved in photosynthesis.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q36.
Regular exercise is important, as it helps to maintain an efficient supply of blood to the muscles, the heart and the lungs. This is helped by an increase in the heart rate during exercise.

Explain why it is necessary for the heart rate to increase during exercise.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 4 marks)

Q37.
(a) Complete the following sentences.

Green plants produce their own food by a process called photosynthesis. In this process the raw materials are \qquad and carbon
dioxide. Glucose and \qquad are produced.
\qquad energy is absorbed by the green substance
called \qquad .
(b) Name two things that can happen in the plant to the glucose produced in photosynthesis.

1. \qquad
2. \qquad
(c) Plants need mineral salts.
(i) Through which part do mineral salts get into the plant?
\qquad
(ii) Explain why water is important in this process.
\qquad
\qquad
\qquad
\qquad

Some students set up water cultures to find out how plants use nitrates.
They had two sets of nutrient solutions.
A full solution provided the plant with all the required nutrients.
The results table shows the average mass of the seedlings after 28 days of growth.

Culture salution	Average mass af seedling in g
distilled water	0.14
full solution with no nitrates	0.29
full solution	0.43

(d) (i) Give a conclusion you could make from these results.
\qquad
\qquad
(ii) Calculate the difference in average mass caused by the addition of nitrates to the culture solution.
\qquad
(iii) What are nitrates used for in the seedling?
\qquad
(iv) Some factors need to be controlled to keep this test fair. Name two of them.

1. \qquad
2. \qquad
(v) Suggest one way you could improve the experiment.
\qquad

Q38.
(a) The equation describes the process of photosynthesis.
carbon dioxide + \qquad + light energy \longrightarrow glucose + \qquad
(i) Write in the names of the two missing substances.
(ii) Name the green substance which absorbs the light energy.
\qquad
(b) (i) In bright sunlight, the concentration of carbon dioxide in the air can limit the rate of photosynthesis. Explain what this means.
\qquad
\qquad
\qquad
(ii) Give one environmental factor, other than light intensity and carbon dioxide concentration, which can limit the rate of photosynthesis.

Q39.
A person did five different activities in turn. These activities needed increasing amounts of energy. For each activity two measurements were made. These were the rate of contraction of the left ventricle and its stroke volume (the volume of blood pumped at each beat). From these measurements the cardiac volume was calculated.

Some of these results are shown in the table and the bar chart.

Activity	Rate of contraction of left ventricle in beats per minute	Cardiac output in $\mathbf{c m}^{\mathbf{3}}$ per minute
Sitting upright	68	5500
Slow walking		8000
Moderate walking	98	12000
Fast walking	130	17500
Running	150	19000

(a) (i) Describe how a person can count the rate of beating of the left ventricle.
\qquad
\qquad
(ii) Calculate the rate of ventricle contraction in beats per minute when the person was walking slowly. Show clearly how you work out your final answer.
\qquad
\qquad
\qquad
\qquad
Rate of ventricle contraction \qquad beats per minute.
(iii) The pattern of results for stroke volume shows an anomalous result when the person is running. In what way is it anomalous?
\qquad
\qquad
(iv) There was a change in cardiac output when the person's movement changed from fast walking to running. How did the heart produce this change?
\qquad
\qquad
(b) Over a period of time, regular exercise can strengthen the heart muscle. This
change in the heart muscle enables a person to run for longer before lactic acid build up occurs. Explain the reason for this.
\qquad
\qquad
\qquad
\qquad

Q40.
This question is about photosynthesis.
(a) Plants make glucose during photosynthesis. Some of the glucose is changed into insoluble starch.

What happens to this starch?
Tick (\checkmark) one box.

The starch is converted into oxygen.

The starch is stored for use later.

The starch is used to make the leaf green.

(b) A student investigated the effect of temperature on the rate of photosynthesis in pondweed.

The diagram shows the way the experiment was set up.

(i) The student needed to control some variables to make the investigation fair.

State two variables the student needed to control in this investigation.
\qquad
2. \qquad
(ii) The bubbles of gas are only produced while photosynthesis is taking place.

What two measurements would the student make to calculate the rate of photosynthesis?

1. \qquad
2. \qquad
(c) The graph shows the effect of temperature on the rate of photosynthesis in the pondweed.

(i) Name the factor that limits the rate of photosynthesis between the points labelled \mathbf{A} and \mathbf{B} on the graph.
\qquad
(ii) Suggest which factor, carbon dioxide, oxygen or water, might limit the rate of photosynthesis between the points labelled \mathbf{C} and \mathbf{D} on the graph.
\qquad
(Total 7 marks)

Q41.

A student pedalled an exercise cycle at constant speed for 5 minutes. The student's heart rate was recorded at one-minute intervals during the exercise and also during recovery.

The results are shown in the graph.

(a) Describe, in as much detail as you can, the changes in heart rate between 0 and 14 minutes.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) How do arteries supplying the leg muscles alter the rate of blood flow through them during exercise?
\qquad
\qquad
(c) Explain how an increase in heart rate helped the student during exercise.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q42.

The heart pumps blood around the body. This causes blood to leave the heart at high pressure.

The graph shows blood pressure measurements for a person at rest.
The blood pressure was measured in an artery and in a vein.

(a) Which blood vessel, \mathbf{A} or \mathbf{B}, is the artery?

Blood vessel \qquad
Give two reasons for your answer.
Reason 1 \qquad
\qquad

Reason 2 \qquad
\qquad
(b) Use information from the graph to answer these questions.
(i) How many times did the heart beat in 15 seconds?
(ii) Use your answer from part (b)(i) to calculate the person's heart rate per minute.
\qquad
\qquad
Heart rate = \qquad beats per minute
(c) During exercise, the heart rate increases. This supplies useful substances to the muscles and removes waste materials from the muscles at a faster rate.
(i) Name two useful substances that must be supplied to the muscles at a faster rate during exercise.

1. \qquad
2. \qquad
(ii) Name one waste substance that must be removed from the muscles at a faster rate during exercise.
\qquad

Q43.

The table shows the amounts of energy used in running and in walking at different speeds by people of different body masses.

Activity	Energy used in kilojoules per hour			
	$\mathbf{3 4} \mathbf{~ k g}$ person	$\mathbf{5 0} \mathbf{~ k g}$ person	70 kg person	$\mathbf{9 0} \mathbf{~ k g}$ person
Running, 9 km per hour	1530	1850	2770	3700
Running, 11 km per hour	2140	2560	3860	5120
Running, 16 km per hour	2980	3570	5380	7140
Walking, 3 km per hour	530	670	1010	1340
Walking, 5 km per hour	740	880	1340	1760

Walking, 7 km per hour	1030	1240	1850	2480

(a) Describe two patterns you can see in the data.

1. \qquad
\qquad
2. \qquad
\qquad
(b) Our breathing rate is much higher when running than when walking.

Explain the advantage of this to the body.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 5 marks)

Q44.
(a) (i) Complete the word equation for photosynthesis.
carbon dioxide + \qquad (+ light energy) \rightarrow glucose + \qquad
(ii) Most of the carbon dioxide that a plant uses during photosynthesis is absorbed from the air.

Give one other source of carbon dioxide for a plant.
Draw a ring around your answer.
the soil respiration in the plant osmosis in the plant water

A student investigated the conditions that plants need for photosynthesis. The leaves of the plant he used had green and white parts.

Diagram 1 shows how part of one leaf was covered in black (opaque) card.
The plant was placed in a warm, sunny area and was watered well.
Eight hours later the leaf was removed from the plant and was tested for starch.
The results of the test are shown in Diagram 2, the shaded parts show where starch was present.

(b) Name the two independent variables in this investigation.

1. \qquad
2. \qquad
\qquad
(c) Why was no starch found in:
(i) the part of the leaf labelled \mathbf{A}
\qquad
\qquad
(ii) the part of the leaf labelled \mathbf{B} ?
\qquad
\qquad

Q45.

Many people who are overweight try slimming programmes.
A research study evaluated four different slimming programmes over 6 months.
Scientists selected a group of 40 people for each slimming programme and a control group.
Each of the five groups was matched for age, gender and mass.
The graph shows the results of the study.

Key: - Mean loss in mass of group

Adapted from British Medical Journal, 2006, volume 332, pages 1309-1314.
(a) Give two control variables that were used in this study.

1. \qquad
2. \qquad
(b) Give two conclusions that can be drawn from the results of this study.
3. \qquad
\qquad
4. \qquad
\qquad
(c) The costs of the four programmes were:

- Atkins book cost $£ 3$
- Rosemary Conley classes cost $£ 140$ for 6 months
- Weight Watchers classes cost $£ 170$ for 6 months
- Twice-daily Slim-Fast meal replacements cost $£ 240$ for 6 months.

Use this information and the graph to answer this question.
Which is the most cost effective of the four programmes?

Explain the reason for your answer.
\qquad
\qquad
\qquad
(d) Some slimming programmes include daily exercise.

Explain how daily exercise helps a person to lose mass.
\qquad
\qquad
\qquad
\qquad

Q46.

This question is about photosynthesis.
(a) Plants make glucose during photosynthesis. Some of the glucose is changed into insoluble starch.

What happens to this starch?
Tick (\checkmark) one box.

The starch is converted into oxygen.

The starch is stored for later use.

The starch is used to make the leaf green.

(b) A student investigated the effect of temperature on the rate of photosynthesis in pondweed.

The diagram shows the way the experiment was set up.

(i) The student needed to control some variables to make the investigation fair.

State two of these variables.

1. \qquad
2. \qquad
(ii) The bubbles of gas are produced only while photosynthesis is taking place.

What two measurements would the student make to calculate the rate of photosynthesis?

1. \qquad
2. \qquad
(c) The graph shows the effect of temperature on the rate of photosynthesis.

(i) Name the factor that limits the rate of photosynthesis between the points labelled \mathbf{A} and \mathbf{B} on the graph.
\qquad
(ii) Suggest which factor, carbon dioxide, oxygen or water, might limit the rate of photosynthesis between the points labelled \mathbf{C} and \mathbf{D} on the graph.
\qquad

Q47.

The table shows the volume of blood flowing through different organs at three levels of exercise.

Organ(s)	Volume of blood flowing through organ(s) in $\mathbf{c m}^{\mathbf{3}}$ per minute		
	Light exercise	Moderate exercise	Heavy exercise
Gut	1100	600	300
Kidneys	900	600	250
Brain	750	750	750
Heart muscles	350	750	1000
Skeletal muscles	4500	12500	22000
Skin	1500	1900	600
Other	400	500	100
Total	9500	17600	25000

(a) (i) Which organ has a constant flow of blood through it?
\qquad
(ii) Which organ has the greatest reduction in the volume of blood supplied during heavy exercise compared with light exercise?
\qquad
(iii) What proportion of the blood flows through the heart muscle during heavy exercise?
(b) The volume of blood flowing through the skeletal muscles increases greatly during exercise.

Give two ways in which the body brings about this increase.

1. \qquad
\qquad
2. \qquad
\qquad
(c) During exercise, the concentration of carbon dioxide in the blood increases.

Explain what causes this increase.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 8 marks)

Q48.

(a) The table shows the effect of exercise on the action of one person's heart.

	At rest	During exercise
Heart rate in beats per minute	72	165
Volume of blood leaving the heart in each beat in cm^{3}	75	120
Heart output in cm^{3} per minute	5400	

(i) Calculate the heart output for this person during exercise.

Show clearly how you work out your answer.
\qquad
\qquad
\qquad

Answer = \qquad cm^{3} per minute
(ii) During exercise, more oxygen is carried to the working muscles.

Explain why this is helpful during exercise.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Give two other changes in the body that help to increase the amount of oxygen delivered to the working muscles during exercise.

1. \qquad
\qquad
2. \qquad
\qquad

Q49.

A group of pupils investigated the way in which the colour of light affects photosynthesis.
The pupils:

- put a piece of pondweed into a test tube of water
- shone light from a lamp with a red light bulb onto the pondweed
- counted the bubbles of gas produced by the pondweed every minute for three minutes.

The diagram shows the experiment.

The pupils repeated their experiment using a yellow light bulb, a green light bulb and a blue light bulb.
(a) (i) What was the independent variable in the investigation?
\qquad
(ii) To make the investigation fair the pupils needed to control some variables.

Suggest one variable that the pupils should have controlled during their investigation.
\qquad
(iii) It is better to count the bubbles every minute for three minutes than to count all the bubbles in three minutes.

Why?
\qquad
\qquad
(b) The table shows the pupils' results.

Colour of bulb	Number of bubbles produced in one minute			
	1st minute	2nd minute	3rd minute	Mean
	24	19	21	21
Yellow	18	14	15	16
Green	6	4	3	4
Blue	32	34	32	33

Algae are tiny organisms that photosynthesise.
In natural light algae grow very quickly on the sides of a fish tank.
The algae make it difficult to see the fish.
(i) What would be the best colour of light bulb to illuminate the fish tank to reduce the growth of algae?

Use the results in the table to help you to decide.
Draw a ring around one answer.
red yellow green blue
(ii) Explain why the colour you have chosen is the best.
\qquad
\qquad
\qquad
\qquad
(2)
(Total 6 marks)

Q50.

One type of training exercise involves alternating periods of walking and running.
The graph shows how an athlete's heart rate changed during one 30-minute training session.

(a) (i) The athlete ran 6 times during the 30-minute training session.

Describe the evidence for this in the graph.
\qquad
\qquad
(ii) Immediately after the final run, the athlete rested for a short time before he started to walk again.

For how many minutes did this rest last?
\qquad minutes
(b) The heart rate increases during exercise.

This increase in heart rate increases blood flow to the muscles.
Explain, as fully as you can, why this increase in heart rate is necessary.
\qquad
(Total 6 marks)

Q51.
Glycogen is stored in the muscles.
Scientists investigated changes in the amount of glycogen stored in the muscles of two 20 -year-old male athletes, A and B.
Athlete \mathbf{A} ate a high-carbohydrate diet. Athlete \mathbf{B} ate a low-carbohydrate diet.
Each athlete did one 2 -hour training session each day.
The graph shows the results for the first 3 days.

(a) (i) Give three variables that the scientists controlled in this investigation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Suggest two variables that would be difficult to control in this investigation.
\qquad
\qquad
\qquad
\qquad
(iii) Describe one way in which the results of Athlete \mathbf{B} were different from the results of Athlete \mathbf{A}.
\qquad
\qquad
(b) Both athletes were training to run a marathon.

Which athlete, \mathbf{A} or \mathbf{B}, would be more likely to complete the marathon?
Use information from the graph to explain your answer.
\qquad
\qquad
\qquad
\qquad
\qquad

Q52.

Photosynthesis needs light.
(a) Complete the balanced symbol equation for photosynthesis.

(b) A green chemical indicator shows changes in the concentration of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ in a solution.

The indicator solution is green when the concentration of CO_{2} is normal.
The indicator solution turns yellow when the concentration of CO_{2} is high.
The indicator solution turns blue when the concentration of CO_{2} is very low or when there is no CO_{2}.

The indicator solution does not harm aquatic organisms.
Students investigated the balance of respiration and photosynthesis using an aquatic snail and some pondweed.

The students set up four tubes, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}, as shown in the table below.
The colour change in each tube, after 24 hours in the light, is recorded.

Tube A	Tube B	Tube C	Tube D
Indicator solution only	Indicator solution + pondweed	Indicator solution + snail	Indicator solution + pondweed

			+ snail
Stays green	Turns blue	Turns yellow	Stays green

(i) What is the purpose of Tube A?
\qquad
\qquad
(ii) Explain why the indicator solution in Tube \mathbf{C} turns yellow.
\qquad
\qquad
\qquad
\qquad
(iii) Predict the result for Tube \mathbf{D} if it had been placed in the dark for 24 hours and not in the light.

Explain your prediction.
Prediction \qquad
\qquad
Explanation \qquad
\qquad
\qquad
\qquad

Q53.

Two people did the same amount of gentle exercise on an exercise cycle. One person had a muscle disease and the other had healthy muscles.

The graph shows the effect of the exercise on the heart rates of these two people.

(a) Describe three ways in which the results for the person with the muscle disease are different from the results for the healthy person.

To gain full marks in this question you need to include data from the graph in your answer.

1. \qquad
2. \qquad
\qquad
3. \qquad
\qquad
(b) The blood transports glucose to the muscles at a faster rate during exercise than when a person is at rest.
(i) Name one other substance that the blood transports to the muscles at a faster rate during exercise.
\qquad
(ii) People with the muscle disease are not able to store glycogen in their muscles.

The results shown in the graph for the person with the muscle disease are different from the results for the healthy person.

Suggest an explanation for the difference in the results.
\qquad
\qquad
\qquad
\qquad

Q54.

Plants absorb light to photosynthesise.
(a) What is the correct word equation for photosynthesis?

Tick one box.

(b) Figure 1 shows some of the apparatus that can be used to measure the rate of photosynthesis.

Figure 1

The rate of photosynthesis in the pondweed is affected by different colours of light. Describe a method you could use to investigate this.

You should include:

- what you would measure
- variables you would control.
\qquad
(c) A scientist carried out a similar investigation.

Her results are shown in Figure 2.
Figure 2

Rate of photosynthesis in units

The scientist said:
'Light stops being a limiting factor at a light intensity of 20 units.'
Give evidence from Figure 2 to support this statement.
\qquad
\qquad
(d) What could be limiting the rate of photosynthesis at a light intensity of 25 units?

Give one factor.
\qquad

Q55.
One factor that may affect body mass is metabolic rate.
(a) (i) What is meant by metabolic rate?
\qquad
\qquad
(ii) Metabolic rate is affected by the amount of activity a person does.

Give two other factors that may affect a person's metabolic rate.

1. \qquad
\qquad
2. \qquad
\qquad
(b) Predicted early death is the number of years that a person will die before the mean age of death for the whole population. The predicted early death of a person is affected by their body mass.

Scientists have calculated the effect of body mass on predicted early death.
The graph shows the results of the scientists' calculations.

The number of times above or below ideal body mass is given by the equation:

$$
\frac{\text { Actual body mass }}{\text { Ideal body mass }}
$$

In the UK the mean age of death for women is 82 .
A woman has a body mass of 70 kg . The woman's ideal body mass is 56 kg .
(i) Use the information from the graph to predict the age of this woman when she dies.
\qquad
\qquad
\qquad
Age at death = \qquad years
(ii) The woman could live longer by changing her lifestyle.

Give two changes she should make.

1. \qquad
\qquad
2. \qquad
\qquad
(Total 7 marks)

Q56.

Freshwater streams may have different levels of pollution. The level of pollution affects which species of invertebrate will live in the water.

Table 1 shows the biomass of different invertebrate species found in two different streams, \mathbf{X} and \mathbf{Y}.

Table 1

	Biomass in g	
Invertebrate species	Stream \mathbf{X}	Stream \mathbf{Y}
Mayfly nymph	4	0
Caddis fly larva	30	0
Freshwater shrimp	70	5
Water louse	34	10
Bloodworm	10	45
Sludge worm	2	90
Total	$\mathbf{1 5 0}$	$\mathbf{1 5 0}$

(a) The bar chart below shows the biomass of invertebrate species found in Stream \mathbf{X}.
(i) Complete the bar chart by drawing the bars for water louse, bloodworm and sludge worm in Stream Y.

Use the data in Table 1.

(ii) Table 2 shows which invertebrates can live in different levels of water pollution.

Table 2

Pollution level	Invertebrate species likely to be present
Clean water	Mayfly nymph
Low pollution	Caddis fly larva, Freshwater shrimp
Medium pollution	Water louse, Bloodworm
High pollution	Sludge worm

Which stream, \mathbf{X} or \mathbf{Y}, is more polluted?
Use the information from Table 1 and Table 2 to justify your answer.
\qquad
\qquad
\qquad
\qquad
(b) There is a sewage works near another stream, \mathbf{Z}.

An accident caused sewage to overflow into Stream Z.
Two weeks later scientists took samples of water and invertebrates from the stream. They took samples at different distances downstream from where the sewage overflowed.
The scientists plotted the results shown in Graphs \mathbf{P} and \mathbf{Q}.
Graph P: change in water quality downstream of sewage overflow

Graph Q: change in invertebrates found downstream of sewage overflow

(i) Describe the patterns shown in Graph P.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Describe the relationship between dissolved oxygen and the survival of mayfly nymphs in Stream Z. Suggest a reason for the pattern you have described.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Many microorganisms are present in the sewage overflow.

Explain why microorganisms cause the level of oxygen in the water to decrease.
\qquad
\qquad
\qquad
\qquad
(Total 13 marks)

Q57.
(a) Use words from the box to complete the equation for aerobic respiration.

alcohol	glucose	lactic acid	water

\qquad
(b) Some students investigated the effect of temperature on the rate of aerobic respiration in earthworms.

The diagram shows the apparatus the students used.
When the tap is closed, the bead of liquid moves to the left as the earthworms take in oxygen.

The students put the test tube into a water bath at $20^{\circ} \mathrm{C}$ for 10 minutes.
They left the tap open during this time.
Why did the students put the test tube in the water bath at $20^{\circ} \mathrm{C}$ for 10 minutes?
Tick (\checkmark) one box.

Because the air contains more oxygen at $20^{\circ} \mathrm{C}$.

Because the air contains less carbon dioxide at $20^{\circ} \mathrm{C}$.

So the earthworms' body temperature would change to $20^{\circ} \mathrm{C}$.

(c) The students then:

- closed the tap
- started a stopwatch
- recorded the position of the bead of liquid every 2 minutes for 10 minutes
- repeated the experiment at $10^{\circ} \mathrm{C}$.

The graph shows the students' results.

(i) How much oxygen did the earthworms take in during the 10 minutes at $20^{\circ} \mathrm{C}$?

Use information from the graph to work out your answer.
\qquad
\qquad
\qquad
Volume of oxygen taken in $=$ \qquad mm^{3}
(ii) The earthworms took in this volume of oxygen in 10 minutes.

Use your answer from part (c)(i) to calculate how much oxygen the earthworms took in each minute.
\qquad
\qquad
Volume of oxygen taken in $=$ \qquad mm^{3} per minute
(iii) The earthworms took in less oxygen each minute at $10^{\circ} \mathrm{C}$ than they took in at $20^{\circ} \mathrm{C}$.

Explain why.
\qquad
\qquad
\qquad
\qquad
(d) When drawing the line on the graph for the experiment at $10^{\circ} \mathrm{C}$, the students ignored the reading at 8 minutes.
(i) Suggest why they ignored the reading at 8 minutes.
\qquad
\qquad
(ii) One student suggested they should repeat the experiment twice more at each temperature.

How would repeating the experiment improve the investigation?
\qquad
\qquad

Q58.
Students used quadrats to estimate the population of dandelion plants on a field.
(a) Describe how quadrats should be used to estimate the number of dandelion plants in a field.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The field measured 40 m by 145 m .

The students used $0.25 \mathrm{~m}^{2}$ quadrats.
The students found a mean of 0.42 dandelions per quadrat.
Estimate the population of dandelions on the field.
\qquad
\qquad
\qquad
\qquad
(c) In one area of the field there is a lot of grass growing in the same area as dandelions.

Suggest why the dandelions may not grow well in this area.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q59.

(a) Complete the equation for photosynthesis. Draw a ring around each correct answer.

Some students investigated the effect of light intensity on the rate of photosynthesis in pondweed.

The diagram shows the apparatus the students used.

The closer the lamp is to the pondweed, the more light the pondweed receives.
The students placed the lamp at different distances, \mathbf{d}, from the pondweed.
They counted the number of bubbles of gas released from the pondweed in 1 minute for each distance.
(b) A thermometer was placed in the glass beaker.

Why was it important to use a thermometer in this investigation?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) The students counted the bubbles four times at each distance and calculated the correct mean value of their results.

The table shows the students' results.

Distance d in cm	Number of bubbles per minute				
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	Mean
10	52	52	54	54	53
20	49	51	48	52	50
30	32	30	27	31	30
40	30	10	9	11	

(i) Calculate the mean number of bubbles released per minute when the lamp was 40 cm from the pondweed.
\qquad
\qquad
Mean number of bubbles at $40 \mathrm{~cm}=$ \qquad
(ii) On the graph paper below, draw a graph to show the students' results:

- add a label to the vertical axis
- plot the mean values of the number of bubbles
- draw a line of best fit.

Distance \mathbf{d} in cm
(iii) One student concluded that the rate of photosynthesis was inversely proportional to the distance of the lamp from the plant.

Does the data support this conclusion?
Explain your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Light intensity, temperature and concentration of carbon dioxide are factors that affect the rate of photosynthesis.

Scientists investigated the effects of these three factors on the rate of photosynthesis in tomato plants growing in a greenhouse.

The graph below shows the scientists' results.

A farmer in the UK wants to grow tomatoes commercially in a greenhouse.
The farmer read about the scientists' investigation.
During the growing season for tomatoes in the UK, natural daylight has an intensity higher than 30000 lux.

The farmer therefore decided to use the following conditions in his greenhouse during the day:

- $20^{\circ} \mathrm{C}$
- $0.1 \% \mathrm{CO}_{2}$
- no extra lighting.

Suggest why the farmer decided to use these conditions for growing the tomatoes.
You should use information from the scientists' graph in your answer.
\qquad

Q60.

The diagram below shows a single-celled alga which lives in fresh water.

(a) Which part of the cell labelled above:
(i) traps light for photosynthesis
\qquad
(ii) is made of cellulose?
\qquad
(b) In the freshwater environment water enters the algal cell.
(i) What is the name of the process by which water moves into cells?
\qquad
(ii) Give the reason why the algal cell does not burst.
\qquad
\qquad
(c) (i) The alga can photosynthesise.

Complete the word equation for photosynthesis.
water $+\longrightarrow \xrightarrow{\text { Light energy }}+$ oxygen
(ii) The flagellum helps the cell to move through water. Scientists think that the flagellum and the light-sensitive spot work together to increase photosynthesis.

Suggest how this might happen.
\qquad
\qquad
\qquad
\qquad
(d) Multicellular organisms often have complex structures, such as lungs, for gas exchange.

Explain why single-celled organisms, like algae, do not need complex structures for gas exchange.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mark schemes

Q1.

Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also apply a 'best-fit' approach to the marking.

0 marks

No relevant content

Level 1 (1-2 marks)

There is at least one reason for deforestation
or
an attempt at a description of at least one way deforestation is affecting the atmosphere.

Level 2 (3-4 marks)

There is at least one reason for deforestation
and
a description of the way deforestation is affecting one gas in the atmosphere
or
the process that causes an effect.

Level 3 (5-6 marks)

There are reasons for deforestation and
a clear description of the way deforestation is affecting one gas in the atmosphere and the process that causes this.

examples of the points made in the response

Reasons for deforestation

- timber for construction / furniture / boat building / paper production
- growing plants for biofuels for motor fuel / aviation / lawnmowers
- use of wood as a fuel
- land for building or agriculture to provide food, such as rice fields and cattle ranching

Effects of deforestation

- increase in carbon dioxide in atmosphere
due to burning
due to activities of microbes
less carbon dioxide taken in / locked up (by trees) less photosynthesis
- increase in methane in atmosphere due to rice production / cattle

extra information

ignore references to oxygen
accept explanations of the effect of water (vapour)

Q2.
(a) any one from:
ignore 'check temperature'

- add a water bath
- heat screen
- use LED
- low energy bulb / described
(b) (i) rate / number of bubbles decreases
accept converse with reference to increasing light or shorter distance
or
less oxygen / gas released ignore reference to rate of photosynthesis
(ii) temperature / CO_{2} (concentration)
accept 'it was too cool' or not enough CO_{2}
accept number of chloroplasts / amount of chlorophyll
allow heat
allow CO2
do not allow CO^{2}
(c) Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also refer to the information in the Marking guidance, and apply a 'best-fit' approach to the marking.

0 marks

No relevant content.

Level 1 (1-2 marks)

There is a brief description of at least 1 tissue or at least 1 function of an indicated part of the leaf.

The account lacks clarity or detail.

Level 2 (3-4 marks)

There is a clear description which includes at least 1 named tissue and at least 1 correct function described for an indicated part of the leaf.

Level 3 (5-6 marks)

There is a detailed description of most of the structures and their functions.

Examples of responses:

- epidermis
- cover the plant
- mesophyll / palisade
- photosynthesises
- phloem
- xylem
- transport.

The following points are all acceptable but beyond the scope of the specification:

- (waxy) cuticle - reduce water loss
- epidermis - no chloroplasts so allows light to penetrate
- stomata / guard cells - allow CO_{2} in (and O_{2} out) or controls water loss
- palisade (mesophyll) - $\underline{\text { many }}$ chloroplasts to trap light
- near top of leaf for receiving more light
- spongy (mesophyll) - air spaces for rapid movement of gases

Q3.
(a) A
no mark - can be specified in reason part
if B given - no marks throughout
if unspecified +2 good reasons $=1$ mark
high(er) pressure in A
allow opposite for B
do not accept 'zero pressure' for B
pulse / described in A
accept fluctuates / 'changes'
allow reference to beats / beating
ignore reference to artery pumping
(b) (i) 17
(ii) 68
accept correct answer from student's (b)(i) $\times 4$
1
(c) oxygen / oxygenated blood
allow adrenaline
ignore air
glucose / sugar
extra wrong answer cancels - eg sucrose / starch / glycogen
/ glucagon / water
allow fructose
ignore energy
ignore food

Q4.
(a) (to) stop them falling in the solution
or
to stop them drowning (in the solution)
(b) Level 2 (3-4 marks):

A detailed and coherent explanation is given of how the droplet moves, clearly and logically linked to the process of respiration.

Level 1 (1-2 marks):

Simple statements are made about movement of the water droplet, but any attempts at explaining the reason or linking the movement to the process of respiration are unclear and poorly structured.

0 marks:

No relevant content

Indicative content

- water droplet moves towards the maggots / boiling tube

Explanation:

- the oxygen in the boiling tube is used up in respiration
- (and) the carbon dioxide released from respiration is absorbed by solution A
- which causes a pressure difference
- so air is drawn into the tube
- bringing the water droplet with it.
(c) x axis: Temperature in ${ }^{\circ} \mathrm{C}$
both needed for the mark
y axis: Rate of respiration in units
(d) repeat the experiment at $30^{\circ} \mathrm{C}$
(e) 10.5
allow range 10.4-10.8

Q5.
(a) (i) decrease
(ii) any one from:

- more use of disinfectant
allow any reasonable increase in hygiene or sterilisation precautions
- more use of hand washing
- more careful / more often cleaning of patient facilities
- raised awareness / education about hygiene

Explanation:
stops / reduces the bacteria being transferred / spreading
(iii) $800-500 / 800 \times 100=$
37.5 (\%)
correct answer with or without working gains 2 marks
(iv) any one from:

- numbers quite low now so hard to reduce further
- was a big campaign / much publicity (in 2009) so more people already doing it
- hygiene / cleaning now good so hard to improve
- hospitals short of money so less staff to clean
(b) mutation occurred giving resistance (to methicillin)
do not accept overuse caused mutation
resistant bacteria not able to be treated / not killed
these bacteria multiplied / reproduced / spread quickly

Q6.
(a) (i) 50
(ii) 4
accept $3.9-4.0$
(b) (i) glucose
(ii) to release more energy
(c) correct readings from graph:
$a=120$
$b=60$
allow 60-61
calculation correct for candidate's figures:
e.g. $a-b=60$
level of fitness correct for candidate's figures:
e.g. very fit
(d) any four from:

- higher heart rate (at $16 \mathrm{~km} / \mathrm{h}$) (so takes longer to slow to normal)
- more energy needed
- not enough O_{2} supplied / more O_{2} needed / reference to O_{2}-debt
- (more) anaerobic respiration
- (more) lactic acid made / to be broken down / to remove / to oxidise
- higher blood flow needed to deliver (the required amount of) oxygen.
'more' must be given at least once for full marks do not allow more energy produced allow higher blood flow to remove lactic acid / remove (additional) CO_{2}

Q7.
(a) line increasing in daylight $6-18$ ($\pm 2 \mathrm{hr}$) line decreasing $0-6$ ($\pm 2 \mathrm{hr}$)
line decreasing $18-24$ ($\pm 2 \mathrm{hr}$)
for 1 mark each
but
mirror image (i.e. opposite gradients)
gains 3 marks
(b) idea:
slower growth (credit even if refers only to leaves) less photosynthesis/glucose (than if leaves fully green)
each for 1 mark

Q8.
(a) (i) 214 (billion tonnes)
allow 1 mark for reading 122 and 92 correctly
allow 1 mark for the correct addition of incorrect readings
(ii) 18.35
(b) (i) (only) a small mass of carbon (dioxide) is released from burning fuels (compared to other processes)
allow the carbon (dioxide) released from other processes / respiration and decomposition is (much) greater
(ii) any two from:

- (more) plants would absorb (more) carbon (dioxide)
- (due to more) photosynthesis an idea of more is needed at least once
- fewer animals would release less carbon (dioxide)
- (due to less) respiration (in animals). an idea of a reduction is needed at least once ignore references to oxygen

Q9.
ideas for

- more food produced/increased yield
- cheaper food
- bigger income for farmer (allow profit)
- less loss/damage/spoilage of crop
- \quad allow less wasted growth (of straw due to drawing)
any three for 1 mark each
ideas against
- chemicals harm people (do not accept "affect flavour")
- fertiliser costly
- fewer worms (in soil)
- weedkillers kill valued/useful wild plants
- insecticides/pesticides kill useful insects/other animals (general idea that chemicals harm plants/animals gets only 1 of these)
- (weedkillers insecticides/pesticides/fungicides/hormones/chemicals) contaminate water
- (increased risk) pesticide resistance over production/food mountains
- possible eutrophication/nitrate in river/extra plant growth/
- explanation of eutrophication
for 1 mark each to a maximum of 4 marks

Q10.
(a) (i) points correctly plotted
all correct gains 2 marks
2 correct gains 1 mark
each part of line correctly drawn (i.e. curve + straight line) for 1 mark each part of line
(ii) 3 (or according to plotted graph) litres per second
for 1 mark each
(b) lungs
blood
for 1 mark each
(c) (i) ideas that

- energy transferred faster in 100 m race
- carbon dioxide produced faster during 1500 m race / more
- carbon dioxide produced for 1 mark each
correct reference to twice / half as fast in either / both cases for a further mark
(ii) • respiration during 100m race (mainly) anaerobic
- respiration during 1500 m race (mainly) aerobic
- aerobic respiration produced carbon dioxide
- anaerobic respiration produced / lactic acid for 1 mark each

Q11.

(a) 666
all required
accept a '6n $6 n n 6 n$ ' version of the balanced equation provided it is correct in every detail
(b) any two of

- (presence of) chlorophyll or (amount of) chloroplasts
accept green leaves (or other green parts)
- (sufficient) light (intensity)
- (light) of a suitable wavelength
any light other than green light
do not credit Sun's energy or sunshine or Sun
(c) guard cells
any two of
* control by osmosis
* the movement of gases
accept movement of carbon dioxide or oxygen or water vapour beware movement of CO_{2} out
accept a diagram or description
* through the stoma
(d) any three of
* for respiration
* conversion to (insoluble) starch
or to food store or to (other)carbohydrates
* (conversion to) sucrose or to food store or to (other) carbohydrates
or polysaccharides
do not credit just to grow or live
or survive
accept conversion to food store
or to (other) carbohydrates once only
* (conversion to) lipids or fats or oils
* (conversion to) amino acids or (plant) proteins or auxins or (plant) hormones or enzymes

Q12.
(i) any two from

* (heart) more muscular accept bigger
* (heart) more powerful
accept more efficient
(ii) * pauses longer between (heart) beats accepts beats more slowly accept heart rate decreases
* less fast around the heart
recovers more quickly not just 'heart healthier' do not credit pulse rate slower

Q13.
(a) less / low
gains 1 mark
but
(also) half as much or still one fifth of what's breathed in
gains 2 marks
(b) for energy / respiration [credit for movement / to keep warm]
[Do not allow "to live"]
for 1 mark

Q14.
(a) to transfer / provide / give release energy
or production of ATP / adenosine triphosphate (molecules)
accept to give heat
(b) (i) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
accept any other
n : $6 n$: $6 n$: $6 n$ ratio
do not credit if any other changes have been made
(ii) glucose
do not credit sugar / sucrose
(c) (i) any two from
large surface
thin (surface)
moist (surface)
(with a good) blood supply
(ii) carbon dioxide
accept water vapour
do not credit just water
(d) (i) anaerobic (respiration)
(ii) any three from
in mitochondria
glucose decomposes / breaks down / reacts or glucose \rightarrow lactic acid for (2) marks
to give lactic acid
or breathing hard
or lactic acid $\rightarrow \mathrm{CO} 2+$ water
causing pain
(leaving an) oxygen debt
(quick) source of energy
(but) less efficient than aerobic respiration
accept less efficient than with oxygen

Q15.
(a) (i) photosynthesis
(iii) dry
accept hot or windy or drought
(b) any three from

* evaporation (of water)
or loss of water vapour
* (mostly) from the leaf / leaves
do not credit incorrect reference to leaves
* through the stomata
accept through each stoma
accept through the stomas(sic)
* causing a pull
or causing an increase in osmotic potential (at the top of the plant)
or causing an increase in water potential (at the top of the plant) or causing a decrease in osmotic pressure (at the top of the plant)
* (so that) water moves up (through the plant)
do not credit water vapour moves up through the plant
* as the transpiration stream
* water enters through roots (and goes up plants)

Q16.
idea
provide (more) light
provide (more) CO_{2}
provide (plenty of) water
if any one of these is low it will limit the reaction [Do not allow answers referring to temperature, as optimum is specified in question 3)
any three for 1 mark each

Q17.
(a) falls
from 0.25
to 0.19
but by 0.06 gains two marks
if neither figure given, accept steadily / at constant rate for one mark accept mass of oxygen inversely related / negative correlation to height above sea level for 2 marks
(b) (i) 1.8
accept correct readings from graph for (5 and 6.8) if subtraction incorrect for one mark
allow one mark for correct subtraction from incorrect readings
(ii) (blood can carry) more oxygen

Q18.
(a) respiration
no photosynthesis because no light
(b) photosynthesis rate greater than respiration rate
reject no respiration / photosynthesis only
photosynthesis since light

Q19.

(i) 6 in both spaces
do not credit if any formula has been altered
(ii) glucose
allow fructose or dextrose
(iii) mitochondria
accept organelles

Q20.
(a) oxygen;) carbon dioxide;) allow symbols water) each for 1 mark
(b) graph with reasonable vertical scales;
accurate plotting of all points (ignore lines) and labelling lines histogram - must be coded gains 3 marks
(c) 6 of:
during exercise the level of CO_{2} (in the blood) rises; increased breathing to remove excess CO_{2};
increased oxygen supply to muscles;
or increased breathing takes in more O_{2}
or increased heart rate takes more O_{2} to muscles;
increased supply of sugar to muscles;
increased respiration rate;
enable faster rate of energy release;
reference to lactic acid (allow even though not on syllabus) $/ \mathrm{O}_{2}$ debt;
to avoid cramp;
anaerobic reference;
reference to removal of 'heat';
(d) high carbon dioxide concentration;
brain/central nervous system;
heart muscles (both)

Q21.
(i) the higher the rate of oxygen consumption, the shorter the time taken to complete
for 1 mark
(ii) the faster oxygen is taken into the blood, the faster energy can be released in the muscles, and the faster the athlete can run
for 1 mark each

Q22.
(a) 11
accept 10.5-11.5
(b) ideas of
increase / rises
frequently / often
energetically / violently

Q23.
(a) 21.5-22 and $27-27.5$
for 1 mark
(b) ideas of
limiting factor / shortage of e.g. light / carbon dioxide / water / chlorophyll
each for 1 mark
(allow 1 for 'maximum / optimum rate of enzyme activity if no reference to limiting factors) (ignore denaturation)
(c) $21.5-22^{\circ} \mathrm{C}$
(allow first figure from answer to (i) so that no 'double-penalty but only if this first answer is 20 or greater)
maximum rate of photosynthesis / highest / fastest
but related to flat part of curve
most economical heating / cheapest related to heating
must relate to the temperature the candidate has given each for 1 mark

Q24.
(a) Sun / sunlight / light
for 1 mark
(b) (i) 21.5-22 and $27-27.5$ for 1 mark
(ii) ideas of limiting factor / shortage of e.g. light / carbon dioxide / water /chlorophyll
each for 1 mark
(allow 1 for 'maximum' rate of enzyme activity if no reference to limiting factors) (ignore reference to dematuring)
(iii) $21.5-22^{\circ} \mathrm{C}$
(allow first figure from answer to (i) so that no 'double-penalty' but not below 20)
maximum rate of photosynthesis
(can relate to any number on 'flat')
most economical heating (must relate to left end of 'flat' each for 1 mark

Q25.
(a) carbon dioxide
oxygen
(b) (i) e.g. rubber plant/fern
(ii) because can tolerate low light levels
(iii) yellow parts of leaf do not contain chlorophyll therefore more light needed for photosynthesis
(iv) no leaves/only have stem only have small area which can photosynthesise

Q26.
(a) (i) June
for 1 mark
(ii) April
max. light
photosynthesis makes sugars/substances needed for growth for 1 mark each
(b) 2 of:
temperature
carbon dioxide availability
water
chlorophyll
any 2 for 1 mark each

Q27.
(i) with exercise rate rises;
accept between 1-2 minutes rate rises
(when exercise stops) rate falls slowly; accept gentle fall or steady fall for answers which just describe a rise then a fall allow one mark only as an alternative to the first two points
rate does not return to normal or to starting or to resting rate accept rate returns to normal after five minutes or three minutes of rest or after recording ended
(ii) 86 (per minute);
(iii) plotting points;
deduct one mark for each error to max of two if 68 wrongly plotted count as one error (ignore the quality of the line)

Q28.
(a) oxygen, carbon dioxide or water (vapour) for 1 mark each
(b) idea of more air per breath/deeper breaths for 1 mark
(c) (i) respiration for 1 mark
(ii) carbon dioxide, water for 1 mark each
(iii) more energy required, for increased muscular activity for 1 mark each

Q29.
Does not contain chlorophyll which is needed to absorb light or energy each for 1 mark

Q30.
(a) glucose/sugar water
for 1 mark each
(b) (i) 204
for 1 mark
(ii) 49 gains 2 marks (incorrect answer, but correct method gains 1)
(iii) 3 gains 2 marks
(incorrect answer, but correct method gains 1)

Q31.
(a) (i) B or D
(ii) A or B
(b) any four from: more / faster must be implied at least once for full marks

- increased blood (flow) ignore reference to breathing
- (more) oxygen supplied or aerobic respiration allow less anaerobic (respiration) or and prevents oxygen debt
- (more) glucose / sugar / food supplied ignore feeding
- (higher rate of) respiration
- (more) energy needed / released allow made
- (more) carbon dioxide removed
- (muscles) doing (more) work or muscles contracting
- remove heat / cooling
- remove lactic acid or less lactic acid formed

Q32.
(a) reactants: $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
products: $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2}$
balance:
$6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}$
(b) $\mathbf{1}$ mark each for any of the following ideas:
lower CO_{2} concentration
lower light intensity
decrease water availability
alter light wavelength or colour
accept more green light
(c) (i) scales correctly constructed
i.e. equal intervals along each axis
appropriate line correctly drawn
accept dot to dot or line of best fit cancel if line extends through zero or beyond $50^{\circ} \mathrm{C}$
(ii) 18-19 (bubbles per minute)
(iii) heat denatures enzymes or destroys membranes or ruptures cells or destroys cells
do not accept kills enzymes

Q33.
(a) anaerobic respiration
allow phonetic spelling
(b) (i) 4.4
4.2, 4.3, 4.5 or 4.6 with figures in tolerance (6.7 to 6.9 and 2.3 to 2.5) and correct working gains 2 marks
4.2, 4.3, 4.5 or 4.6 with no working shown or correct working with one reading out of tolerance gains 1 mark correct readings from graph in the ranges of 6.7 to 6.9 and 2.3 to 2.5 but no answer / wrong answer gains 1 mark
so more anaerobic respiration (to supply the extra energy) or more glucose changed to lactic acid
allow not enough aerobic respiration

Q34.
(a) (i) plotting values for pulse rates;

2 marks- minus 1 mark for each error to a maximum of 2
Accept values if plotted on blood volume bar chart
Non-horizontal tops to bars producing variable values $=1$ error
If drawn as a line graph =1 mark maximum

Activity
(ii) Either
volume of blood went up then fell;
Accept went to a maximum then fell
pulse rate increased (steadily);
Accept went up steadily or kept going up

Or
at first or with low activity or with moderate activity both pulse and volume increased;

Accept activity up to wall- papering
with more activity pulse continued to increase but volume fell;
(b) Any two of
with increased activity greater muscle use or greater respiration;
need more glucose or oxygen;
Accept more sugar
heart beat faster;
Do not accept more air
Accept more blood needed or blood flows faster
If 'more' or equivalent stated once it can be accepted
elsewhere by implication

Q35.
(a) (i) light or solar
do not credit sun's energy do not credit radiant
(ii) chlorophyll
(iii) chloroplast
(iv) $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
reactants identified (accept words)
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2}$
products identified (accept words)
$6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}$
balanced equation
(b) any two from:
increased CO_{2} concentration
increased water supply
increased temperature (up to a point)
increased light intensity
do not accept heat or warmth
altered light quality by less green or
increasing other colours
(c) any four points

- palisade (mesophyll)
- lots of chloroplasts or chlorophyll or main site for photosynthesis or absorb maximum amount of light
- guard cells
- $\quad \mathrm{CO}_{2}$ in or O_{2} out or water vapour out
- controls size of stoma or pores in leaf

Q36.
any four from:
more energy / respiration required
accept it prevents / reduces anaerobic respiration or less / no lactic acid reference to increase must be made, but only needed once, provided inference is clear for remainder of points. accept 'delivered more quickly' for 'increase'
increase oxygen uptake into blood (in lungs)
increase oxygen delivery to muscles
increase glucose delivery to muscles
increase removal of heat from muscles or increase delivery of heat to skin
increase removal of carbon dioxide from muscles
increase removal of carbon dioxide from blood (in lungs)

Q37.

(a) water [1]
oxygen [1]
(sun) light or solar [1]
do not accept sun's
chlorophyll [1]
do not accept chloroplasts
(b) any two from:
stored as fructose
stored as sucrose
stored as starch
stored as oil or lipid
moved or transported away in the phloem
do not accept "stored" by itself
respired or burnt up for energy or
fuel changed to protein
changed to cellulose
changed to fructose
changed to starch
changed to oil or lipid
do not accept "food for plant"
do not accept "used up" by itself
(c) (i) roots or root hair (cells)
(ii) the mineral salts are (dissolved) in water [1]
water transports salts throughout the plant or water enables osmosis or diffusion to take place [1]
(d) (i) plants grow better with some nutrients than none or
plants grow better with nitrates than without comparison is needed accept "faster" as equivalent to "better" accept don't grow well with only water
(ii) $0.14(\mathrm{~g})$
units not needed
(iii) making protein or amino acids do not accept help them grow accept named protein or DNA or chlorophyll
any two from:
(iv) type or variety or starting weight or
(iii) size of seedlings
keep the environment the same only if light or temperature or day length not already credited
light
temperature not heat time of growth do not accept the same equipment do not accept help them grow
day length
amount of culture solution or/size of
accept named protein, DNA chlorophyll
boiling tube
number of seedlings per tube
pH
CO_{2}
humidity

Q38.
(a) (i) L.H.S. - water / $\mathrm{H}_{2} \mathrm{O}$
R.H.S. - oxygen / O_{2} accept $\mathrm{H}^{2} \mathrm{O}$
(ii) chlorophyll
must make it clear that it is the chlorophyll do not credit chloroplast on its own do not accept chloroplast / chlorophyll without indication that it is chlorophyll
(b) (i) light intensity / temperature is high enough for higher rate or light / temperature is not limiting
low CO_{2} available or not enough CO_{2} available or rate would be higher with more CO_{2}
(ii) temperature
allow water / rain
allow (too) cold / hot as a minimum
allow wave length / frequency / colour
ignore ions
ignore heat

Q39.
(a) (i) count the pulse or count beats in artery in wrist neck or feel the pulse or take the pulse or find the pulse
accept use of heart monitor or heart meter
(ii) 80

2 marks for correct answer
$1 f$ answer incorrect allow 1 mark for showing 8000 divided by 100 or indicating cardiac output divided by stroke volume
(iii) Increased activity stroke volume falls / gets less / should get higher / reach a peak accept does not increase or changes from $134 \mathrm{~cm}^{3}$ to 127 cm
(iv) 1 ncreased / more ventricle contractions accept heart beat faster or it beats faster or more powerful contractions
(b) (stronger heart muscle) increases cardiac output or increases stroke volume accept pumps more blood (per beat) or pumps blood faster ignore heart bigger
so more (oxygenated) blood can be sent to muscles accept more oxygen sent to muscles

Q40.
(a) The starch is stored for use later no mark if more than one box is ticked
(b) (i) any two from:
do not accept temperature
apply list principle
ignore reference to time

- carbon dioxide (concentration)
- light intensity
- light colour / wavelength
allow 1 mark for light if neither intensity or colour are awarded
- pH
- size / amount of pondweed / plant
- same / species / type pondweed
- amount of water in the tube ignore amount of water alone
(ii) number / amount of bubbles or amount of gas / oxygen
allow volume of bubbles (together)
ignore 'the bubbles' unqualified
(relevant reference to) time / named time interval
allow how long it bubbles for
do not accept time bubbles start / stop
ignore speed / rate of bubbling
ignore instruments
do not accept other factors eg temperature
accept how many bubbles per minute for 2 marks
(c) (i) temperature
allow heat / cold $/{ }^{\circ} \mathrm{C}$
(ii) carbon dioxide / CO_{2}
allow CO2
do not accept CO^{2}
(a) any three from:
- rose rapidly (during exercise) / use of approximate figures
- then more slowly (during exercise)
accept rate (of increase) slows down
- to max 126 / at 5 minutes / end of exercise
- rapid fall (during recovery) or use of approximate numbers
- then less rapid fall / use of approximate numbers
- returned to resting rate (60 bpm) by 11 minutes
(b) arteries dilate / widen
accept muscle in wall relaxes
(c)
any faur from:
- muscles using more energy ar more energy released
- muscles respire faster
- supply more oxygen
- supply more glucose / sugar
- remove more CO_{2}
- remove lactic acid
- remove heat / to cool
do not accept energy produced
allow for aerobic respiration
ur to prevent anaerobic respiration
'more' needed ONCE only for full marks

Q42.
(a) A
no mark - can be specified in reason part
if B given = no marks throughout
if unspecified plus two good reasons = 1 mark
high(er) pressure in A
allow opposite for B
do not accept 'zero pressure' for B
pulse / described in A
accept fluctuates / 'changes'
allow reference to beats / beating
ignore reference to artery pumping
(b) (i) 17
(ii) 68
accept correct answer from candidate's (b)(i) $\times 4$
(c) (i) oxygen / oxygenated blood allow adrenaline ignore air
glucose / sugar
extra wrong answer cancels eg sucrose / starch / glycogen / glucagons / water allow fructose as an alternative to glucose ignore energy ignore food
(ii) carbon dioxide $/ \mathrm{CO}_{2}$ / lactic acid
allow $\mathrm{CO} 2 / \mathrm{CO}^{2}$ ignore water

Q43.

(a) increased speed
or harder exercise / running
\rightarrow increased need / use / loss of energy
allow further you run / walk the more energy you need
increased mass / bigger \rightarrow increased use of energy
(b) any three from:

- supply / using (more / enough) oxygen
or get (more) oxygen in blood(*)
- remove (more) $\mathrm{CO}_{2}\left({ }^{*}\right)$
- doing (more) work
or
using (more) energy allow produce energy(*)
$\left(^{*}\right)$ need reference to 'more' ONCE only for full marks
- for respiration
- prevent build up of lactic acid
or prevent oxygen debt
or prevent anaerobic (respiration)
or allow aerobic (respiration)

Q44.
(a) (i) water $/ \mathrm{H}_{2} \mathrm{O}$
allow hydrogen oxide

> oxygen / $\mathrm{O}_{2} / \mathrm{O}$
> allow upper and lower case symbols and superscripts answers must be in this order
(ii) respiration in the plant
(b) light (no light) / light intensity
ignore references to the card / covered / uncovered
chlorophyll (no chlorophyll) / chloroplast
allow leaf colour or both green and white given
(c) (i) no light (received) or it's dark allow no photosynthesis do not allow little light / photosynthesis ignore sun apply list principle for other factors
(ii) no chlorophyll / chloroplasts (present) allow no / little photosynthesis allow white or not green or little chlorophyll / few chloroplasts
apply list principle for other factors

Q45.
(a) any two from:

- age
- gender
- mass
- number in group
- time
(b) any two from:
- highest (mean) mass loss on Rosemary Conley or Rosemary Conley most effective
- least (mean) mass loss in control group or mean
(c) (Atkins)
costs least
mass loss very similar to other diets or second highest mass loss or as effective as other diets
(d) any two from:
- (exercise) increases metabolic rate / respiration
ignore sweating
- (exercise) needs / uses energy / calories
allow burns fat / calories do not accept energy for respiration
- (this) energy comes from food / fat
- less food / energy/ calories converted to fat

Q46.
(a) the starch is stored for later use.
(b) (i) any two from:
do not accept temperature-apply list principle
ignore reference to time

- carbon dioxide (concentration)
- light intensity
allow one mark for light if neither intensity or colour are awarded
- light colour / wavelength
- pH
- size / amount plant
- same / species / type plant
allow 'the plant'
- amount of water in the tube
ignore amount of water alone
(ii) number / amount of bubbles or amount of gas / oxygen
allow volume of bubbles (together)
ignore 'the bubbles' unqualified
(relevant reference to) time / named time interval
allow how long it bubbles for
do not accept time bubbles start / stop
ignore speed / rate bubbles
ignore instruments
do not accept other factors eg temperature
accept how many bubbles per minute for 2 marks
(c) (i) temperature
allow heat / ${ }^{\circ} \mathrm{C} /$ cold
(ii) carbon dioxide $/ \mathrm{CO}_{2}$
$\mathrm{CO} 2 / \mathrm{CO}^{2} / \mathrm{Co}_{2} / \mathrm{Co}^{2} / \mathrm{CO}_{2} / \mathrm{CO}^{2}$
do not accept CO /2CO

Q47.

(a) (i) brain
(ii) skin
(iii) $1 / 25$ or 4% or 0.04 or 1 in 25 or 1:25 or 1 out of 25

$$
\text { allow } \frac{1000}{25000}
$$

(b) any two from:

- increased / high heart rate / pulse rate do not allow pumps more blood unqualified
- dilation / widening of arteries / arterioles (to skeletal muscles)
accept vasodilation unqualified
do not accept reference to veins / capillaries
or
less blood flow to other organs
- increased stroke volume / described
(c) ignore references to breathing
more respiration / description
or
more energy required or to provide more energy
respiration / process described $\rightarrow \mathrm{CO}_{2}$
do not accept anaerobic respiration
CO_{2} diffuses into blood

Q48.
(a) (i) 19800
for correct answer ignore working or lack of working 165×120 but no answer / wrong answer = 1 mark (ignore extras)
(ii) any two from:

- for respiration
ignore oxygen debt
- energy released
allow energy produced
- prevents anaerobic respiration
- prevents build-up of lactic acid
(b) any two from:
- increased breathing rate(*)
- increased depth of breathing or deep breathing(*)
${ }^{*}$)more breathing is max 1 mark
ignore increase in heart rate
allow heavier breathing
do not allow harder breathing
- dilation of arteries / vasodilation
allow blood vessels dilate do not allow veins / capillaries dilate
- blood diverted from elsewhere ignore name of organ

Q49.
(a) (i) colour of light / bulb / lamp
allow wavelength for colour
allow bulb alone
do not accept light / colour unqualified
(ii) any one from eg

- temperature
allow heat
- light intensity or distance between lamp and plant / tube allow amount / brightness of light
ignore light unqualified
- carbon dioxide
allow symbols
- other light in room
allow use a dark room
- mass / size / amount / age / type of pondweed
allow same piece of pondweed
ignore pondweed unqualified
- volume / amount of water
ignore reference to time
(iii) improved reliability
allow for reliability or less likely to lose count
or
can spot anomalies / changes
allow reference to calculating a mean / average ignore reference to accuracy / precision / fair
(b) (i) green
(ii) any two from:
ignore references to colour
- least / less bubbles / gas / oxygen / mean
reference to least / less needed only once, in context, for 2 marks
- least / less photosynthesis
- least / less glucose / sugar / carbohydrate / food made only penalise no once, ie
no bubbles = $\mathbf{0}$ mark
no bubbles so no photosynthesis = 1 mark
allow most / more green light reflected (by chloroplasts)

Q50.
(a) (i) 6 peaks in heart rate
accept 6 increases / spikes or goes very high 6 times allow heart rate increases each time he runs
(ii) $2.5 / 2^{1 ⁄ 2} 2$
allow 2 minutes 30 seconds do not accept 2.3 / 2:3 / 2.30
(b) more / faster / a lot must be stated at least once for full marks
(more) oxygen supplied / needed
allow less anaerobic (respiration)
or (more) aerobic respiration
or prevents oxygen debt
(more) glucose / sugar / food supplied / needed
ignore feeding
(more) energy needed / released
allow energy produced / made
(more) carbon dioxide / heat / lactic acid removed (from muscles) or more cooling or less lactic acid formed

Q51.
(a) (i) any three from:
if diet given as answer = max 2

- age (of athlete)
- gender (of athlete)
- starting concentration of glycogen
- type / intensity of exercise
- length of exercise period
- number of training sessions
if none of these points gained amount of exercise = $\mathbf{1}$ mark
- time interval between exercise sessions
- exercise at same time of day
if last four points not awarded allow time (for exercise) for 1 mark
ignore references to amount of energy
ignore they are both athletes
(ii) any two from:
- intensity of exercise
- amount of exercise between sessions
- starting concentration of glycogen
- fitness / health
- metabolic rate / respiration rate
- amount / mass of muscle / physique
- aspects of diet qualified, eg amount of food eaten do not accept amount of carbohydrate if no other marks awarded allow height / mass / weight for 1 mark
(iii) (B has) less glycogen
$h e=B$
or (B's glycogen) fell more
accept use of approximate figures
or (B's glycogen) built up less
allow other correct observations from graph eg A is lower at end of first session ignore rate of fall
(b) athlete \mathbf{A} (no mark)
to gain full marks 'more' must be given at least once
athlete \mathbf{A} had more glycogen / \mathbf{B} has less (only if \mathbf{A} chosen to complete marathon)
accept converse argument for \boldsymbol{B}
(glycogen / glucose) used in respiration ignore anaerobic
(more) energy released / available in athlete \mathbf{A} allow 'energy made'
and either energy used for movement / muscle action / to run or
(extra) glycogen \rightarrow (more) glucose

Q52.
(a) $6 \mathrm{H}_{2} \mathrm{O}$
in the correct order
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(b) (i) control
do not accept 'control variable'
allow:
to show the effect of the organisms
or
to allow comparison
or to show the indicator doesn't change on its own
(ii) snail respires
releases CO_{2}
(iii) turns yellow
plant can't photosynthesise so CO_{2} not used up
but the snail (and plant) still respires so CO_{2} produced

Q53.

(a) person with muscle disease:
allow reverse argument for healthy person
any three from:
NB all points are comparative except peak (point 3) allow use of two approximate figures as a comparison

- higher resting rate or higher at start
- when exercise starts / then increases more / more rapidly accept description eg rise fall
- peaks (then falls)
- levels off later than healthy person
- higher rate during exercise
if no other marks awarded allow 1 mark for 'it's higher'
- greater range
(b) (i) oxygen
accept adrenaline
accept O_{2}
do not accept $\mathrm{O}, \mathrm{O} 2$ or O^{2}
(ii) cannot release sugar / glucose (from glycogen)
or
cannot store glucose / sugar (as glycogen)
need to receive glucose / sugar (from elsewhere)

for energy / respiration / cannot store energy

ignore aerobic / anaerobic

Q54.
(a) water + carbon dioxide \rightarrow oxygen + glucose extra box ticked negates mark
(b) Level 3 (5-6 marks):

A coherent method is described with relevant detail, which demonstrates a broad understanding of the relevant techniques and procedures. The steps in the method are logically ordered. The method would lead to the production of valid results.

Level 2 (3-4 marks):

The bulk of the method is described with mostly relevant detail, which demonstrates a reasonable understanding of the relevant scientific techniques and procedures.
The
method may not be in a completely logical order and may be missing some detail.

Level 1 (1-2 marks):

Simple statements are made which demonstrate some understanding of some of the relevant scientific techniques and procedures. The response may lack a logical structure and would not lead to the production of valid results.

0 marks:

No relevant content

Indicative content

- description of how the apparatus would be used
- reference to control intensity of light / brightness
- use of ruler to measure distance of light from beaker / pondweed
- reference to varying colour of light or use of different filters
- plant releases gas / oxygen
- measure number of bubbles / volume of gas produced
- same length of time
- reference to control of temperature
- reference to control / supply of carbon dioxide in water
- do repeats and calculate a mean
(c) rate does not increase further if light intensity increased beyond 20
allow graph levels off after 20
(d) any one from:
- temperature
- carbon dioxide (concentration)
- amount of chlorophyll
allow number of chloroplasts

Q55.

(a) (i) rate of chemical reactions (in the body)
(ii) any two from:

- heredity / inheritance / genetics
- proportion of muscle to fat or (body) mass
allow (body) weight / BMI
- age / growth rate
- gender
accept hormone balance or environmental temperature ignore exercise / activity
(b) (i) 77
correct answer with or without working gains 2 marks allow 1 mark for 70 / 56 or 1.25 or 5
(ii) increase exercise
accept a way of increasing exercise
reduce food intake
accept examples such as eat less fat / sugar
allow go on a diet or take in fewer calories ignore lose weight
ignore medical treatments such as gastric band / liposuction

Q56.
(a) (i) correct bar heights three correct 2 marks two correct 1 mark one or none correct 0 marks ignore width
(ii) (Stream Y)
has many sludge worms / bloodworms
or
has no mayflies / caddis or few shrimp allow 1 mark if invertebrate not named but correct association given
which indicate medium or high pollution
(b) (i) suspended solids increase (as a result of sewage overflow)
then decrease downstream / return to original levels
oxygen levels decrease (after sewage overflow)
and then rise again
(ii) any three from:

- mayflies decrease (to zero) near overflow accept 'have died out
- because oxygen is low or mayflies have high oxygen demand
- mayflies repopulate / increase as oxygen increases again
- can't be sure if dissolved oxygen or suspended solids is the cause
(c) they respire / respiration
aerobic respiration gains 2 marks
this requires / uses up the oxygen

Q57.
(a) LHS - glucose

RHS - water
allow $\mathrm{H}_{2} \mathrm{O} / \mathrm{H} 2 \mathrm{O}$
(b) so the earthworms' body temperature would change to $20^{\circ} \mathrm{C}$
(c) (i) 56 or 55 or 54
if incorrect answer given accept 60-5 for 1 mark
or 60-6 for 1 mark
or 60-4 for 1 mark
(ii) one-tenth of answer to (c)(i) eg 5.5
(at $10^{\circ} \mathrm{C} /$ lower temperature):
lower rate of respiration
allow chemical reactions slower or enzymes less active ignore breathing
do not allow anaerobic
worms less active / worms release less energy / worms use less energy
(d) (i) anomalous result / not in line with other data / does not fit the pattern
(ii) more representative / more reliable / can check 'repeatability' / see if get similar values / identify anomalies
ignore valid / more fair
ignore reproducible
ignore 'to remove' anomalies
do not accept more accurate or more precise

Q58.
(a) (placed) randomly allow description of placement
sufficient number (of quadrats) used
count (dandelions) in each quadrat
use mean number of dandelions, area of quadrat and area of field to estimate population
accept (area of field / area quadrat) \times mean number of dandelions per quadrat
(b) $(40 \times 145) / 0.25=23200$
$(0.42 \times 23200=) 9744$
allow 9744 with no working shown for 2 marks
allow ecf from correct attempt at the previous step) $\times 0.42$ for 1 mark
(c) Level 2 (3-4 marks):

A detailed and coherent explanation is given. Logical links between clearly identified relevant points are made to explain why dandelion growth may be limited.

Level 1 (1-2 marks):
Discrete relevant points are made. The logic may be unclear.
0 marks:
No relevant content

Indicative content

factors that may be considered:
competition for resources including:

- light
- water
- space
- mineral ions (allow nutrients / salts / ions from the soil)
reference to why growth may be limited:
- (light) energy for photosynthesis
- water as a raw material for photosynthesis / support
- surface area exposed to light
- sugar / glucose produced in photosynthesis
- (space) to grow bigger
- (space) for growth of root system
- (mineral ions) for growth
- (mineral ions / sugar) for production of larger molecules or named example

Q59.

(a) $\mathrm{LHS}=$ water

RHS = glucose
(b) any three from:

- (measure) temperature ignore reference to fair test
- to check that the temperature isn't changing
- rate of reaction changes with temperature
- temperature is a variable that needs to be controlled
allow lamp gives out heat
(c) (i) 10
correct answer = 2 marks
allow 1 mark for: $\frac{(10+9+11)}{3}$
allow 1 mark for correct calculation without removal of anomalous result ie 15
(ii) graph:
allow ecf from (c)(i)
label on y-axis as 'number of bubbles per minute'
three points correct = 1 mark
allow $\pm 1 \mathrm{~mm}$
four points correct = $\mathbf{2}$ marks
line of best fit $=$ smooth curve
(iii) as distance increases, rate decreases - pro
allow yes between 20-40
but should be a straight line / but line curves - con / not quite pro
allow not between 10-20
(d) any four from:
- make more profit / cost effective
- raising temp. to $25^{\circ} \mathrm{C}$ makes very little difference at $0.03 \% \mathrm{CO}_{2}$
- (at $20^{\circ} \mathrm{C}$) with CO_{2} at 0.1%, raises rate
- (at $20^{\circ} \mathrm{C}$ with CO_{2} at $\left.0.1 \%\right) \rightarrow>3 x$ rate / rises from 5 to 17
- although $25^{\circ} \mathrm{C} \rightarrow$ higher rate, cost of heating not economical
- extra light does not increase rate / already max. rate with daylight accept ref to profits c.f. costs must be favourable

Q60.
(a) (i) chloroplast
(ii) cell wall
(b) (i) osmosis
accept diffusion
(ii) cell wall (prevents bursting)
(c) (i) carbon dioxide
allow correct formula
glucose
allow sugar / starch
(ii) any two from:

- light sensitive spot detects light
- tells flagellum to move towards light
- more light = more photosynthesis
(d) (cell has) larger SA:volume ratio
short (diffusion) distance
allow correct description
(diffusion) via cell membrane is sufficient / good enough
or
flow of water maintains concentration gradient

