

4.4 Bioenerge Higher	tics	Name: Class:	
		Date:	
Time:	213 minutes		
Marks:	212 marks		
Comments:			

Q1.

Diagram 1 shows the main features of human blood circulation.

(a) What changes in the composition of **blood** occur in the lungs?

Diagram 2 shows how the circulation of blood changes between rest and exercise.

(2)

Rate of supply of blood to parts of the body (cm³/min) when at rest and during exercise.

(b) (i) Use the information from Diagram 2 to complete the table below.

Parts of the body to be included:

Digestive System Skin Brain Arteries of Heart Muscles of Skeleton Bone

HOW BLOOD SUP	PLY CHANGES DURING	EXERCISE
reduced	unchanged	increased
Kidney		

(4)

(3)

(Total 9 marks)

(ii) What happens to the rate of supply of blood to the whole body with exercise?(You should make full use of the information provided.)

Q2.

In a stable community, the processes that remove carbon are balanced by processes that return carbon.

The figure below shows a woodland community.

Describe how carbon is recycled in a woodland community.

(Total 6 marks)

Q3.

(a) The table shows an athlete's breathing rate after the end of a race.

Use the information shown in the table to draw a line graph.

Time after end of race (minutes)	Breathing rate (litres per second)
0	4
1	2
2	1
3	1
4	1
5	1

(b) The bar charts show what happens in an athlete's muscles when running in two races of different distances.

(i) Compare what happens in the athlete's muscles when running in the two races.

(3)

(ii) Use the information in the box to explain your answer to (i).

aerobic respiration	glucose + oxygen	····•	carbon dioxide + water
anaerobic respiration	glucose	·····•	lactic acid

(3)

(C) Explain why the athlete breathes at a faster rate than normal for two minutes after finishing a 100 metres race. (Total 10 marks)

Q4.

The diagram shows part of the carbon cycle.

Use the information in the diagram and your own knowledge to describe in detail how carbon is cycled between living organisms and the air.

Your answer should include the names of any processes involved.

(2)

Q5.

A scientist investigated the effect of oxygen concentration and temperature on the rate of decay of leaves in a container.

The scientist's results are shown in the graph.

(a) The rate of decay is measured as the volume of carbon dioxide produced per hour.

Explain why carbon dioxide is produced during the process of decay.

(b) Give **two** conclusions that can be made from the results shown in the graph.

Q6.

The diagram shows the mass of carbon dioxide released into and removed from the air each year in billions of tonnes.

Describe the processes **shown on the diagram** that exchange carbon dioxide with the air.

Explain the overall effect of these processes on the mass of the carbon dioxide in the air.

The diagram shows some plants growing in a greenhouse on a hot summer's day.

Which **one** of the following factors is most likely to limit the rate of photosynthesis at this time?

- carbon dioxide concentration
- light intensity
- temperature

Factor _____

Explain the reason for your answer.

(Total 4 marks)

Q8.

Plants need nitrate ions in order to make proteins.

A plant is growing in soil flooded with water.

Explain why the plant cannot absorb enough nitrate ions.

(5)

(2)

Q9.

The graph shows how the rate of photosynthesis is affected by different conditions.

Q10.

A food chain in the North Atlantic Ocean is:

The graphs show how over a year:

- the population size of diatoms in the North Atlantic varies;
- the light intensity alters;
- the concentration of nitrate and phosphate minerals alters.

(a) Explain why the light intensity is a major factor in controlling the numbers of diatoms.

(2) (b) (i) Suggest two reasons why the population of diatoms decreases between spring and summer. 1. _____ 2._____ (2) (ii) Give **two** reasons why the population of diatoms decreases in autumn. 1. 2. (2) (c) Use the information on the graph to suggest what change causes the number of

Use the information on the graph to suggest what change causes the number of diatoms to increase in the late summer. Give a reason for the change.

(2)

Q11.

Plants need chemical energy for respiration and for active transport.

- (i) Write a balanced chemical equation which represents the process of respiration in plants.
- (ii) Describe the process of active transport in the root hair cells of plants.

Q12.

(a) The concentration of sulfate ions was measured in the roots of barley plants and in the water in the surrounding soil.

The table shows the results.

	Concentration of sulfate ions in mmol per dm ³
Roots of barley plants	1.4
Soil	0.15

Is it possible for the barley roots to take up sulfate ions from the soil by diffusion?

(i) The graph shows that the rate of sulfate ion uptake between 100 and 200 minutes, **without** oxygen, was 0.4 arbitrary units per minute.

The rate of sulfate ion uptake between 100 and 200 minutes, **with** oxygen, was greater.

How much greater was it? Show clearly how you work out your answer.

Answer _____ arbitrary units

(ii)	The barley roots were able to take up more sulfate ions with oxygen than
	without oxygen.

Explain how.

(3) (Total 7 marks)

Q13.

Low light intensity is one factor that limits the yield of a crop.

In Britain, many tomato growers use artificial lights to increase the yield of tomato crops.

The table shows the amount of natural daylight and artificial lamplight received by a tomato crop grown in a greenhouse.

	Natural reco by tom	daylight eived ato plant	Artificial giv to toma	lamplight ⁄en to plant	Total light energy received	Percentage increase in growth
Month	Day length in hours	Light energy received by plant per day in J/cm ²	Hours of light given per day	Light energy received by plant per day in J/cm ²	by plant per day in J/cm²	resulting from artificial light
January	8.1	239	18	492	731	206
February	9.9	492	18	492	984	100
March	11.9	848	12	328	1176	39
April	13.9	1401	2	55	1456	4
Мау	15.5	1786	0	0	1786	0
June	16.6	1960	0	0	1960	0

July	16.2	1849	0	0	1849	0
August	14.7	1561	0	0	1561	0
September	12.8	1064	2	55	1119	5
October	10.6	614	11	301	915	49
November	8.8	288	18	492	780	171
December	7.6	183	18	492	675	269

(a) Describe the pattern for the amount of light energy received from natural daylight by a tomato plant during the day.

(b) A tomato plant needs 600 J of light energy per cm² each day to grow and produce tomatoes.

Use this information and data from the table to suggest an explanation for the pattern of the artificial light given to the tomato plants.

(2) (Total 5 marks)

Q14.

Students investigated the effect of changing the carbon dioxide concentration on the rate of photosynthesis in pieces of leaf.

Diagram 1 shows the type of leaf used by the students.

(3)

The students:

- cut pieces of leaf from the green region
- put the pieces into tubes
- added different concentrations of carbon dioxide to each tube
- shone lights on the tubes with either high or low light intensity
- recorded the concentration of oxygen in the tubes after 5 hours.

Diagram 2 shows how each experiment was set up.

Diagram 2

The graph shows the results of the investigation.

(a) (i) Describe the effect of increasing carbon dioxide concentration on the rate of photosynthesis at low light intensity.

(1) Explain the effect that you have described.
	In your answer you should refer to limiting factors.
W	hat would have been the effect on oxygen concentration over the five-hour period
" F	ffect
F	xplain vour answer.
F	volanation
-	
_	
_	
S	ome people keep indoor plants which have variegated leaves (leaves with green
S al If	ome people keep indoor plants which have variegated leaves (leaves with green nd white regions). plants with variegated leaves are kept in dim light conditions the white areas of th aves start to turn green.
S al lf T	ome people keep indoor plants which have variegated leaves (leaves with green nd white regions). plants with variegated leaves are kept in dim light conditions the white areas of th aves start to turn green. his is an advantage to the plant.
S al If T S	ome people keep indoor plants which have variegated leaves (leaves with green nd white regions). plants with variegated leaves are kept in dim light conditions the white areas of th aves start to turn green. his is an advantage to the plant. uggest why.
S al If Ie S	ome people keep indoor plants which have variegated leaves (leaves with green nd white regions). plants with variegated leaves are kept in dim light conditions the white areas of th aves start to turn green. his is an advantage to the plant. uggest why.
S al If Ie S	ome people keep indoor plants which have variegated leaves (leaves with green nd white regions). plants with variegated leaves are kept in dim light conditions the white areas of th aves start to turn green. his is an advantage to the plant. uggest why.
S al If Ie S	ome people keep indoor plants which have variegated leaves (leaves with green nd white regions). plants with variegated leaves are kept in dim light conditions the white areas of th aves start to turn green. his is an advantage to the plant. uggest why.
Sal If Ie S	ome people keep indoor plants which have variegated leaves (leaves with green nd white regions). plants with variegated leaves are kept in dim light conditions the white areas of th aves start to turn green. his is an advantage to the plant. uggest why.
Sau If Ie S	ome people keep indoor plants which have variegated leaves (leaves with green nd white regions). plants with variegated leaves are kept in dim light conditions the white areas of th aves start to turn green. his is an advantage to the plant. uggest why.

Read the passage.

Glutton up a gum tree

Along the banks of the Cygnet River on Kangaroo Island, the branches of the dying gum trees stretch out like accusing fingers. They have no leaves. Birds search in vain for nectar-bearing flowers.

The scene, repeated mile upon mile, is an ecological nightmare. But, for once, the culprit is not human. Instead, it is one of the most appealing mammals on the planet – the koala. If the trees are to survive and provide a food source for the wildlife such as koalas that depend on them, more than 2000 koalas must die. If they are not removed the island's entire koala population will vanish.

Illegal killing has already started. Worried about soil erosion on the island, some farmers have gone for their guns. Why not catch 2000 koalas and take them to the mainland? "Almost impossible," says farmer Andrew Kelly. "Four rangers tried to catch some and in two days they got just six, and these fought, bit and scratched like fury."

The diagram shows the flow of energy through a koala. The numbers show units of energy.

(i) Calculate the percentage of the food intake which is converted into new tissues for growth. Show your working.

_____%

(2)

(ii) Give **three** different ways in which the koala uses the energy released in respiration.

1. _

2		
8		
	(Total 5 ma	(ark

Q16.

The graph shows the effect of increasing the carbon dioxide content of the inhaled air on:

- the number of breaths per minute;
- the total volume of air breathed per minute.

(i) Describe the effect of increasing the percentage of carbon dioxide in the inhaled air on the total volume of air breathed.

(ii) Suggest why the total volume of inhaled air is **not** directly proportional to the number of breaths per minute.

(2)

(2) (Total 4 marks)

Q17.

The diagram shows a plant leaf during photosynthesis.

- (a) Name:
 - (i) gas **X**; _____
 - (ii) gas **Y**._____

(b) Why is sunlight necessary for photosynthesis?

(c) Some of the sugars produced by photosynthesis are stored as starch in the roots. Explain, as fully as you can, why it is an advantage to the plant to store carbohydrate as starch rather than as sugar. (2)

(1)

(3) (Total 6 marks)

Q18.

A student's breathing was monitored before and after vigorous exercise. The student breathed in and out through a special apparatus. The graphs show the changes in the volume of air inside the apparatus. Each time the student breathed in, the line on the graph dropped. Each time the student breathed out, the line went up.

(a) How many times did the student breathe in per minute:

before exercise; ____

after exercise? ____

Rate of oxygen use after exercise =	dm ³ per minute
The breathing rate and the amount of even though the student sat down to re	oxygen used were still higher after exercise, est. Why were they still higher?
The breathing rate and the amount of even though the student sat down to re	oxygen used were still higher after exercise, est. Why were they still higher?
The breathing rate and the amount of even though the student sat down to re	oxygen used were still higher after exercise, est. Why were they still higher?
The breathing rate and the amount of even though the student sat down to re	oxygen used were still higher after exercise, est. Why were they still higher?

Q19.

An athlete carried out a 6-month training programme.

Graph 1 shows the effect of the same amount of exercise on his heart rate before and after the training programme.

(a) (i) Use **Graph 1** to find the heart rate of the **trained** athlete 5 minutes after the start of the exercise.

Heart rate = _____ beats per minute

(1)

The stroke volume of the heart is the volume of blood pumped out of the left side of the heart in one heart beat.

Graph 2 shows the relationship between the stroke volume and the heart rate before and after the athlete did the training programme.

(C) An increased cardiac output will provide more oxygen and more glucose to the working muscles.

Explain how this helps the athlete during exercise.

(2)

 		 	_
 	······	 	_
			_
 		 	_
 		 	_
			_
			_
			(4)

(Total 9 marks)

Q20.

Marathon runners are recommended to have a high carbohydrate diet prior to a race. Three athletes tried out three dietary regimes prior to a marathon race.

These three dietry regimes were as follows.

Athlete A	Up to 7 days before the race	-	Normal mixed diet
	7 days before the race	-	Prolonged extreme physical activity
	6-3 days before the race carbohydrate	-	Protein and fat diet; no
	2 and 1 days before the race	-	Large carbohydrate intake
Athlete B	Up to 5 days before race	-	Normal mixed diet
	5 days before the race	-	Prolonged extreme physical activity
	4-1 days before the race	-	Large carbohydrate intake
Athlete C	Up to 4 days before the race	-	Normal mixed diet
	4-1 days before the race	-	Large carbohydrate intake

The graph below shows the effect of each of these dietary regimes on glycogen levels in the athletes' muscles

(a)

		content of muscles?
	(ii)	(1) Describe how this effect occurs.
(b)	(i)	(3) Evaluate the three regimes as preparation for a marathon race.
	(ii)	(3 Suggest a possible explanation for the different effects of the three regimes.
		(2 (2) (Total 9 marks)

Q21.

The diagram shows where three seaweeds live on a seashore. As the tide moves in and out, these seaweeds are covered with seawater for different lengths of time.

High tide leve
Flat wrack
Bladder wrack
Saw wrack Low tide level

Some students investigated the rate of photosynthesis in these seaweeds.

- They cut ten small discs from one seaweed.
- They dropped the discs into seawater in a beaker.
- They recorded the time taken for the fifth disc to float to the surface.
- They repeated this experiment with the other two seaweeds.

(a) (i) Suggest why the discs floated to the surface.

- (ii) Suggest the advantage of recording the time taken for the fifth disc to reach the surface, rather than for the tenth disc.
- (1)

(1)

(b) The students carried out their experiments at different light intensities. The graph shows the results they collected.

(2) (Total 6 marks)

(2)

Q22.

During exercise, the heart beats faster and with greater force.

The 'heart rate' is the number of times the heart beats each minute. The volume of blood that travels out of the heart each time the heart beats is called the 'stroke volume'.

In an investigation, **Person 1** and **Person 2** ran as fast as they could for 1 minute. Scientists measured the heart rates and stroke volumes of **Person 1** and **Person 2** at rest, during the exercise and after the exercise.

The graph below shows the scientists' results.

(a) The 'cardiac output' is the volume of blood sent from the heart to the muscles each minute.

Cardiac output = Heart rate × Stroke volume

At the end of the exercise, **Person 1**'s cardiac output = $160 \times 77 = 12320$ cm³ per minute.

Use information from **Figure above** to complete the following calculation of **Person 2**'s cardiac output at the end of the exercise.

At the end of the exercise:

Person 2's heart rate = _____ beats per minute

Person 2's stroke volume = _____ cm³

Person 2's cardiac output = _____ cm³ per minute

(3)

- (b) **Person 2** had a much lower cardiac output than **Person 1**.
 - (i) Use information from **Figure above** to suggest the **main** reason for the lower cardiac output of **Person 2**.

(ii) **Person 1** was able to run much faster than **Person 2**.

Use information from Figure above and your own knowledge to explain why.

Q23.

Lactic acid production during exercise affects an athlete's performance.

Explain why lactic acid is produced during exercise.

(Total 2 marks)

Q24.

The graph shows the uptake of carbon dioxide and the release of carbon dioxide by a bean plant on a hot summer's day.

- (a) At which **two** times in the day did the rate of photosynthesis exactly match the rate of respiration in the bean plant?
 - 1._____
- (b) The bean plant respires at the same rate all through the 24 hour period.
 - (i) How much carbon dioxide is released each hour during respiration?

_____ arbitrary units

(1)

(1)

(ii) How much carbon dioxide is used by photosynthesis in the hour beginning at 3 pm?

Answer = _____ arbitrary units

- (1)
- (c) Over the 24 hour period, the total amount of carbon dioxide taken in by the bean plant was greater than the total amount of carbon dioxide given out by the bean plant.

Explain, in detail, why this was important for the bean plant.

(2) (Total 5 marks) Q25. Complete the equation for photosynthesis. (a) light energy + oxygen (2) Scientists investigated how temperature affects the rate of photosynthesis. (b) The scientists grew some orange trees in a greenhouse. They used discs cut from the leaves of the young orange trees. The scientists used the rate of oxygen production by the leaf discs to show the rate of photosynthesis. (i) The leaf discs did not produce any oxygen in the dark. Why? (1) (ii) The leaf discs took in oxygen in the dark. Explain why. (2)

(c) In their investigation, the scientists measured the rate of oxygen release by the leaf discs in the light. The scientists then measured the rate of oxygen uptake by the leaf discs in the dark.

The graph shows the effect of temperature on

oxygen production in the light

• oxygen production in the light added to oxygen uptake in the dark.

Use the information from the graph to answer each of the following questions.

(i) Describe the effect of temperature on oxygen production in the light.

Explair tempe	n the effect of temperature on oxygen production in the light when th rature is increased:
from 2	5 °C to 35 °C
from 4	0 °C to 50 °C.

(d) A farmer in the UK wants to grow orange trees in a greenhouse. He wants to sell the

(2)

oranges he produces at a local market. He decides to heat the greenhouse to 35 °C.

Explain why he should **not** heat the greenhouse to a temperature higher than 35 °C. Use information from the graph in your answer.

(Total 12 marks)

(3)

Q26.

A student investigated the effect of light intensity on the rate of photosynthesis in pondweed.

(a) The formula for glucose is $C_6H_{12}O_6$

Use the formula for glucose to write the balanced symbol equation for photosynthesis.

(2)

(b) **Figure 1** shows the apparatus the student used.

The student altered the distance of the lamp from the pondweed and counted the number of bubbles produced in 30 seconds for each distance.

The table below shows the student's results.

Distance in cm	Number of bubbles produced in 30 seconds
10	27
20	23
30	16
40	7
50	2

Use the data in the table above to complete the graph on Figure 2.

Figure 2

- (3)
- (c) The student concluded that the rate of photosynthesis is inversely proportional to the distance of the lamp from the pondweed.

Does the student's data support this conclusion?

Use data from Figure 2 to justify your answer.

(d) The volume of one bubble can be calculated using the equation:

$$V = 4 / 3 \pi r^{3}$$

The radius of one bubble is 0.1 cm.

The value for π is 3.14

Use data from the table above and the information above to calculate the rate of gas production at a distance of 40 cm.

Give your answer in standard form to three significant figures.

Rate of reaction =	cm ³ per minute	
	- •	(5)
	(Total 13 mar	ks)

Q27.

A student investigated the effect of pond organisms on the amount of carbon dioxide in their surroundings.

The student set up six boiling tubes as shown in the figure below.

They were left for 2 days.

Each boiling tube contained pond water with an indicator.

The indicator was pink at the start of the investigation.

- If the amount of carbon dioxide in the water increased the indicator turned yellow.
- If the amount of carbon dioxide in the water decreased the indicator turned purple.

(a) What is the purpose of boiling tube A?

In which boiling	tube would th	e indicator be	e the most y	ellow after 2	days?
Explain your ans	swer.				
Boiling tube		_			
Explanation					
					_
The colour of the	e indicator in l	boiling tube C	had not cha	anged after 2	days.
Suggest why.					
Suggest why.					
Suggest why.					(Tota
Suggest why.					(Tota
Suggest why.	uation for pho	otosynthesis.			(Tota
Suggest why.	uation for pho	otosynthesis. light energy			(Tota

Describe and explain the effects of $\ensuremath{\text{two other}}$ factors that affect the rate of photosynthesis.

You may include one or more sketch graphs in your answer.

(5) (Total 8 marks)

Q29.

Green plants can make glucose.

(a) Plants need energy to make glucose.

How do plants get this energy?

(b) Plants can use the glucose they have made to supply them with energy.

Give four other ways in which plants use the glucose they have made.

(2)

Q30.

Some students studied bluebell plants growing in two different habitats.

Habitat **A** was a sunny field next to woodland. Habitat **B** was a shady, moist woodland.

A bluebell plant can have several flowers on one flower stalk. The students counted the number of flowers on each of 40 bluebell flower stalks growing in each habitat. The bar charts show the results.

 (a) The students wanted to collect valid data. Describe how the students should have sampled the bluebell plants at each habitat to collect valid data.

		per stalk in the two habitats.
		The mode for the number of flowers per stalk in habitat A was 11.
		What was the mode for the number of flowers per stalk in habitat B ?
		Mode =
((ii)	The students suggested the following hypothesis:
		'The difference in the modes is due to the plants receiving different amounts of sunlight.'
		Suggest why.
((iii)	Suggest how the students could test their hypothesis for the two habitats.
ę f	Suge	gest how receiving more sunlight could result in the plants producing more ers per stalk.
_		
_		

(2)

Q31.

The UK contains large areas of peat bogs that have been present for thousands of years.

(a) Peat is removed from peat bogs.

The peat can be mixed with air and added to garden compost.

The release of carbon dioxide from peat is a problem.

Give **two other** reasons why gardeners should use less peat-based compost in the future.

1._____ _____ 2._____ (2) (b) Explain why mixing peat with air leads to the release of carbon dioxide. (4)

(Total 6 marks)

Q1.

(a) *idea* O_2 increases CO_2 decreases *for 1 mark each*

2

4

<u>reduced</u> (b) (i) unchanged increased digestive system brain skin bone muscles heart and arteries All (6) correct gains 4 5 correct gains 3 4 correct gains 2 2/3 correct gains 1 Correct wording not needed if unambiguous. No mark if organ repeated.

(ii) more/higher/quicker/faster

gains 1 mark

but

7500 more/from 5,000 to 12,500 more gains 2 marks

but

7500 cm³/min more gains 3 marks

or 21/2 times more

Q2.

any six from:

only credit release of carbon dioxide **once** when linked to a correct process ignore references to burning

- (plants) photosynthesise
- *(plants)* take in carbon dioxide
- (plants) produce carbohydrates / fats / proteins
- accept produce glucose
 (carbon compounds transferred by) feeding
- respiration
- breaks down carbon compounds / carbohydrates
 - accept glucose
 - releases carbon dioxide
- organisms die / produce wastes / excrete
- (which are) decomposed / decayed by microorganisms

3

[9]

allow broken down

allow bacteria / fungi / microbes / decomposers

(which) release carbon dioxide

Q3.

- (a) appropriate scales (> halfway along each axis)
 - all points correctly plotted to better than 1/2 a square
 - lines carefully drawn

(allow point to point in this case)

N.B.

- no mark available for labelling axes
- allow either orientation for 1 mark each
- (b) (i) ideas that
 - energy transferred faster in 100m race

(not more energy transferred)

carbon dioxide produced faster during 1500m race
 for 1 mark each

(allow more carbon dioxide produced)

- correct reference to twice / half as fast in either / both cases for 1 further mark
- 3

3

- (ii) respiration during 100m race (mainly) anaerobic
 - respiration during 1500m race aerobic
 - aerobic respiration produces carbon dioxide
 - anaerobic respiration doesn't produce carbon dioxide
 / produces lactic acid
 any two for 1 mark each

2

2

- (c) ideas that
 - there is an oxygen debt / more than normal oxygen needed
 - lactic acid needs to be oxidised / combined with oxygen for 1 mark each

[10]

Q4.

plants absorb CO₂ for photosynthesis ignore carbon

1

1

4

[6]

[5]

any four from:

- carbon compounds / named compound made by plants
- plants eaten by animals
- dead organisms / faeces are decomposed / decayed
 allow broken down
- by bacteria / microorganisms
- dead plants and animals (may) form fossil fuels
- when (fossil) fuels are burnt they release CO₂ into the air

Q5.

(a)	microorganisms / bacteria / fungi	
	allow correct named organisms	
	allow detritus feeders / decomposers / worms	1
	break down / digest / feed on (dead organisms)	
	accept use carbohydrates / glucose	
	allow decomposes	
	ignore decay / rot	1
	(and release carbon dioxide when they) respire	
	do not allow respiration if linked to leaves / dead organisms	1
(b)	any two from:	
	 the higher the temperature the faster the rate of decay 	
	 allow faster / more carbon dioxide for faster rate of decay the higher the oxygen concentration the faster the rate of decay 	
	 allow faster / more carbon dioxide for faster rate of decay the rate increases faster (with increasing oxygen concentration) at 20 (than 15 °C)) °C
		2

(plants) photosynthesise	1
(plants) absorb <u>carbon dioxide / CO₂</u> (from the air) allow take in / use <u>carbon dioxide / CO</u> 2 (from the air)	1
(overall) <u>more carbon dioxide / CO₂</u> is being released into the air than is being re allow 470 (billion tonnes) released but / and 450 (billion tonnes) taken in	moved
(by) <u>respiration</u> (by all organisms / any named organism)	1
ignore breathing ignore carbon	1
(and) combustion / burning	
(so) amount of <u>carbon dioxide / CO₂ in air is increasing</u>	1
allow 20 (billion tonnes) of <u>carbon dioxide / CO₂</u> added to air each year	1
Q7.	
carbon dioxide concentration	1
since atmospheric concentration very low / value give e.g. 0.03% allow carbon dioxide used up	1
temperature high allow if light chosen as a factor	1
light intensity high allow If temperature chosen as a factor	1
Q8. (nitrate) ions are absorbed by active transport	1
(active transport) is the movement of ions against the concentration gradient allow (active transport) is the movement of ions from a dilute to a more concentrated solution	Ĩ
(active transport) requires energy from respiration	1

[6]

[4]

(respiration) requires oxygen

Q9.

(a) + light = + photosynthesis
+ light = + photosynthesis to a limit
limit depends on temp/CO ₂ levels
+ CO_2 = + photosynthesis
+ temp = + photosynthesis
each for 1 mark

(b) need to raise optimum levels when one other raised to get max/economic yield *each for 1 mark*

any one from

Q10.

(a)	diate	oms photosynthesise or are producers	1
	the	amount of growth depends upon the energy or light they get accept more light means more growth or they multiply more in more light do not accept they need light	1
(b)	(i)	eaten by small fish do not accept eaten by fish	1
		minerals or nitrate or phosphates or nutrients or food supply used up or reduced	1
	(ii)	any two from gets colder light decreases end of their life span or die <i>accept more being eaten than being formed</i> eaten by small fish <i>do not accept a decrease in nitrates</i> or phosphates	1
(c)	incre	eased minerals or nitrates or phosphates	1

1

1

5

2

[5]

	due to death or decay of diatoms or fish do not accept death of large fish	1	
	influx of minerals in an ocean current		
	do not accept extraneous pollution or dumping by a ship	1	[8]
Q11.			
(i)	$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$ energy is neutral	1	
	formulae all correct with no omissions / deletions		
	correctly balanced credit 1 mark if the answer is the exact reverse of an incorrect answer for (a)	1	
(ii)	and three from		
	take up of (soluble) substances / ions against the concentration gradient or when the concentration (of the substance / ions) is greater inside the cell / cytoplasm than outside it		
	through the (semi-permeable) (cell) membrane energy from mitochondria or energy from respiration not just energy		
		3	[5]
Q12.			
(a)	No no mark if yes max 1 for correct statement		
	diffusion is down the concentration gradient accept by diffusion ions would leave the root	1	
	to enter must go up / against the concentration gradient or concentration higher in the root or concentration lower in the soil		
		1	
(b)	 (I) 0.9 or 3.25 for correct answer with or without working if answer incorrect 1.3 or their rate – 0.4 gains 1 mark or 130 40 or 90 gains 1 mark 		
	\mathbf{O} 150 – 40 \mathbf{O} 90 yallis i Illaik	2	

	(ii)	(uptake) by active transport	1	
		requires energy		
		more energy from aerobic respiration	1	
		or		
		more energy when oxygen is present	1	[7]
Q13				
(a)	low	in winter / named months /when the days are short accept increases in spring / Dec – June	1	
	high	n in summer / named month(s) / (when days are long		
		decreases in autumn / June – December	1	
	reas	sonable quantitative statement accept any reasonable calculated / translated quantitative statement higher in summer than in winter for 2 marks comparative statements may be worth 2 marks but 8/11 times higher in summer than in winter for 3 marks	1	
(b)	no a	rtificial light given in summer / light only given in winter		
	sinc toma	e natural light greatly exceeds minimum / 600 J (required to produce toos)		
	OR	accept day length in innea to light energy		
	liaht	t only given in winter		
	as r need	natural light less than the minimum led (to grow them) or 600 J		
	OR			
	for 2 perce	2 marks: entage increase in growth from artificial] light only significant in winter	2	[5]

Q14.

(a) (i) increase (and then level off) and max / up to at 0.15 (%) (carbon dioxide) ignore references to oxygen concentration only ignore mention of 23

				1	
		(ii) <u>CO</u> ₂	is limiting at low CO_2 / at first		
			ignore specific numbers	1	
		н н <i>.</i>		1	
		light	is limiting at high CO ₂ / at end	1	
	(b)		mark both parts together		
	(0)				
		effect: (oxy	/gen) falls	1	
		explanatio	n: (oxvgen) used for respiration		
			<i>if no other marks</i> awarded allow (effect) no change and		
			(explanation) no photosynthesis for 1 mark	1	
		mana akla		-	
	(C)	more chio	rophyli / chloroplasts	1	
		allows mor	re photosynthesis / description		
			for both marks must refer to more at least once		
				1	[7]
					[,]
Q1	5.				
	(i)	0.25 × 100)/25		
			gains 1 mark		
		but			
		1%	aning 2 marks		
			gains 2 marks	2	
	(ii)	muscle co	ontraction / limb movement / moving around / chewing		
	()	heartbeat /	/ breathing / internal muscle activity		
		active upta	ake synthesising substances (<i>reject</i> growth)		
			any three for 1 mark each	2	
				3	[5]
Q1	6.				
	(i)	increase in	$n CO_2$ concentration leads to increase in volume of air inhaled		
		increase w	when % carbon dioxide > 5.6 %		
			each for 1 mark	2	
				4	
	(ii)	<i>idea that</i> depth of br	reathing changes at low % carbon dioxide, in crease in % CO ₂		
		results in v	volume of each breath increasing without increase / little increase		
		in number	or preatns each for 1 mark		
				2	

Q17.		
(a)	(i) carbon dioxide / CO_2 (<i>reject</i> CO)	
	(ii) oxygen / O ₂ / O (water vapour neutral) for 1 mark each	2
(b)	(provides) energy for one mark	L
(c)	starch insoluble therefore water not taken in by osmosis or sugar is soluble / has small molecules may diffuse out therefore lost (ignore <i>ref. to cells bursting</i>) or	
	starch has large molecules cannot diffuse therefore retained for 1 mark each	\$
Q18.		
(a)	(before exercise) – 9 to 11 and (after exercise) – 12 or 13 both correct	L
(b)	0.75 to 0.90 ignore working or lack of working eg. 2.35 – 1.55 or $\frac{(2.35 - 1.0) \times 60}{100}$ or other suitable figures for 1 mark	2
(c)	any four from:	
	still need to remove extra carbon dioxide	
	still need to remove heat / to cool	
	(some) anaerobic respiration (in exercise)	
	lactic acid made (in exercise)	
	oxygen needed to break down lactic acid or suitable reference to oxygen deb	t
	lactic acid broken down to CO_2 and water or lactic acid changed into glucose	l

) (i) 120

[7]

[4]

[6]

(ii) 11 760 or	
correct answer from candidate's answer to (a)(i)	
correct answer with or without working	
if answer incorrect	
120 × 98 or	
candidate's answer to (a)(i) × corresponding SV gains 1 mark	
if candidate uses dotted line / might have used dotted line(bod) in (a)(i) and (a)(ii) no marks for (a)(i) but allow full ecf in (a)(ii) eg 140 x 88 = 12320 gains 2 marks	
	2
trained athlete has higher stroke volume / more blood per beat	1
same volume blood expelled with fewer beats	
or for same heart rate more blood is expelled	1
increased aerobic respiration	
or	
decreased anaerobic respiration	
allow correct equation for aerobic respiration	
accept don't have to respire anaerobically	
	1
increased <u>energy</u> supply / need	1
less lactic acid formed	
or to breakdown lactic acid or less O ₂ -debt	1
can do <u>more</u> work or can work hard <u>er</u> / fast <u>er</u> / longer accept muscle contraction for work	
or <u>less</u> fatigue / cramp / pain	

Q20.

(b)

(c)

(a)	(i)	reduced sharply
		for 1 mark

 (ii) converted to glucose which is respired to produce energy (allow answers in terms of glucagon) gains 3 marks 1

(b)	(i)	athlete A's was most effective since resulted in highest muscle glycogen level on day of race for energy release during race	
		for 1 mark each 3	
	(ii)	e.g. excess carbohydrate stored as glycogen rather than fat in short term particularly if glycogen stores depleted	
		for 1 mark each 2	
Q21.			
(a)	(i)	oxygen produced 1	
	(ii)	any one from:	
		average / mean / median ignore reliable / precise / accurate	
		some may be anomalous	
		allow some may not float	
(b)	(i)	do not allow answers in terms of time only if candidate answers in terms of comparing rate of change	
		then the rate of change of photosynthesis must be in the correct direction for 1 mark	
		any two from:	
		 low intensity / below 12.5 / 2.5 - 12.5 (units of light) flat wrack /it, rat photosynthesis faster or saw wrack rate of photosynthesis slower 	e of
		allow any value in range	
		 high intensity / above 12.5 / 12.5 - 15 (units of light) flat wrack / it,rat photosynthesis slower or saw wrack rate of photosynthesis faster allow any value in range 	te of
		• same (rate) at 12.5 units 2	
	(ii)	any two from:	
		saw wrack receives less light	
		accept converse if clear reference to bladder wrack	
		 less photosynthesis if first and second responses, 'less' needed only once 	
		or less carbohydrate / sugar / starch production	
		 when tide is in or at high tide or any tide above low tide accept saw wrack covered by water / submerged longer / 	

more reference to position on shore is insufficient

Q22.

(a)	562	24	
		allow 2 marks for:	
		 correct HR = 148 and correct SV = 38 plus wrong answer / no answer 	
		or	
		 only one value correct and ecf for answer 	
		allow 1 mark for:	
		 incorrect values and ecf for answer 	
		or	
		only one value correct	3
(b)	(i)	Person 2 has low(er) stroke volume / SV / described	
		eg Person 2 pumps out smaller volume each beat	
		do not allow Person 2 has lower heart rate	
			1
	(ii)	Person 1 sends more blood (to muscles / body / lunas)	
	()	(1
		(which) supplies (more) oxygen	
			1
		(and) supplies (more) glucose	
			1
		(faster rate of) respiration or transfers (more) energy for use	
		ignore aerobic / anaerobic	
		allow (more) energy release	
		allow aerobic respiration transfers / releases more energy	
		(than anaerobic)	
		do not allow makes (more) energy	
			1
		removes (more) CO2 / lactic acid / heat	
		allow less oxygen debt	
		or loss lactic acid made	
		or (more) muscle contraction / less muscle fatique	
		if no other mark awarded,	
		allow person 1 is fitter (than person 2) for max 1 mark	
			1

Q23.

insufficient / no oxygen available

[9]

[6]

for (just) aerobic respiration

or

respires anaerobically

1

[2]

[5]

Q24.

(a)	7.15	to 7.45 <u>am</u> and 7.15 to 7.45 <u>pm</u> both required, either order	
		accept in 24 hr clock mode	1
(b)	(i)	11	1
	(ii)	32.5 to 33 allow answer to (b)(i) + 21.5 to 22	1
(c)	any t	wo from:	
	•	more photosynthesis than respiration	
	•	more biomass / carbohydrate made than used allow more food made than used	
	•	so plant able to grow / flower accept plant able to store food	2
Q25.			
(a)	LHS:	carbon dioxide AND water in either order accept CO_2 and H_2O allow CO2 and H2O if names given ignore symbols do not accept $CO^2 / H^2O / CO / CO$ ignore balancing	1
	RHS:	sugar(s) / glucose / starch / carbohydrate(s) accept C ₆ H ₁₂ O ₆	

accept C₆H₁₂O₆ allow C6H12O6 do **not** accept C⁶H¹²O⁶

(b) (i) light is needed for photosynthesis

or

no photosynthesis occurred (so no oxygen produced)

1

		full statement		
		respiration occurs or oxygen is needed for anaerobic respiration gains 1 mark		
		roopnation gante i mant	2	
(c)	(i)	(with increasing temperature) rise then fall in rate	1	
		use of figures, ie		
		max. production at 40 °C or maximum rate of 37.5 to 38	1	
	(ii)	<u>25 – 35 °C</u>		
		either faster movement of particles / molecules / more collisions or particles have more energy / enzymes have more energy	1	
		or temperature is a limiting factor over this range		
		<u>40 – 50 °C</u>		
		denaturation of proteins / enzymes ignore denaturation of cells ignore stomata		
6.5			1	
(d)	abo or >	ve 35 °C (to 40 °C) – little increase in rate 40 °C – causes decrease in rate	1	
	SO W	aste of money or less profit / expensive	1	
	beca	ause respiration rate is higher at > 35 $^{\circ}$ C		
	resp	iration reduces the effect of photosynthesis	1	[12]
				[]
Q26.				
(a)	6C0	$D_2 + 6H_2O \longrightarrow C_6H_{12}O_6 + 6O_2$ correct reactants		
		correct products		1
(b)	corr	rect scale and label on x axis		1
	all 5	plots correct		
		tolerance ±½ small square allow 2 or 3 plots correct for 1 mark		2
(c)	no			2

no mark

	although as distance increases, rate decreases	1	
	the line curves or line should be straight	1	
	suitable data quoted examples: • supports conclusion between 20–40 (cm) • does not support conclusion between 10–20 (cm)	1	
(d)	volume of 1 bubble = $4 / 3 \times 3.14 \times (0.1)^3$	1	
	= 0.00419	1	
	at 40 cm there are 7 bubbles	1	
	vol at 40 cm = 0.02933 allow ecf from incorrect value taken from table	1	
	Rate per minute = × 2		
	= 5.86×10^{-2} (cm ³ per min) allow 5.86×10^{-2} with no working shown for 5 marks answer not given in standard form or to incorrect number of sig. figs max 4 marks	1	[13]
Q27. (a)	control	1	
	to check that the indicator colour does not change on its own	1	
	or to check any changes in colour are due to the organisms	1	
(b)	(tube) E	1	
	most carbon dioxide	1	
	(due to) <u>only</u> respiration occurring allow no carbon dioxide used for photosynthesis allow 1 mark max if chose tube D and give a correct reason	1	
(c)	the amount of carbon dioxide produced by respiration equalled amount absorbed for photosynthesis	or	

1

[6]

Q28.

(a) LHS – carbon dioxide / CO_2 allow CO2 ignore CO^2

RHS

in either order

glucose / carbohydrate / sugar
allow starch
allow
$$C_6H_{12}O_6$$
 / C6H12O6
ignore $C^6H^{12}O^6$

oxygen

allow $O_2 / O2$ ignore O^2 / O

- (b) any five from:
 - factor 1: CO² (concentration)
 - effect as CO_2 increases so does rate and then it levels off or shown in a graph
 - explanation:

 (graph increases) because CO₂ is the raw material or <u>used</u> in photosynthesis / converted to organic substance / named eg **or** (graph levels off) when another factor limits the rate.
 accept points made via an annotated / labelled graph
 - factor 2: temperature
 allow warmth / heat
 - effect as temperature increases, so does the rate and then it decreases or shown in a graph allow 'it peaks' for description of both phases
 - explanation:
 (rise in temp) increases rate of chemical reactions / more kinetic energy
 allow molecules move faster / more collisions

or

(decreases) because the enzyme is denatured. context must be clear = high temperature

> allow other factor plus effect plus explanation: eg light wavelength / colour / pigments / chlorophyll / pH / minerals / ions / nutrients / size of leaves 2nd or 3rd mark can be gained from correct description and explanation

5

1

1

Q29.		
(a)	light is trapped / absorbed / used extra answers cancel mark	
	ignore solar / sunshine	1
	by chlorophyll / chloroplasts if no other marks awarded, allow 1 mark for photosynthesis /	
	equation for photosynthesis	1
(b)	(to make) starch (for storage) ignore 'for growth' unqualified	
	ignore respiration	1
	(to make) fat / oil (for storage)	1
	(to make) amino acids / proteins / enzymes	1
	(to make) cellulose / cell walls	
	allow any other correct, named organic substance <u>s</u> (eg DNA / ATP / chlorophyll / hormone)	
	if no named examples, allow 'to make named cell structures' for max. 1 mark	1
		1
Q30.		
(a)	use of quadrat / point frame allow description	1
	randomly placed / random sampling	
	ignore reference to transects	1

[6]

(b)	(i)	6	1
	(ii)	more <u>light</u> in A / in field / where sunny <i>ignore sun</i>	1
		more / better / faster photosynthesis in A / with more light allow converse	1
	(iii)	use light meter / measure light <u>intensity</u> in both habitats	1
		take many measurements at same time of the day	1

	laboratory / field investigation with 2 batches high light and low light (1)		
	count or number of flowers in each (1) counting point is dependent on investigation point		
(c)	more glucose / energy available allow other named product eg protein allow if more energy produced	1	
	for growth dependent on 1 st mark	1	[9]
Q31.			
(a)	reduces biodiversity	1	
	peat is being used faster than it forms allow peat is non-renewable	1	
(b)	decay / decomposition / rotting of peat	1	
	by microorganisms / bacteria / microbes / fungi / decomposers introduced when pea is mixed with air	it 1	
	that respire using substances in peat as reactant	1	
	and using oxygen that is introduced when peat is mixed with air	1	
			[6]