

New Document 1		Name:	
		Class:	
		Date:	
Time:	36 minutes		
Marks:	36 marks		
Comments:			

Q1.

Read the information about energy changes and then answer the questions.

A student did an experiment to find the energy change when hydrochloric acid reacts with sodium hydroxide.

The equation which represents the reaction is:

HCl + NaOH
$$\rightarrow$$
 NaCl + H₂O

The student used the apparatus shown in the diagram.

The student placed 50 cm³ of hydrochloric acid in a glass beaker and measured the initial temperature.

The student then quickly added 50 cm³ of sodium hydroxide solution and stirred the mixture with the thermometer. The highest temperature was recorded.

The student repeated the experiment, and calculated the temperature change each time.

	Experiment 1	Experiment 2	Experiment 3	Experiment 4
Initial temperature in °C	19.0	22.0	19.2	19.0
Highest temperature in °C	26.2	29.0	26.0	23.5
Temperature change in °C	7.2	7.0	6.8	4.5

(a) The biggest error in this experiment is heat loss.

Suggest how the apparatus could be modified to reduce heat loss.

(b) Suggest why it is important to mix the chemicals thoroughly.

(c) Which **one** of these experiments was probably done on a different day to the others?

(1)

(1)

(d)	Suggest why experiment 4 should not be used to catemperature change.	alculate the average
(e)	Calculate the average temperature change from the	first three experiments.
	Answer =	℃
(f)	Use the following equation to calculate the energy ch Energy change in joules = $100 \times 4.2 \times average$	nange for this reaction. e temperature change
	Answer = _	J
(g)	Which one of these energy level diagrams represen this reaction?	ts the energy change for
	Give a reason for your answer.	
	Diagram A	Diagram B
Ene	ergy HCI + NaOH Energy NaCI + H ₂ O	NaCl + H ₂ O

(1) (Total 7 marks)

Q2.

V2 rockets were used during the Second World War.

By aronsson [CC BY-SA 2.0], via Flickr

V2 rockets were powered by liquid oxygen and ethanol. Oxygen and ethanol react to produce carbon dioxide and water.

The energy level diagram represents the energy changes during this reaction.

(a) On the energy level diagram what is represented by the letter:

(b) What type of reaction is represented by this energy level diagram?

Q3.

(a) Some students did an experiment to find the temperature change when hydrochloric acid reacts with sodium hydrogencarbonate.

The results are in the table.

Number of spatula measures of sodium hydrogencarbonate	Start temperature in °C	Final temperature in °C	Change in temperature in °C
2	20	16	4
4	20	14	6
6	19	11	8
8	20	10	10
10	19	9	10
12	20	10	10

(i) Describe, as fully as you can, the trends shown in the students' results.

- (ii) State the type of energy transfer for this reaction.
- (b) Sodium hydrogencarbonate is used as baking powder for making cakes.
 When the cake mixture is baked the sodium hydrogencarbonate decomposes.
 The equation for the reaction is:

(i) The cake mixture rises when baked.

© Michael Valdez/iStock

Use the equation to suggest why.

(ii) The same reaction can be reversed to produce sodium hydrogencarbonate from sodium carbonate.

 $Na_2CO_3 + H_2O + CO_2 \longrightarrow 2NaHCO_3$

Do the reactants need to be heated?

Give a reason for your answer.

(1)

Calculate the relative formula mass of sodium hydrogencarbonate (NaHCO ₃).	
Relative atomic masses (A _r): H=1; C=12; O=16; Na=23	
	-
	-
Relative formula mass (M _r) =	(2)
Calculate the percentage by mass of carbon in sodium hydrogencarbonate.	
	-
Percentage of carbon =%	6
(Total 9	(1) marks)
	alculate the relative formula mass of sodium hydrogencarbonate (NaHCO ₃). Relative atomic masses (A _r): H=1; C=12; O=16; Na=23 Relative formula mass (M _r) =

Q4.

Read the information about energy changes and then answer the questions.

A student did an experiment to find the energy change when hydrochloric acid reacts with sodium hydroxide. The equation which represents the reaction is: $HCl + NaOH \rightarrow NaCl + H_2O$ The student used the apparatus shown in the diagram. Thermometer _______50 cm³ of sodium hydroxide solution Glass beaker ______

50 cm³ of hydrochloric acid

The student placed 50 cm³ of hydrochloric acid in a glass beaker and measured the temperature.

The student then quickly added 50 cm³ of sodium hydroxide solution and stirred the mixture with the thermometer. The highest temperature was recorded.

The student repeated the experiment, and calculated the temperature change each time.

	Experiment 1	Experiment 2	Experiment 3	Experiment 4
Initial temperature in °C	19.0	22.0	19.2	19.0
Highest temperature in °C	26.2	29.0	26.0	23.5
Temperature change in °C	7.2	7.0	6.8	4.5

(a) The biggest error in this experiment is heat loss.

Suggest how the apparatus could be modified to reduce heat loss.

(b) Suggest why it is important to stir the chemicals thoroughly.

(1)

(1)

(c) Which **one** of these experiments was probably carried out on a different day to the others?

Explain your answer.

(d) Suggest why experiment 4 should **not** be used to calculate the average temperature change.

(1)

(1)

(e) Calculate the average temperature change from the first three experiments.

Answer = _____°C

- (1)
- (f) Use the following equation to calculate the energy change for this reaction.

energy change in joules = $100 \times 4.2 \times average$ temperature change

Answer = _____ J

(g) Which **one** of these energy level diagrams, **A** or **B**, represents the energy change for this reaction?

Explain why.

Q5.

A student burned four fuels and compared the amounts of energy they produced.

The student set up the apparatus as shown in the diagram.

The heat produced when each fuel was burned was used to raise the temperature of 100 g of water. The student noted the mass of fuel burned, the increase in temperature and whether the flame was smoky.

The results are shown in the table.

Fuel	Mass of fuel burned (g)	Temperature increase (°C)	Type of flame
Ethanol	4	24	Not smoky
Methanol	3	9	Not smoky

Peanut oil	2	20	Smoky
Vegetable oil	1	15	Smoky

(a) The student suggested that the vegetable oil was the best fuel for producing heat.
 Explain why.

(b) Suggest an environmental problem that could be caused when large amounts of vegetable oil are burned. Suggest how the problem could be overcome.

(2)

(2)

(c) An energy level diagram for the burning of vegetable oil is shown below.

Which of the energy changes A, B or C:

(i) represents the activation energy

(ii) shows the amount of energy given out during the reaction?

(1) (Total 6 marks)

Q6.

The reaction between aluminium and iron oxide is used to weld together railway lines.

A simple, qualitative energy level diagram for this reaction is shown.

Use the energy level diagram to:

(i) describe the idea of activation energy;

(ii) explain why the reaction produces molten iron.

(2) (Total 3 marks)

(1)

Mark schemes

Q1.

(a)	eg plastic (beaker) / insulation / lid / cover or any mention of enclosed any sensible modification to reduce heat loss	
	ignore prevent draughts	
	ignore references to gas loss	
	ignore bomb calorimeter	
		1
(b)	all the substances react or all (the substances) react fully / completely or heat evolved quickly or distribute heat	
	'so they react' is insufficient for the mark	
	accept increase chances of (successful) collisions / collision rate increase	
	do not accept rate of reaction increase / make reaction	
	faster	1
		•
(c)	experiment 2 and	
	different / higher / hilliar / starting temperature	
	temperature	
	do not accept temperature change / results higher	
		1
(d)	temperature change does not fit pattern	
(-)	accept anomalous / odd or it is the lowest or it is lower than	
	the others or it is different <u>to the others</u>	
	'results are different' is insufficient	_
		1
(e)	7 / 7.0	
		1
(f)	$(100 \times 4.2 \times 7) = 2940$	
. ,	ecf from (e)	
		1
(q)	diagram A and	
(0)	reaction exothermic / heat evolved / Δ H is negative / temperature rises	
	accept energy is lost (to the surroundings)	
	accept energy of products lower than reactants	
	allow arrow goes downwards	
		1

Q2.

(a) A = energy / enthalpy change / difference allow heat change **or** ΔH allow energy released [7]

		allow definition of activation energy	
(b)	C =	carbon dioxide and water accept products 1	
		allow combustion / redox / oxidation ignore reduction / burning 1	[4]
Q3.			
(a)	(i)	the more sodium hydrogencarbonate the greater the temperature change accept examples from the table	2
		un to 8 spatula measures	
		accept any correct indication of when change occurs	1
		then the temperature change is constant	
		if no marks awarded allow 1 mark for: the more sodium hydrogencarbonate the lower the final temperature	1
	(ii)	energy is taken in from the surroundings or endothermic	1
(b)	(i)	gas / carbon dioxide / steam / water is produced accept carbon dioxide is a gas or steam / water is a gas allow gas / air expands when heated	1
	(ii)	no, because (reaction) is exothermic or	
		yes, to start the reaction allow no, because (reactants) were formed by heating ignore references to cooling	1
(c)	(i)	84 correct answer with or without working gains 2 marks if no answer or incorrect answer then evidence of $23 + 1 + 12 + (3 \times 16)$ gains 1 mark	2
	(ii)	14.29 accept rounding to 14.3 or 14 allow ecf from (c)(i)	1

[9]

(a)	eg plastic (beaker) / insulation / lid / cover or any mention of enclosed any sensible modification to reduce heat loss ignore prevent draughts ignore references to gas loss	1
(b)	all the substances react or all (the substances) react fully / completely or heat evolved quickly or distribute heat accept to mix them 'so they react' is insufficient for the mark accept increase chances of (successful) collisions / collision rate increase do not accept rate of reaction increase / make reaction faster	
(c)	experiment 2 and different / higher / initial / starting temperature accept experiment 2 and the room is hotter / at higher temperature do not accept temperature change / results higher	1
(d)	temperature change does not fit pattern accept anomalous / odd or it is the lowest or it is lower than the others or it is different <u>to the others</u> 'results are different' is insufficient	1
(e)	7 / 7.0	1
(f)	$(100 \times 4.2 \times 7) = 2940$ ecf from (e)	1
(g)	diagram A and reaction exothermic / heat evolved / Δ H is negative / temperature rises accept energy is lost (to the surroundings)	1

Q5.

 (a) either: calculations: all correct (ethanol = 6, methanol = 3, peanut oil = 10, vegetable oil = 15) ignore repetition of data from table unqualified

or

implication of correct calculation

(vegetable oil) gives largest temperature / heat increase <u>per gram</u> (owtte) *allow 'produced most heat in proportion to the fuel used' owtte for 1 mark* [7]

(b) any **one** from:

owtte

- smoke
 ignore references to crops/food
- soot
- carbon
- carbon monoxide
- carbon dioxide
- global warming / climate change / greenhouse gases
- (air) pollution
- harmful/poisonous

scrub / wash the gases owtte

filter / remove (gases / fumes / appropriate named substance) owtte
(add extra oxygen) can burn more efficiently owtte
use a cleaner fuel owtte plant more trees or similar linked to CO ₂
any sensible answer
'don't burn so much fuel' insufficient alone
ignore extractor fans / air conditioning

(c) (i) A (ii) B

Q6.

(i)	the energy needed by reactants before reaction can occur	
	accept energy required for particles to collide successfully	
	accept energy required to break bonds	
	accept energy needed to start reaction	
		1
(ii)	reference to reactants 'energy' higher than products 'energy'	
	accept exothermic reaction	
	accept heat (energy) released	
		1
	melting point of iron is exceeded	
	accept temperature is above melting point of iron	

1

1

1

1

[6]