exampro

New Document 1	Name:	
	Class:	
	Date:	

[^0]Comments:

Q1.

A student investigates how the concentration of an acid affects the rate of a reaction.
This is the method used.

1. Put a 3 cm piece of magnesium ribbon into a conical flask.
2. Add $50 \mathrm{~cm}^{3}$ of $0.5 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid to the flask.
3. Collect and measure the volume of gas produced at 10 second intervals.
4. Repeat with different concentrations of hydrochloric acid using the same length of magnesium ribbon and volume of acid.

The student's results are shown in the figure below.

(a) How do the results show that increasing the concentration of acid increases the rate of reaction?

You must use data from the graph in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Explain why the rate of reaction changes as the concentration of the acid increases. You should answer in terms of particles.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Student \mathbf{A} said that the final volume of gas collected was lower for a concentration of $0.5 \mathrm{~mol} \mathrm{dm}^{3}$ because the reaction had not finished.

Student B said it was because all the acid had reacted.
Describe further experimental work the students could do to find out which student was correct.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q2.
A student investigated the rate of reaction between sodium thiosulfate solution and dilute hydrochloric acid, as shown in Figure 1.

Figure 1

The reaction produced a precipitate, which made the mixture turn cloudy.
The student timed how long it took until she could no longer see the cross.
She calculated the rate of the reaction.
(a) The equation for the reaction is:

$$
\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{S}(\mathrm{~s})+\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Name the product that made the mixture go cloudy.
(b) The student investigated the effect of changing the temperature of the sodium thiosulfate solution on the rate of reaction.

She plotted her results on a graph, as shown in Figure 2.

Figure 2

Describe the trends shown in the student's results.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) The student then investigated the effect of changing the concentration of sodium thiosulfate solution on the rate of the reaction.
(i) Suggest two variables the student would need to control to make sure that her results were valid.
\qquad
\qquad
\qquad
\qquad
(ii) From this investigation the student correctly concluded:
'As the concentration of sodium thiosulfate solution doubles, the rate of
reaction doubles.'
Explain the student's conclusion in terms of particles.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q3.
Figure 1 represents a reaction in the production of sulfuric acid.
Figure 1

(a) Complete and balance the equation for the reaction.
\qquad $\mathrm{SO}_{2}(\mathrm{~g})$ \qquad $(\mathrm{g}) \rightleftharpoons \quad \mathrm{SO}_{3}(\mathrm{~g})$
(b) The conditions can affect the rate of the reaction.
(i) The pressure of the reacting gases was increased.

State the effect of increasing the pressure on the rate of reaction.
Explain your answer in terms of particles.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) A catalyst is used for the reaction.

The gases pass through a layer containing pieces of the catalyst.
Figure 2 shows the shapes of pieces of catalyst.
Figure 2
A
B

Suggest and explain why shape \mathbf{B} is more effective as a catalyst than shape A.
\qquad
\qquad
\qquad
\qquad
(c) The reaction is carried out at a high temperature to provide the reactants with the activation energy.

What is meant by the activation energy?
\qquad
\qquad
\qquad
(d) Sulfuric acid reacts with metals to produce salts.
(i) A student concluded that potassium would not be a suitable metal to react with sulfuric acid.

Explain why.
\qquad
\qquad
\qquad
\qquad
(ii) A student reacted zinc metal with sulfuric acid to produce a salt and another product.

Complete the equation for this reaction.

$$
\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \longrightarrow+\longrightarrow
$$

(iii) The student wanted to increase the rate of the reaction between the zinc and sulfuric acid.

State one way, other than using a catalyst, that the student could increase the rate of the reaction.
\qquad
\qquad
(Total 13 marks)

Q4.
Ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$ is produced by reacting ammonia with nitric acid.
A student measured the mass of ammonium nitrate that dissolves in $100 \mathrm{~cm}^{3}$ of water at different temperatures.

The table below shows the student's results.

Temperature in $^{\circ} \mathbf{C}$	0	20	40	60	80	100
Mass of ammonium nitrate in \mathbf{g}^{3} that dissolves in 100 $\mathbf{c m}^{3}$ water	119	190	286	321	630	1024

(a) Use the table above to plot a graph of the solubility of ammonium nitrate on the figure below.

(b) At $20^{\circ} \mathrm{C}, 190 \mathrm{~g}$ of ammonium nitrate dissolves in $100 \mathrm{~cm}^{3}$ of water.

Calculate the amount of ammonium nitrate (in moles) that dissolves in $1 \mathrm{dm}^{3}$ of water at $20^{\circ} \mathrm{C}$.

Relative atomic masses $\left(A_{\mathrm{r}}\right): \mathrm{H}=1 ; \mathrm{N}=14 ; \mathrm{O}=16$
\qquad
\qquad
\qquad
\qquad
\qquad mol
(c) Farmers use ammonium nitrate as a fertiliser.

Farmers want to slow down the rate at which ammonium nitrate fertiliser dissolves in the water in the soil.

Suggest why they spread the fertiliser in the form of small beads instead of a fine powder.
\qquad
\qquad
\qquad
\qquad
(d) Ammonia is needed to make ammonium nitrate.

The reaction used to make ammonia is:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

The forward reaction is exothermic.
At equilibrium, about 35% of the nitrogen and hydrogen are converted to ammonia at $450^{\circ} \mathrm{C}$ and 200 atmospheres pressure.

Explain the effects of increasing the temperature, or increasing the pressure, on the amount of ammonia produced at equilibrium.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mark schemes

Q1.
(a) (as concentration increases)
answers must refer to data from graph to gain full marks
relationship identified from the graph
eg the same volume of gas is collected in a shorter time or more gas is collected in the same time or reaction reaches completion in a shorter time
reference to relevant data to evidence relationship eg 20 ml collected in 10 seconds at $0.5 \mathrm{~mol} / \mathrm{dm}^{3}$ in 6.5 s at 1.0 mol / dm ${ }^{3}$ and in 4 s at $2.0 \mathrm{~mol} / \mathrm{dm}^{3}$
or
at 10 seconds volume collected is $20 \mathrm{~cm}^{3}$ with $0.5 \mathrm{~mol} / \mathrm{dm}^{3}$, $30 \mathrm{~cm}^{3}$ with $1.0 \mathrm{~mol} / \mathrm{dm}^{3}, 50 \mathrm{~cm}^{3}$ with $2.0 \mathrm{~mol} / \mathrm{dm}^{3}$
or
total volume collected reaches maximum of 100 ml in 20 seconds at $2.0 \mathrm{~mol} / \mathrm{dm}^{3}$ but takes twice as long at $1.0 \mathrm{~mol} /$ dm^{3} and at $0.5 \mathrm{~mol} / \mathrm{dm}^{3}$
(b) reactions occur when particles collide
increasing concentration means there are more particles in the same volume
so there are more collisions
(c) leave for longer
if gas continues to be produced student A is right
or
repeat with more acid (1)
if more gas is produced student B is right (1)

Q2.
(a) sulfur / sulphur / S / S(s)
(b) as the temperature increases, the rate of reaction increases allow two correct values for rate quoted (from graph) at different temperatures
the rate of increase increases or there is an exponential relationship
accept the rate of reaction increases slowly (from $20^{\circ} \mathrm{C}$ to 50
${ }^{\circ} \mathrm{C}$) then increases more rapidly for 2 marks
answer MUST be based on rate / speed of reaction
(c) (i) any two from:

- temperature (of the reactants)
- concentration of hydrochloric acid
- volume of hydrochloric acid
- volume of sodium thiosulfate
- the (size / darkness / thickness of the) cross
- total volume of solution.
if no other marks gained, allow 1 mark for:
rate of stirring
OR
amount of hydrochloric acid / sodium thiosulfate
OR
volume of solution
(ii) (because as the concentration increases) the number of particles per unit volume increases or particles are closer together.
idea of more particles in a given space is required for the first mark.
ignore references to area.
(therefore) the frequency of (successful) collisions increases allow increased chance / probability of collisions number of collisions increases is insufficient here.
must mention per unit time or frequency.
ignore speed of collisions.
if reference to space and time missing from M1 and M2 but they are otherwise correct, then award 1 mark.
so the number of particles (per unit volume) doubles or (the frequency of) collisions doubles.
students can score 2 marks for a qualitative explanation; the third mark is for a quantitative explanation.

Q3.
(a) $\mathbf{O}_{\mathbf{2}}$ in correct space
correct balancing
accept multiples
(b) (i) rate increases
incorrect reference to energy = max 2
ignore references to equilibrium
because particles are closer together accept because there are more particles (per unit volume) allow particles have less space / room to move around
so frequency of collisions increases
accept particles are more likely to collide ignore more collisions
ignore more successful collisions
(ii) has a greater surface area
so the reaction is faster accept so more frequent collisions
(c) the (minimum) amount of energy (particles must have) to react or to start a reaction
accept the energy needed to break bonds ignore references to heat
(d) (i) (potassium is) too / very reactive ignore potassium is a Group 1 / alkali metal
so dangerous / violent reaction
accept hydrogen produced rapidly
(ii) ZnSO_{4}
accept products in either order
ignore names of substances
H_{2}
do not accept brackets or charges in the formulae
(iii) any one from:

- increase concentration (of sulfuric acid)
- increase temperature or heat it
- increase surface area of zinc

Q4.
(a) x axis scale correct
y axis scale correct
all points plotted correctly
curve correct, omitting the anomalous point
(b) relative formula mass of $\mathrm{NH}_{4} \mathrm{NO}_{3}=14+(4 \times 1)+14+(3 \times 16)=80$
mass of ammonium nitrate in $1 \mathrm{dm}^{3}$ at $20^{\circ} \mathrm{C}=190 \times 10=1900 \mathrm{~g}$
number of moles of ammonium nitrate in $1900 \mathrm{~g}=1900 / 80=23.75 \mathrm{~mol}$
(c) small beads would dissolve slower than fine powder
because the surface area of the bead is less than fine powder
(d) increasing the temperature at equilibrium will reduce the amount of ammonia produced
because the reaction is exothermic
increasing the pressure at equilibrium will increase the amount of ammonia produced
because the equilibrium will shift towards the smaller number of molecules in the equation (which is ammonia)

[^0]: Time:
 41 minutes

 Marks
 41 marks

