exampro

4.6b Inheritance, Variation and Evolution
Foundation / Higher
Class:
Date:

Time: 291 minutes
Marks:
290 marks

Comments:

Q1.

When animals die, bacteria make them decay.
Warmth, moisture and oxygen are needed for this to happen.
(a) (i) In northern Russia whole bodies of mammoths have been found in the frozen soils.

Explain why they did not decay.

\qquad
\qquad
(ii) Fish fossils have been found in mudstone rock. Explain why they did not decay?

\qquad
\qquad
(b) Some of the mammoths had flint weapons in their bodies.

Suggest two things that this tells us about human evolution.

1. \qquad
2. \qquad
(c) Mammoths are now extinct. Suggest two reasons for this.
3. \qquad
4. \qquad

Q2.
Starfish can split in half. Each half can then grow new arms to form offspring.
This process is shown in the figure below.

(a) What process produces the starfish offspring?

Tick one box.

(b) More cells are produced as the starfish grows more arms.

What process will produce more cells in the starfish as they grow?
\qquad
(c) All the offspring produced are genetically identical.

What name is given to genetically identical organisms?
(d) Each body cell of the parent starfish contains 44 chromosomes.

How many chromosomes are in each body cell of the offspring?
\qquad

Q3.

The table gives some information about the African elephant and the woolly mammoth.

African elephant	Woolly mammoth
Mass of male: 6000 kg	Mass of male: 8000 kg
Habitat: near the equator	Habitat: northern Europe
An endangered species	Extinct

(a) Use information from the table to help you to answer the following questions.
(i) The diagrams show that both animals have tusks. Tusks help animals to compete.

Suggest two things animals may compete for.

1. \qquad
2. \qquad
(ii) The woolly mammoth was adapted to survive during the ice age.

Use information from the table to suggest two ways the woolly mammoth was adapted to survive in the cold.

Adaptation 1: \qquad
How this helped the woolly mammoth survive: \qquad
\qquad
\qquad
Adaptation 2 : \qquad
How this helped the woolly mammoth survive: \qquad
\qquad
\qquad
(b) Darwin's theory of evolution says that elephants developed a trunk because animals with a longer nose had an advantage over animals with a shorter nose.

The elephants with a longer nose survived to breed and pass on the gene for a longer nose to their offspring.
(i) Name the process by which evolution happens.
\qquad
(ii) Describe how Lamarck's theory would explain how elephants developed a trunk.
\qquad
\qquad
\qquad
\qquad
(Total 9 marks)

Q4.
The diagram shows an evolutionary tree for the great apes.

(a) (i) How many years after gorillas did hominids evolve?
\qquad millions of years
(ii) Which animal in the diagram is the most distant relative of chimpanzees?
(b) Charles Darwin is well known for his theory of evolution.

Complete the sentence.
Darwin's theory states that evolution happens by a process called
\qquad
(Total 3 marks)

Q5.
The diagram shows three types of cells in a life history of a simple animal.

(a) How do the chromosomes of the body cells compare with the chromosomes in the fertilised egg from which they came?
\qquad
\qquad
(b) Describe what happens to chromosomes in the nucleus of a body cell when it forms reproductive cells.
\qquad
\qquad
\qquad
\qquad
\qquad

Q6.
The bean aphid is a type of black-fly which lives on broad bean plants in summer. In the autumn, males and females mate and produce eggs.

(a) Name the type of reproduction which produces the eggs.
\qquad
(b) In spring these eggs hatch. The young aphids are all female.

Explain why they are all similar but not identical to each other.
\qquad
(c) These females are then able to produce offspring without needing any males.
(i) Name the type of reproduction where females do not need males to produce offspring.
\qquad
(ii) How will the offspring from one of these females:

A compare with each other

B compare with the offspring from other females?
\qquad
(d) Some scientists investigated mutations in these aphids. They exposed the aphids to X-rays.
They plotted their results.

(i) What was the connection between the dose of X-rays and the percentage of mutations?
\qquad
(ii) Name one other possible cause of mutations.
\qquad

Q7.
The diagrams show fossil animals found in rocks of different ages. Scientists have used this information to work out how the modern horse evolved.

(a) Mesohippus became extinct over thirty million years ago. Use information from the diagrams to suggest two reasons why this happened.

1. \qquad
\qquad
2. \qquad
\qquad
(b) (i) How do scientists know how big these early horses were?
\qquad
\qquad
(ii) How do scientists know when they lived?
(c) Explain how the information in the diagrams supports the theory of evolution.
\qquad
\qquad
\qquad

Q8.
The diagram shows one of the experiments performed by a scientist called Mendel in the 1850s. He bred pea plants which had different coloured pea seeds.

(a) Use words from the box to help you to explain the results of this experiment.
dominant factor recessive
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Mendel explained these results in terms of inherited factors.
(i) What do we now call inherited factors?
\qquad
(ii) Where, in a cell, are these inherited factors found?
\qquad

Q9.
A particular species of snail has a shell which may be pink, yellow or brown. It may also be plain or have bands running round it.

The snails are eaten by song thrushes.
Explain why snails with plain brown shells are the most common in hedgerows.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 4 marks)

Q10.
The picture shows a fossil.

(a) (i) What is a fossil?
\qquad
\qquad
(ii) Describe one way in which fossils are formed.
\qquad
\qquad
\qquad
(b) We only know about extinct animals and plants because they have left fossils. What does the word "extinct" mean?
\qquad
\qquad

Q11.

The genetic diagram shows how the chromosomes divide and combine in human reproduction.

(a) Draw circles around the symbols for the two male gametes.
(b) State the chance of a child being a girl.
\qquad
(c) (i) How many pairs of chromosomes are there in a human body cell?
\qquad
(ii) How many chromosomes are there in a human egg cell?
\qquad
(d) Chromosomes contain genes. From what substance are genes made?
\qquad
(e) In the process of mitosis, how do the number of chromosomes in the daughter cells compare to that in the original cell?
\qquad

Q12.

Dandelions have become adapted to live in lawns and grass areas where animals graze. Goosegrass, however, has become adapted to live alongside hedgerows and cannot survive being mown.

(a) Use the information in the drawings to suggest one advantage of each of the following adaptations.
(i) Dandelion leaves lie flat on the ground.
\qquad
\qquad
(ii) A dandelion has a thick tapered root.
(iii) Goosegrass stems are long.
\qquad
\qquad
(iv) Goosegrass roots are thin and very long.
\qquad
\qquad
(b) Dandelions and goosegrass are different species of plants.
(i) What name is given to the unit of inheritance which controls one particular characteristic of a plant or animal?
\qquad
(ii) Why would you be unlikely to succeed if you tried to breed a new species of plant by crossing a dandelion with goosegrass?
\qquad
\qquad
(c) Animals as well as plants have become adapted to live in different environments.

State one way a polar bear has become adapted to living in the Arctic, and the reason for the adaptation.
\qquad
\qquad
\qquad
\qquad

Q13.
(a) (i) Complete the genetic diagram to show the possible combinations of gametes for the four children and state the sex of the child for each combination.

Possible combinations

Sex of child \qquad
\qquad
\qquad
(ii) What name is given to the process when a cell divides to produce gametes?
\qquad
(iii) How many pairs of chromosomes are there in each human body cell?
\qquad
(iv) How many chromosomes are present in a human ovum?
\qquad
(b) (i) Give two advantages to living things of reproducing sexually rather than asexually.
\qquad
\qquad
\qquad
(ii) The genetic diagram shows two parents and three children.

Only the son has cystic fibrosis, which is caused by a recessive allele. What conclusion may be made about the parents' genes?
\qquad
\qquad

Q14.

Read the passage about antibiotics.

People do not always agree about the use of antibiotics in food production.
If we put low doses of antibiotics in feed for animals such as cattle and sheep, it helps to produce high-quality, low-cost food. Antibiotics help to keep animals disease-free. They also help animals to grow. Animals get fatter quicker because they do not waste energy trying to overcome illness.

The use of antibiotics in livestock feed means that there is a higher risk of antibiotic-resistant bacteria developing. The rapid reproduction of bacteria means there is always a chance that a population of bacteria will develop which is antibiotic-resistant. These could be dangerous to human health.
(a) To gain full marks for this question you should write your ideas in good English. Put them into a sensible order and use the correct scientific words.

Explain how a population of antibiotic-resistant bacteria might develop from non-resistant bacteria.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Do you think that farmers should be allowed to put low doses of antibiotics in animal feed? Explain the reasons for your answer.
\qquad
\qquad
\qquad
\qquad

Q15.

The drawing shows some of the stages of reproduction in horses.

(a) (i) Name this type of reproduction \qquad
(ii) Name the type of cell labelled \mathbf{A}
(b) Name the type of cell division taking place at the stage labelled:
(i) B \qquad
(ii) C \qquad
(c) How does the number of chromosomes in each cell of the embryo compare with the number of chromosomes in cell \mathbf{A} ?
\qquad
(d) When the foal grows up it will look similar to its parents but it will not be identical to either parent.
(i) Explain why it will look similar to its parents.
\qquad
\qquad
(ii) Explain why it will not be identical to either of its parents.
\qquad
\qquad
\qquad

Q16.

The diagrams show four ways in which human twins may be formed.
Sperm carrying
Egg Fertilised egg(s)
sex chromosome

C

D

Which diagram, A, B, C or \mathbf{D}, shows the process which will produce genetically identical twin boys?

Explain the reason for your choice.
\qquad
\qquad
\qquad
\qquad

Q17.

This couple has just found out that the woman is pregnant. They wonder whether the child will be a boy or a girl.

Sex chromosomes
Sex chromosomes \qquad
(a) Fill in the boxes to show the sex chromosomes of the woman and the man.
(b) The couple already has one girl. What is the chance that the new baby will be another girl?

Explain the reason for your answer. You may use a genetic diagram if you wish.
\qquad
\qquad
\qquad
\qquad
\qquad

Q18.
(a) Use words from the list to complete the sentences.

alleles chromosomes gametes genes mutations

The nucleus of a cell contains thread-like structures called \qquad .

The characteristics of a person are controlled by \qquad which may exist in different forms called \qquad .
(b) The drawing shows some of the stages of reproduction in horses.

(i) Name this type of reproduction \qquad
(ii) Name the type of cell labelled \mathbf{A} \qquad
(c) When the foal grows up it will look similar to its parents but it will not be identical to either parent.
(i) Explain why it will look similar to its parents.
\qquad
\qquad
(ii) Explain why it will not be identical to either of its parents.
\qquad
\qquad
\qquad
\qquad
(Total 8 marks)

Q19.

The drawing shows some of the fossils found in the layers of rock in two cliffs.
The two cliffs are on opposite sides of a large valley.
Geologists think that the valley has been carved out by rivers, and that the order of rock layers has not changed.

(a) (i) Which of the rock layers, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}, is the oldest?
(ii) Give the letters of two layers of rock on opposite sides of the valley that are the same age.
\qquad and \qquad
(b) How do fossils provide evidence for the theory of evolution?

Q20.

Flightless birds called Rails once inhabited 20 islands in the Pacific Ocean. During the last two centuries they have disappeared from 15 of these islands. The Aldabra Rail, shown below, is one of the few survivors. The island which it lives on is very remote.

Suggest three reasons why Rails have disappeared from 15 of the 20 islands they once inhabited.

1. \qquad
\qquad
2. \qquad
\qquad
3. \qquad
\qquad
(Total 3 marks)

Q21.

The drawing shows a potato plant producing new tubers (potatoes). Buds on the stem of the parent plant produce stolons. The new tubers are formed at the ends of the stolons (stems that grow downwards).

(a) Explain why the new tubers are genetically identical to each other.
\qquad
\qquad
\qquad
\qquad
(b) Some of the tubers are used to produce potato plants. These new potato plants will not all grow to the same height.

Give one reason why.
\qquad
\qquad

Q22.

A student's hobby was breeding pet mice. Three of the pet mice were called Stan, Tom and Sharon. Stan and Tom had black fur. Sharon had white fur.

The colour of the fur is controlled by a single gene which has two alleles B and b .
(a) The student first crossed Stan with Sharon. The results are shown on the diagram.

Explain why the baby mice produced by crossing Stan and Sharon all had black fur. You may use a genetic diagram if you wish.
(b) The student then crossed Tom with Sharon. The results are shown on the diagram.

When Tom was crossed with Sharon, some of the baby mice had black fur and some white.

Explain why. You may use a genetic diagram if you wish.

Q23.
The diagram shows a human sperm. Inside the tail of the sperm is a filament mechanism that causes the side to side movement of the tail, which moves the sperm.

(a) Describe the function of the mitochondria and suggest a reason why they are arranged around the filament near the tail of the sperm.
(b) Explain the significance of the nucleus in determining the characteristics of the offspring.
\qquad
\qquad
\qquad

Q24.
Cells in the human body are specialised to carry out their particular function.
(a) The diagram shows a sperm cell.

The sperm cell is adapted for travelling to, then fertilising, an egg.
(i) How do the mitochondria help the sperm to carry out its function?
\qquad
\qquad
(ii) The nucleus of the sperm cell is different from the nucleus of body cells.

Give one way in which the nucleus is different.
\qquad
\qquad
(b) Stem cells from human embryos are used to treat some diseases in humans.

Explain why.
\qquad
\qquad

Q25.

(a) (i) Some diseases can be tackled by using antibiotics and vaccination.

Explain fully why antibiotics cannot be used to cure viral diseases.
\qquad
\qquad
\qquad
\qquad
(ii) A recent study found that babies in 90% of hospitals are infected with the MRSA bacterium.

Explain how the MRSA bacterium has developed resistance to antibiotics.
\qquad
\qquad
\qquad
\qquad
(b) A person can be immunised against a disease by injecting them with an inactive form of a pathogen.

Explain how this makes the person immune to the disease.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q26.
Doctors give antibiotics to patients to kill bacteria in their bodies.
Explain how the overuse of antibiotics has led to the evolution of antibiotic-resistant
bacteria.
To gain full marks in this question you should write your ideas in good English.
Put them into a sensible order and use the correct scientific words.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 3 marks)

Q27.
Cystic fibrosis is an inherited disorder that can seriously affect health.
(a) Which one of these is affected by cystic fibrosis?

Draw a ring around your answer.
blood cell membranes kidneys nervous system
(b) The diagram shows the inheritance of cystic fibrosis in a family. The allele that produces cystic fibrosis is recessive.

(i) Explain why Alice inherited cystic fibrosis.
\qquad
\qquad
\qquad
(ii) Explain why Ted did not inherit cystic fibrosis.
\qquad
\qquad
\qquad
\qquad
(c) Bob and Carol know that there is a risk that their next baby will have cystic fibrosis.

Embryos can be screened for the allele that produces cystic fibrosis.
Many people support the screening of embryos, but others do not.
(i) Suggest one reason why many people support the screening of embryos for the cystic fibrosis allele.
\qquad
\qquad
\qquad
(ii) Suggest one reason why many people are against the screening of embryos for the cystic fibrosis allele.
\qquad
\qquad
\qquad

Q28.
MRSA strains of bacteria are causing problems in many hospitals.
(a) The diagram shows a hand-gel dispenser.

Hand-gel dispensers are now placed at the entrance of most hospital wards.
Explain why.
\qquad
\qquad
\qquad
\qquad
(b) Explain, as fully as you can, how MRSA strains of bacteria became difficult to treat.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 5 marks)

Q29.
An animal called Tiktaalik became extinct about 360 million years ago.
The photograph shows the fossilised skeleton of Tiktaalik and a model of what scientists think Tiktaalik looked like.

Image © University of Chicago, Shubin Lab. Model by Tyler Keillor
(a) Scientists found only the fossilised skeleton of Tiktaalik.

Explain why.
\qquad
\qquad
\qquad
\qquad
(b) Scientists think that Tiktaalik lived mostly in water, but that it was one of the first animals to be able to move onto land.

Use evidence from the photograph to suggest why.
\qquad
\qquad
\qquad
\qquad

Q30.
The photograph shows some cells in the root of an onion plant.

By UAF Center for Distance Education [CC BY 2.0], via Flickr
(a) Cells \mathbf{X} and \mathbf{Y} have just been produced by cell division.
(i) Name the type of cell division that produced cells \mathbf{X} and \mathbf{Y}.
\qquad
(ii) What happens to the genetic material before the cell divides?
\qquad
(b) A gardener wanted to produce a new variety of onion.

Explain why sexual reproduction could produce a new variety of onion.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 5 marks)

Q31.
Infections by antibiotic resistant bacteria cause many deaths.
The bar chart below shows information about the number of deaths per year in England
from Methicillin-resistant Staphylococcus aureus (MRSA) and from Clostridium difficile (C.difficile) over 4 years.

(a) (i) Describe the trend for deaths caused by C.difficile.
\qquad
\qquad
\qquad
\qquad
(ii) Suggest a reason for the trend you have described in part (a)(i).

Explain your answer.
\qquad
\qquad
\qquad
\qquad
(iii) Calculate the percentage change in deaths caused by MRSA from 2009 to 2010.
\qquad
\qquad
\qquad
Percentage change in deaths caused by MRSA = \qquad \%
(iv) Numbers have not yet been published for 2011.

When the numbers are published, scientists do not expect to see such a large percentage change from 2010 to 2011 as the one you have calculated for 2009 to 2010.

Suggest one reason why.
\qquad
\qquad
(b) Before 2007 there was a rapid increase in the number of deaths caused by MRSA.

Describe how the overuse of the antibiotic methicillin led to this increase.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q32.

Eye colour is controlled by genes.
The dominant allele of the gene (b) produces brown eyes. The recessive allele (b) produces blue eyes.

A homozygous blue-eyed woman married a homozygous brown-eyed man.
All of their three children had brown eyes.
(a) (i) Complete the genetic diagram.

(ii) Give the reason why all of the children had brown eyes.
\qquad
\qquad
(b) The couple's brown-eyed son and his brown-eyed partner had five children. Two of the children had blue eyes and three of the children had brown eyes.

Use a genetic diagram to show how two of their children came to have blue eyes.
\qquad
\qquad
\qquad

Q33.
The diagram shows some of the cell divisions that occur during human reproduction.

(a) (i) Name the type of cell division that produces cell D from cell B.
\qquad
(ii) Which organ in the male body produces cell \mathbf{C} from cell \mathbf{A} ?
\qquad
(b) (i) Cells A and Beach contain 46 chromosomes.

How many chromosomes would there be in the nucleus of cell \mathbf{C} ? \square
(ii) Why is it important that cell \mathbf{C} has this number of chromosomes?
\qquad
\qquad
\qquad
\qquad

Q34.
The diagram shows part of a DNA molecule.

(a) (i) In which part of an animal cell is DNA found?
(ii) Complete the following sentence.

The letters $\mathbf{A}, \mathbf{C}, \mathbf{G}$ and \mathbf{T} in the diagram represent four different compounds called \qquad .
(iii) One strand of the DNA, in the section labelled \mathbf{X}, contains the following sequence of these compounds:

TATGGGTCTTCG

How many amino acids would this section of the DNA code for?

(iv) The section of DNA described in part (a) (iii) is a small part of a gene.

The sequence of compounds $\mathbf{A}, \mathbf{C}, \mathbf{G}$ and \mathbf{T} in the gene is important.
Explain why.
\qquad
\qquad
\qquad
\qquad
(b) Read the following information about genetic engineering.

The caterpillar of the European Corn Borer moth feeds on the fruits of maize (sweet corn). There is a chemical called Bt-toxin which is poisonous to the corn borer caterpillar but not to humans.

Scientists carried out the following steps.

1. The Scientists made a bacterial plasmid to which they added two genes:

- Bt gene, which coded for production of the Bt-toxin
- kanr gene, which coded for resistance to an antibiotic called kanamycin.

2. They used this plasmid to produce genetically modified bacteria which could invade plant cells.
3. They mixed these genetically modified bacteria with pieces cut from maize leaves.
4. They placed the pieces of maize leaf on agar jelly in a Petri dish. The agar jelly contained the antibiotic, kanamycin. The kanamycin killed most of the pieces of maize leaf, but a few survived.
5. They took some cells from the surviving pieces of maize leaf and grew them in tissue culture.

The result was maize plants that now contained the Bt gene, as well as the kan ${ }^{r}$ gene, in all of their cells.
(i) What is a plasmid (Step 1)?
\qquad
\qquad
\qquad
\qquad
(ii) Why did the scientists add kanamycin to the agar jelly (Step 4)?
\qquad
\qquad
\qquad
\qquad
(iii) The scientists grew each Bt-maize plant from a single cell which contained the Bt gene.

Explain why all the cells in the Bt-maize plant contained the Bt gene.
\qquad
\qquad
\qquad
\qquad
(iv) Kanamycin is an antibiotic.

Some scientists are concerned that the gene for kanamycin resistance has been put into maize.

Suggest why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 13 marks)

Q35.

Peas grow in pods on pea plants.

A gardener grew four varieties of pea plants, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}, in his garden.
The gardener counted the number of peas in each pod growing on each plant.
The table shows his results.

Variety	Range of number of peas in each pod	Mean number of peas in each pod
A	$2-6$	4
B	$3-7$	5
C	$3-8$	6
D	$6-8$	7

(a) Give one environmental factor and one other factor that might affect the number of peas in a pod.

Environmental factor \qquad
Other factor \qquad
(b) The gardener thinks that he will get the largest mass of peas from his garden if he grows variety \mathbf{D}.

Why is the gardener not correct?
Suggest one reason.
\qquad
\qquad
(c) It is important that carbon is cycled through living things.

After he has picked the peas, the gardener puts the dead pea plants onto a compost heap.

Over the next few months, the carbon in the carbon compounds from the pea plants is returned to the air.

Describe how.
\qquad

Q36.
The photograph shows a fossil of a prehistoric bird called Archaeopteryx.

By Ghedoghedo (own work) [CC-BY-SA-3.0 (http://creativecommons.org/licenses/BY-SA-3.0) or GFDL
(http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons; By Steenbergs from Ripon, United Kingdom (Small Fishing Boat In North Sea) [CC-BY-2.0 (http://creativecommons.org/licenses/by/2.0)], via Wikimedia Commons.
(a) Describe three ways fossils can be made.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The drawing shows what an Archaeopteryx might have looked like when it was alive.

Scientists think that Archaeopteryx was a predator.

(i) Look at the drawing.

Write down three adaptations that might have helped Archaeopteryx to catch prey.

How would each adaptation have helped Archaeopteryx to catch prey?
Adaptation 1 \qquad
How it helps \qquad
\qquad
Adaptation 2 \qquad
How it helps \qquad
\qquad
Adaptation 3 \qquad
How it helps \qquad
\qquad
(ii) Archaeopteryx is now extinct.

Give two reasons why animals may become extinct.

1. \qquad
\qquad
2. \qquad
\qquad

Q37.
CRAM is an inherited condition which causes muscle breakdown.
The breakdown products enter the urine, making it dark-coloured.
The diagram below shows the inheritance of CRAM in one family.

CRAM is caused by a recessive allele, \mathbf{n}.
The allele for normal health is \mathbf{N}.
(a) (i) What is an allele?
\qquad
\qquad
(ii) What does recessive mean?
\qquad
\qquad
(iii) Give evidence from the diagram that CRAM is caused by a recessive allele.
\qquad
\qquad
(b) (i) Person $\mathbf{2}$ is homozygous for CRAM.

What does homozygous mean?
\qquad
\qquad
(ii) None of person 2's children have CRAM.

Explain why.
\qquad
\qquad
\qquad
(c) Persons 7 and 8 want to have another child.
(i) What is the probability that this child will have CRAM?

Draw a genetic diagram to explain your answer.
Probability $=$ \qquad
(ii) To avoid having another child with CRAM, persons 7 and 8 may decide to use embryo screening.

Two ways of doing this are:

- PGD (pre-implantation genetic diagnosis)
- CVS (chorionic villus sampling).

PGD involves IVF (in vitro fertilisation) of a few eggs, then taking a cell from each embryo when it is 3 days old.

The image below shows how the cell is removed.

The DNA in the cell can then be tested. An unaffected embryo can be implanted in the woman's uterus. The possibility of a false positive result is around 1 in 6 . The procedure costs about $£ 6000$. Affected embryos would be discarded. Extra unaffected embryos might be frozen and kept for later implantation. Alternatively, the extra embryos might be used in scientific research.

CVS involves taking a sample of blood from the placenta a few weeks into pregnancy. DNA from white blood cells can then be tested.
If an affected embryo is detected, the parents then have to decide whether to terminate the pregnancy or allow it to continue.

CVS has a 1 percent chance of giving an incorrect result and a 0.9 percent chance of causing a miscarriage. CVS costs about $£ 600$.

Evaluate the benefits of these two methods of embryo screening.
You should include a conclusion to your evaluation.
\qquad

Q38.
Some genetic disorders are caused by alleles inherited from the parents.
(a) What are alleles?
\qquad
\qquad
(b) Describe how embryos can be screened for the alleles that cause genetic disorders.
\qquad
(c) Polydactyly is a genetic disorder that leads to extra fingers or toes.

Polydactyly is caused by a dominant allele, D.
The photograph shows the hand of a person with polydactyly.

A man has polydactyly. His wife does not have polydactyly.
This couple's children have a 50% chance of having polydactyly.
Draw a genetic diagram to explain why.
(d) Cystic fibrosis is another genetic disorder. It is caused by a recessive allele.

The diagram shows the inheritance of cystic fibrosis in one family.

Woman 5 is pregnant with her fourth child.
What is the probability that this child will have cystic fibrosis?
Draw a genetic diagram to explain your answer.
Use the following symbols.
$\mathbf{N}=$ allele for normal health
$\mathbf{n}=$ allele for cystic fibrosis

Q39.
Moose are animals that eat grass.
Figure 1 shows a moose.
Figure 1

Figure 2 shows a food chain.

$$
\text { Grass } \longrightarrow \text { Moose } \longrightarrow \text { Wolves }
$$

(a) Name the secondary consumer shown in Figure 2.
\qquad
(b) Figure 3 shows how the moose population and wolf population have changed in one area.

This is a predator-prey cycle.
Figure 3

In 2004 the line on Figure 3 for wolves is above the line for moose.
How does Figure 3 show that there are more moose than wolves in 2004 ?
\qquad
\qquad
(c) Suggest why the moose population decreased between 2002 and 2004.

Use information from Figure 3.
\qquad
\qquad
(d) The number of wolves is one biotic factor that could affect the size of the moose population.

Give two other biotic factors that could affect the size of the moose population.

1. \qquad
2. \qquad
\qquad
(e) Moose have distinct characteristics such as antlers.

Describe how moose may have evolved to have large antlers.
\qquad

Q40.

Bacteria can cause disease.
Figure 1 shows some features of a Salmonella bacterium.
Figure 1

(a) Draw one line from each feature of the Salmonella bacterium to the function.

Feature
Function

Controls the movement of substances into and out of the cell

Cell membrane
Carries genetic information

Plasmid DNA
Provides support and protection
(b) How is Salmonella spread between people?

Tick one box.

Animal bites

Contaminated food

Sneezing

Sexual contact \square
(c) Give two ways you could stop Salmonella from spreading.

1. \qquad
\qquad
2. \qquad
\qquad
(d) Harmful bacteria can also be useful.

Scientists are doing research to find out if Salmonella can be used in a vaccine to treat cancer.

The Salmonella vaccine can be injected into the blood or swallowed in a tablet.
One benefit of injecting the vaccine is that it gets to the cancer quickly in the blood.
What is another benefit?
Tick one box.

All cancers can be treated by the injection \square
It will not cause sickness and diarrhoea side effects \square

The injection is not painful to the patient \square

The injection introduces cancer cells into the body \square
(e) The Salmonella bacterium used in the vaccine is genetically modified using part of a virus.

Look at Figure 2.
Figure 2

Complete the sentences.
Use the letters from Figure 2.
Bacteria reproduce quickly in part \qquad
DNA with the desired gene is removed from the virus in part \qquad
The chosen gene is inserted into the plasmid in part \qquad

Q41.
(a) Which of the following is the best definition of a species?

Tick (\checkmark) one box.

Organisms with many features in common \square
Organisms that live in the same habitat and eat the same food

Organisms that reproduce together to form fertile offspring

(b) Figure 1 is a photograph of the Grand Canyon.

The layers of rock contain fossils.
Figure 1

© Sumikophoto/iStock/Thinkstock
Scientists found five fossils of different species of animal, $\mathbf{P}, \mathbf{Q}, \mathbf{R}, \mathbf{S}$ and \mathbf{T}, at the positions shown in Figure 1.
(i) What is the evidence in Figure $\mathbf{1}$ that animals \mathbf{P} and \mathbf{Q} were alive at the same time?
\qquad
\qquad
(ii) Was animal \mathbf{R} alive at an earlier time or at a later time than animals \mathbf{P} and \mathbf{Q} ?

Give the reason for your answer.
\qquad
\qquad
(iii) Which two of the following would be evidence that animal \mathbf{T} may have evolved from animal \mathbf{S} ?

Tick (\checkmark) two boxes.

The fossils of animals \mathbf{S} and \mathbf{T} have many features in common, but \mathbf{T} is more complex than \mathbf{S}.

The fossils of animals \mathbf{S} and \mathbf{T} are the same size.

The fossils of animals \mathbf{S} and \mathbf{T} have the same skin colour.

The fossil of animal \mathbf{S} was found in a deeper layer of rock than the fossil of animal \mathbf{T}.

The fossil of animal \mathbf{T} is more similar to the fossil of animal \mathbf{R} than to the fossil of animal \mathbf{S}.

(c) Figure $\mathbf{2}$ shows two species of ground squirrel, \mathbf{W} and \mathbf{X}.

Figure 2

Squirrel W lives on the high ground to the south of the Grand Canyon.
Squirrel \mathbf{X} lives on the high ground to the north of the Grand Canyon.
The land to the north of the Grand Canyon is about 300 metres higher than the land on the south side. The north side also has lower winter temperatures and has more rain and snow than the south side.
(i) The two species of squirrel are very similar.

Describe one way, which you can see in Figure 2, in which squirrel \mathbf{X} is different from squirrel \mathbf{W}.
\qquad
\qquad
(ii) The Grand Canyon was formed about 6 million years ago.

Explain how the two different species of squirrel could have developed from a common ancestor.
\qquad
(iii) Squirrels \mathbf{W} and \mathbf{X} are separate species, but they are still very similar.

Suggest why the two species have not become more different over time.
\qquad
\qquad
\qquad
\qquad

Q42.
Glyphosate is a herbicide.
Crop plants have been genetically modified to make them resistant to glyphosate.
(a) Why is it an advantage to make crop plants resistant to glyphosate?
\qquad
\qquad
\qquad
\qquad
(b) Figure 1 shows how scientists produce genetically modified (GM) crop plants.

The scientists use a GM-bacterium that can invade plant cells.
Figure 1

(i) The ring of DNA shown in Figure 1 acts as a vector for the resistance gene.

What is the scientific name for this ring of DNA?
\qquad
(ii) At step 1 in Figure 1, the ring of DNA is cut open.

How do scientists cut open the ring of DNA?
\qquad
\qquad
(iii) At step 5 in Figure 1, plant cells and GM-bacteria are put on agar containing glyphosate.

Explain why the scientists add glyphosate to the agar.
\qquad
\qquad
\qquad
\qquad
(c) Some people disagree with the use of GM herbicide-resistant crop plants.

Figure 2 shows data published on a website in 2013.

Figure 2

Key

\square Number of cases of kidney disease

- Glyphosate applied to maize and soya beans

A journalist used the data to claim: 'Scientists show that GM crops cause kidney disease in humans.'

Use information from Figure 2 to evaluate the evidence for this claim.
\qquad

Q43.

DNA is the genetic material of human cells.
Figure 1 shows the structure of part of a DNA molecule.
Figure 1

(a) (i) Describe where DNA is found in a human cell.
\qquad
\qquad
\qquad
(ii) When a cell divides by mitosis the new cells are genetically identical.

What causes the cells to be genetically identical?
\qquad
\qquad
(b) Many genes have different forms called alleles.
(i) A person has polydactyly (extra fingers or toes). Polydactyly is caused by a dominant allele.
What is the smallest number of copies of the dominant allele for polydactyly that could be found in a body cell of this person?
(ii) Another person has cystic fibrosis. Cystic fibrosis (CF) is caused by a recessive allele.
How many copies of the recessive CF allele are there in a body cell of this person?
(c) A burglar broke into a house. The burglar cut his hand on some broken glass. Scientists extracted DNA from the blood on the broken glass.

The scientists analysed the DNA from the glass and DNA from three suspects, A, B and \mathbf{C}. The scientists used a method called DNA fingerprinting.

Figure 2 shows the scientists' results.
Figure 2

Which suspect, \mathbf{A}, \mathbf{B} or \mathbf{C}, is most likely to have been the burglar?
Tick (\checkmark) one box.

A

B

C

Mark schemes

Q1.

(a) (i) (too) cold / all moisture / water frozen / no moisture / no warmth / conditions for decay are absent.
for 1 mark
(No oxygen is neutral)
(Do not accept frozen or ice has preserved them)
(ii) • (bacteria have) no oxygen / air (because dead fish covered in mud)
(No moisture x)
(No moisture and no oxygen or warmth x)

- bones / hard parts do not decay easily
idea that
- material of fish replaced by minerals any two for 1 mark each
(b) ideas that
- mammoths lived at the same time as humans / there was man in these times
- mammoths lived in the same place as humans
- humans hunted mammoths / ate mammoths / were carnivorous / for fur etc
- reference to later use of more advanced weapons
- humans needed to protect themselves from mammoths
- humans used flints / weapons / tools any two for 1 mark each
(c) idea that
- environment changed / became too cold / became too warm / vegetation changed / humans destroyed environment
- (new) predator / humans killed them
- new disease
- new competitor / type of elephant
- shortage of food / no food / ran out of prey
- mammoths reproduced too slowly
- mammoths didn't adapt to changes
any two for 1 mark each

Q2.
(a) asexual reproduction
(b) mitosis
(c) clones
(d) 44

Q3.
(a) (i) any two from:

- food
- mates
- territory / space
ignore habitat, land
ignore water
(ii) any two adaptations with explanations from:

1 mark for adaptation
1 mark for correct explanation
ignore prevents / no heat loss

- long / thick hair or wool
allow a lot of
allow long / thick / a lot of fur
ignore fat although reason can still be credited
ignore coat
(for) insulation
allow (to) trap energy / heat / air
allow to keep warm
- small surface area : volume ratio
ignore large body mass although reason can still be credited
(therefore) lose less energy
allow (to) keep warm
allow heat for energy
ignore (to) insulate
- small ears / tail

> allow (to) keep warm
> allow heat for energy
> (therefore) lose less energy
> ignore (to) insulate
> only allow big tusks if qualified eg digging through snow / ice for(food) for 2 marks
> ignore references to predators and prey
> only allow big feet if qualified eg for walking on snow / ice for 2 marks
(b) (i) natural selection
(ii) if some animals grew a long nose / acquired characteristic (during their lifetime)
ignore answers about Darwin's theory
allow trunk for nose
allow used trunk / nose / it a lot
allow stretched trunk / nose / it
their offspring would inherit / also have a long nose
do not accept references to genes / DNA / chromosomes

Q4.
(a) (i) 3 (millions of years)
(ii) orangutans
(b) natural selection
ignore survival of the fittest

Q5.
(a) idea
identical (do not allow simply "the same number")
for 1 mark
(b) idea
chromosomes double/duplicate/copies made
for 1 mark
separate into 2 sets/divide*
gains 1 mark

but

separate into 4 sets/divide twice*
gains 2 marks
number halved compared to bodycell
or
single set (only) 16
accept in terms of cells but only if chromosomes referred to in first and/or last items)

$$
\text { for } 1 \text { mark }
$$

Q6.

(a) sexual / sex
for 1 mark
(b) idea that
sexual reproduction brings about a mixture of genes or similar / different genes / parents / gametes / DNA / characteristics / chromosomes (not features)
for 1 mark
(c) (i) asexual / cloning (allow vegetative)
for 1 mark
(ii) (A) idea that (they are exactly the same). Do not allow similar or just one named feature.
for 1 mark
(B) different (allow similar but do not allow same).

Allow any one named difference
for 1 mark
(d) (i) greater the X -ray dose, greater the \% of mutations or \% of mutations increases steadily / in proportion to X-ray dose for 1 mark
(ii) ionising radiations / ultra-violet light / alpha particles / beta particles / gamma rays / radio activity / chemicals / drugs / smoking / natural in meiosis / spontaneous / cell replication / toxic waste / pollution

Accept radioactivity but not radiations alone.
for 1 mark

Q7.
(a) idea about

- environment change / habitat drier / climate change
- couldn't escape from predators / ref to predators / killed / eaten [Do not allow "died"]
- because feet not adapted to run on dry ground
- couldn't compete (with Merychippus) / more difficult to get food

$$
\begin{aligned}
& {[\text { Use } v+x=x \text { principle }]} \\
& \quad \text { any two for } 1 \text { mark each }
\end{aligned}
$$

(b) (i) fossil remains / from the bones
for 1 mark
(ii) (known) age of rock or any reason for knowing the age of the rock eg by the rock layers by RA dating (not C-dating)
for 1 mark
(c) idea that
(present day) horses / species evolved / adapted / developed from earlier species/ horses

- over a long period of time / millions of years
- via many / gradual changes
- which gave a survival advantage /passed on genes / characteristics any three for 1 mark each
[First bullet point answer is required before marks can be awarded for others]

Q8.
(a) any three from:
factor for colour has two forms
accept gene for factor and allele for form
yellow dominant since all first generation yellow
accept F1 for first generation
green recessive since reappears in second generation
accept F2 for second generation
(b) (i) genes
accept alleles / genetic
(ii) nucleus
accept chromosomes / DNA

Q9.
idea brown colour/plain shell inconspicuous
for 1 mark
less likely to be eaten
gains 1 mark
but
less likely to be eaten before breeding
gains 2 marks
so alleles (genes) passed on
for 1 mark
(N.B accept inverse of any of the above)

Q10.
(a) (i) ideas that

- remains of animal/plant of specific organism
- (from) many years ago/thousands or millions of years
- found in rocks/covered by sediments
for 1 mark each
Mark (a) as a whole to a total of 5 marks.
(ii) ideas that
- hard parts/bones/shells/skeletons
link required
- don't decay
or
- no decay
link required
- conditions needed absent/no oxygen/no water
or
- parts replaced by rock mineral chemicals;

Do not accept 'materials' or 'substances'.

- as they decay

Accept 'hard' or 'soft' parts for 1 mark each
(b) idea
died out/none left/died off
Do not accept 'died' alone for 1 mark

Q11.

(a) circles round right hand \mathbf{X} and \mathbf{Y} gametes put two ticks or crosses by the circles
(b) $50: 50$ or $1: 1$ or 50% or 0.5 or $1 / 2$ equal or evens credit even do not accept 2:1 or $50 / 50$
(c) (i) 23
(ii) 23
credit the same as the one above to be marked consequential
(d) DNA
do not accept nucleic acid
(e) same

Q12.

(a) (i) to go under teeth or mower
accept not damaged by grazing animals
accept do not get cut or bitten
accept reduces competition by other plants
do not credit maximum surface of leaves facing Sun
(ii) any one from
it can force its way through grass roots
accept in competition with grass roots
it is a store of food (to help the plant recover)
do not credit a good store of water
to reach down to water
to give good anchorage
accept it is hard to pull up
(iii) any one from
to reach more light
accept to get out of the shadow of the hedge or tall grass
to let seeds be caught on animals' coats
(more easily)
accept improves access or visibility or ease for pollination do not credit to help it grow up the hedge
(iv) any one from
(they reach out from hedge) to find water
accept increase surface area accept to find nutrients or minerals do not award mark if food mentioned
to give good anchorage
(b) (i) gene or allele do not credit chromosome
(ii) any one from
they do not crossbreed or interbreed accept different species do not breed together or do not fertilise each other
do not produce fertile offspring
have different numbers or types of chromosomes accept genes are incompatible do not credit have different genes or are genetically different do not credit do not pollinate each other
(c) one mark is for the adaptation and one is for an appropriate reason
have white fur
for camouflage
are huge
for large volume to surfae area
thick layer of fat
for insulation or to reduce heat loss or retain heat do not credit to stop it losing heat or withstand the cold or keep it warm
have thick fur
for insulation or to reduce heat loss or retain heat
hibernate
to avoid the coldest part of year
is a carnivore
because animals provide high energy food
has big paws or claws
to be able to walk on snow
have small ears
to reduce heat loss
have furry feet
for insulation from the snow

Q13.
(a) (i) $X X \quad X Y \quad X Y \quad X X$
female male male female the four correct genotypes and sex are required they may be in any order
(ii) meiosis
correct spelling required but accept meisosis not miosis or meosis
(iii) 23
(iv) 23
(b) (i) any two from
(introduces) variation
accept can crossbreed or offspring may gain beneficial characteristics
prevents the risk of all being the same and a disease wiping out population or prevent monoculture
two parents to raise offspring
(ii) both parents carry a recessive allele or gene or are heterozygous accept both parents are carriers

Q14.
(a) Quality of written communication

The answer to this question requires ideas in good English in a sensible order with correct use of scientific terms. Quality of written communication should be considered in crediting points in the mark scheme
idea of mutation or variation
do not allow 'bacteria get used to antibiotics' or idea that antibiotics change the bacteria or 'bacteria become immune' or references to adaptation or evolution
(resistant cells) survive antibiotic
(resistant cells) breed
(b) EITHER (yes)
keep animals disease free (1) so grow faster (1 mark) or live longer
$\mathbf{O R}$ (no)
resistant bacteria may develop (1)
risk to human or animal health (1)
allow bacteria become resistant / immune

Q15.

(a) (i) sexual / sex
(ii) egg / gamete / sex cell / ovum (reject ovule) for 1 mark each
(b) (i) meiosis / reduction
(ii) mitosis / somatic for 1 mark each
(c) twice as many (reject answers based on 23 / 46 chromosomes) for one mark
(d) (i) information / genes / DNA passed from parents (chromosomes neutral)
for one mark
(ii) genes / genetic information / chromosomes from two parents alleles may be different environmental effect / named may have been mutation any two for 1 mark each

Q16.
D
idea that twins have come from one (fertilised) egg
idea that Y sperm / Y chromosome produces boys
each for 1 mark

Q17.

(a) woman $X X$ man XY for 1 mark each
(b) $50 \% / 1$ in $2 /$ evens $/ 0.5 / 50: 50$
for 1 mark
mark scheme for genetic diagram
gametes all correct
genotypes of offspring all correct in relation to gametes for 1 mark each

mark scheme for written explanation

half sperm have X chromosome, half have Y
and
all eggs have X chromosome
50% / 1 in 2 / evens / 0.5 chance of egg being fertilised by X or Y sperm
for 1 mark each

Q18.
(a) chromosomes
genes (reject alleles)
alleles
for 1 mark each
(b) (i) sexual / sex
for one mark
(ii) egg / gamete / sex cell / ovum (reject ovule)
for one mark
(c) (i) information / genes / DNA passed from parents (reject chromosomes) for one mark
(ii) genes / genetic information / chromosomes from two parents alleles may be different environmental effect / named may have been mutation

Q19.

(a) (i) D for 1 mark
(ii) $\mathrm{D} \quad \mathrm{Y}$ (both) or C X (both) or B W (both)
for 1 mark
(b) N.B. answers must relate to fossils providing evidence show types of animals / plants that no longer exist / named ref eg dinosaur show changes in types (of animals / plants)
similar fossils found in rocks of similar age
reference to sequence of change
or example
e.g. horse / limb
any two for 1 mark each

Q20.
3 of e.g.
new predators
new diseases
new competitors
environmental changes (initiated by Man)
each for 1 mark

Q21.

(a) grow from parents, by vegetative reproduction/asexual reproduction/ no sexual reproduction for 1 mark each
(b) e.g. different environmental conditions/named condition for 1 mark

Q22.
(a) $\operatorname{Stan} B B$

Sharon bb
all offspring Bb
(b) Tom Bb
black offspring Bb
white offspring bb

Q23.
(a) award one mark for each key idea
energy released or energy transferred or respiration allow provides or gives do not allow produces or makes
near to the site of movement or energy available quickly or more energy accept allows more mitochondria to fit in
(mitochondria) packed (around
filament) or efficient arrangement or spiral arrangement
(b) contains chromosomes or genes or DNA
not genetic material
(which) contribute half (the genes) to the fetus or offspring

23 chromosomes or half the genes or reference to X, Y chromosome determining sex (if the notion of halfness is there) nucleus contains half genes for the offspring $=2$ marks

Q24.
(a) (i) release energy
allow provide / supply / give energy do not accept produce / create / generate / make energy do not allow release energy for respiration
(ii) contain half the (number of) chromosomes or contains one set of chromosomes or contains 23 chromosomes
allow genetic information / DNA / genes / alleles instead of chromosomes
accept haploid
(b) any two from:

- (stem cells) are unspecialised / undifferentiated allow description eg 'no particular job'
- are able to become differentiated or can form other types of cell / tissue / organ
- \quad stem cells can / able to divide / multiply

Q25.

(a) (i) viruses live inside cells

> viruses inaccessible to antibiotic
> \quad allow drug / antibiotic (if used) would (have to) kill cell
(ii) mutation
ignore mutation caused by antibiotic
natural selection or no longer recognised by antibiotics
accept description of natural selection
(b) (stimulate) antibody production
ignore antitoxin
(by) white cells
rapidly produce antibody on re-infection
ignore antibodies remain in blood

Q26.

Quality of written communication

for correct use of at least two scientific terms eg mutation, resistant (not just 'antibiotic-resistant', not 'immune') / selection / natural selection / survival / reproduction / gene / allele / DNA
any two from:
mutation occurs in bacteria or change in DNA / gene occurs
cancel if mutation 'caused by' antibiotic
(when antibiotic used) only resistant bacteria survive or non-resistant bacteria are killed or reference to 'natural selection'
resistant bacteria pass on the gene / allele
allow pass on the mutation
do not accept just 'pass on resistance'

Q27.
(a) cell membranes
(b) (i) two recessive / cystic fibrosis / faulty / diseased / the allele(s) / genes two can be implied by second marking point ignore chromosomes

> from Bob and Carol / both parents / the parents if no other marks awarded 'Carol is a carrier' gains $\mathbf{1}$ mark
(ii) (inherited) dominant / normal allele / gene
from Carol / mother
ignore references to recessive allele / gene from father / Bob if no other marks awarded he has just / only one recessive allele gains 1 mark
(c) (i) reduce number of people with cystic fibrosis (in population)
or
reduce health-care costs
or
expensive to have baby with cystic fibrosis accept to allow decision / emotional argument qualified eg allows abortion
or
allows people to make choices about termination
or
help to prepare financially / emotionally etc
(ii) any one from:

- possible damage / risk to embryo / fetus / baby allow possible harm / risk to mother
- screening / it is expensive
- (may) have to make ethical / moral / religious decisions ignore not natural / playing God / unethical / immoral / religious unqualified
- right to life

Q28.

(a) kills / destroys bacteria / MRSA do not allow germs
prevents / reduces transfer allow stops MRSA entering ward
(b) mutation
do not accept antibiotics causes mutation
(causes) resistance
allow not effective ignore immunity
to antibiotics

Q29.
(a) (soft) body parts / other parts / named parts accept flesh
decayed / decomposed / rotted / eaten
or
bones do not decay / decompose / rot / get eaten ignore disintegrated / dissolved ignore microorganisms
(b) any one aquatic feature from: eg

- streamlined body shape
- long tail
- eyes on top of head
- scales
- fins / paddles / flippers / webbed feet ignore gills
any one terrestrial feature from:
- (front) legs / limbs / hands
- could lift front end upwards ignore feet
accept for $\mathbf{2}$ marks eg fin / flipper can be used for walking or fins like legs

Q30.
(a) (i) mitosis correct spelling only
(ii) replicates / doubles / is copied / duplicates
accept cloned ignore multiplied / reproduced
(b) fertilisation occurs / fusion (of gametes)
accept converse for asexual, eg none in asexual / just division in asexual
so leading to mixing of genetic information / genes / DNA / chromosomes genes / DNA / chromosomes / genetic information comes from 1 parent in asexual ignore characteristics
one copy (of each allele / gene / chromosome) from each parent or gametes produced by meiosis
or
meiosis causes variation
meiosis must be spelt correctly

Q31.
(a) (i) decrease
rate of decrease slows
(ii) any one from:

- more use of disinfectant allow any reasonable increase in hygiene or sterilisation precautions
- more use of hand washing
- more careful / more often cleaning of patient facilities
- raised awareness / education about hygiene

Explanation:
stops / reduces the bacteria being transferred / spreading
(iii) $800-500 / 800 \times 100=$
(iv) any one from:

- numbers quite low now so hard to reduce further
- was a big campaign / much publicity (in 2009) so more people already doing it
- hygiene / cleaning now good so hard to improve
- hospitals short of money so less staff to clean
(b) mutation occurred giving resistance (to methicillin) do not accept overuse caused mutation resistant bacteria not able to be treated / not killed
these bacteria multiplied / reproduced / spread quickly

Q32.
(a) (i) correct parental genotypes (man BB and woman bb)
all offspring Bb

ignore 'brown' or 'brown eyes' on diagram
(ii) they have one $\mathrm{B} /$ dominant allele / heterozygous
or
B / brown allele / dominant allele is expressed even if only on one chromosome
(b) correct parental genotypes (both Bb)
can be shown in a diagram
can be shown as gametes
correct derivation of offspring genotypes from gametes
allow correct derivation from wrong gametes
bb identified as blue-eyed

Q33.
(a) (i) meiosis
allow mieosis
(ii) testis / testes
allow testicle
(b) (i) 23
(ii) fuses / joins with cell D / with egg cell or used in fertilisation allow fuse with another cell
prevents doubling of chromosome number / restores original no. / 46 / diploid no. / normal no. / full no.
accept 23 from each parent / from each gamete

Q34.
(a) (i) nucleus
correct spelling only
accept mitochondrion
ignore genes / genetic material / chromosomes
(ii) base(s)

Accept all four correct names of bases ignore nucleotides and refs to organic / N-containing
(iii) 4
(iv) codes for sequence / order of amino acids
ignore references to characteristics
codes for a (specific) protein / enzyme
or
the sequence / order of three bases / compounds / letters
codes for a specific amino acid
or
the sequence / order of 3 bases / compounds / letters
codes for the order / sequence of amino acids
(b) (i) DNA
circular / a ring or a vector / described
(ii) kills any cells not having kan' gene / so only cells with kan' gene survive
hence surviving cells will also contain Bt gene / plasmid
(iii) cells divide by mitosis
ignore ref to asexual reproduction correct spelling only
genetic information is copied / each cell receives a copy of (all) the gene(s) / all cells produced are genetically identical / form a clone
(iv) any two from:

- gene may be passed to pathogenic bacteria
- cannot then kill these pathogens with kanamycin
or
cannot treat disease with kanamycin
- may need to develop new antibiotics
- gene may get into other organisms
- outcome unpredictable

Q35.
(a) any correct named physical environmental condition, e.g. light / water / rain / temperature / minerals / nutrients / space (between plants)
ignore carbon dioxide / climate / weather / sun / pollution
genes / inheritance
ignore 'variety'
OR
any correct named biotic factor e.g. predation / disease
(b) mass of crop also depends on number of pods (per plant) / size / mass of each pea
ignore number of plants
(c) microorganisms / bacteria / fungi / decomposers / detritus feeders / named
decompose / rot / break down / decay / digest
ignore feed / eat
(these organisms) respire
do not allow respiration by pea (plants)
(decay / respiration / microorganisms etc) releases carbon dioxide
do not allow combustion / fossilisation

Q36.
(a) any three from:

- parts of organisms have not decayed
accept in amber / resin
allow bones are preserved
- conditions needed for decay are absent
accept appropriate examples, eg acidic in bogs / lack of oxygen
- parts of the organism are replaced by other materials as they decay accept mineralised
- or other preserved traces of organisms, eg footprints, burrows and rootlet traces
allow imprint or marking of organism
(b) (i) teeth for biting (prey)
must give structure + explanation
claws to grip (prey)
accept sensible uses
wing / tail for flight to find (prey)
(ii) any two from:
- new predators
- new diseases
- better competitors
- catastrophe eg volcanic eruption, meteor
- changes to environment over geological time
accept climate change
allow change in weather
- prey dies out or lack of food
allow hunted to extinction

Q37.
(a) (i) alternative / different / one form of a gene or
a mutation of a gene
do not allow a type of gene
(For info: CRAM = Childhood Recurrent Acute Myoglobinuria)
(ii) not expressed if dominant / other allele is present or it is heterozygous
only expressed if dominant allele not present / no other allele present or it is homozygous
need two copies to be expressed / not expressed if only one copy allow 'gene' for allele
(iii) unaffected parents have an affected child allow $\mathbf{7}$ and 8 have 10 allow skips a generation
(b) (i) has two alleles that are the same accept (person is) nn / NN or has two recessive / dominant alleles
(ii) (all) inherit $\mathbf{N} /$ normal / dominant allele from 1 / from father ignore they are carriers
all are $\mathbf{N n}$ / none are $\mathbf{n n}$ / all are heterozygous
(c) (i) genetic diagram including:

1 gametes correct or parental genotypes correct:
\mathbf{N} and $\mathbf{n}+\mathbf{N}$ and \mathbf{n} or $\mathbf{N n}+\mathbf{N n}$
accept alternative symbols, if defined

> 2 derivation of offspring genotypes:
> $\mathbf{N N}+\mathbf{N n}+\mathbf{N n}+\mathbf{n n}$
> \quad allow alternative if correct for parental gametes

3 nn identified as CRAM

accept $1 / 4 / 25 \% / 1$ in 4 / 1 out of 4 / $1: 3$

4 correct probability: 0.25
do not accept 3:1 / 1:4
(ii) any four points + conclusion:
pro PGD:
detected at earlier stage / at 3 days c.f. several weeks / before becoming pregnant
no / less chance of miscarriage c.f. CVS
does not involve abortion / less trauma / less pain / ethical comparison
higher chance of having unaffected child - eg ref to use of spare
embryos
provides embryos for research

pro CVS:

PGD may destroy some embryos
ethical implications of research on embryos (with PGD)
lower incidence of false positives / false results
low(er) financial cost
conclusion:
must relate to candidate's argument
must have at least one point from each technique for max marks

Q38.
(a) (different / alternative) forms of a gene do not accept types of genes
(b) DNA isolated from embryo
(fluorescent) probe mixed with embryo DNA
probe (then) binds with embryo DNA
(UV light) to show alleles / gene for disorder
(c) genotypes of parents and gametes correct (Man D and d, Wife d and d) allow half-size genetic diagram with only one d from wife
offspring genotypes correct (1⁄2 = Dd and $1 / 2=\mathbf{d d})$
allow ecf if parental genotypes are wrong
offspring phenotypes correctly assigned to genotypes
(d) genotypes of parents and gametes correct (\mathbf{N} and \mathbf{n}) allow ecf if parental genotypes are wrong
offspring genotypes correct (NN, $2 \times \mathbf{N n}$, and $\mathbf{n n}$)
offspring phenotypes correctly assigned to genotypes;
correct probability $=0.25 / 1 / 4 / 25 \% / 1$ in $4 / 1: 3$, only;

Q39.
(a) wolves
(b) moose and wolves are on different scales
(c) wolf population has increased so more moose are eaten do not accept there are more wolves than moose
(d) any two from:

- (other) predators
allow correct examples
allow 'humans hunting moose'
- (new) pathogens
allow diseases
- competition
(e) any four from:
- variation (within species) of antler size
allow description relating to antlers
- (caused by) different genes
- as a result of sexual reproduction / process of meiosis / mutation
- (phenotype) most suited to environment most likely to survive and breed ignore natural selection unqualified
- genes for large antlers (more likely to be) passed on to next generation
reference to mate selection
or
fighting
or
gaining territory
or
competition for mates
or
avoiding predation

Q40.
(a) Feature Function

extra lines from the left negate the mark
(b) Contaminated food
(c) any two from:

- cook food (thoroughly)
- pasteurise food
- wash hands properly
- disinfect work surfaces
- keep raw and cooked foods separate
- only drink clean water
(d) It will not cause sickness and diarrhoea side effects
(e) \mathbf{E}

B

D

Q41.
(a) organisms that reproduce together to form fertile offspring
(b) (i) fossils of \mathbf{P} and \mathbf{Q} in same stratum / layer / level / height
(ii) earlier - fossil in deeper layer / further down
(iii) the fossils of animals \mathbf{S} and \mathbf{T} have many features in common, but \mathbf{T} is more complex that \mathbf{S}
the fossil of animal \mathbf{S} was found in a deeper layer of rock than the fossil of animal T
(c) (i) \mathbf{X} has white tail / shorter tail
allow other points eg \boldsymbol{X} has furrier tail / smaller feet / is furrier
or
W has sharper claws / W has larger claws
(ii) two (ancestral) populations separated / isolated (by geographical barrier / by canyon / river)
genetic variation (in each population) / different alleles / different genotypes / (different) mutation(s)
different environmental conditions / example described allow abiotic or biotic example
the better adapted survive / natural selection occurs allow survival of the fittest ignore they adapt to the environment
so (different / favourable) alleles / genes passed on (in each population)
(iii) any two from:

- environments similar / described allow example, e.g. similar predator(s) / food / climate
- therefore similar adaptations / features / phenotypes suit accept suitable named feature
- original ancestor already well adapted ignore reference to not enough time for evolution.

Q42.
(a) kills weeds among crops / does not kill crops
(kills weeds) so less competition for named factor eg light / water / ions ignore space
crops grow better / higher yield
(b) (i) plasmid
(ii) use an enzyme
allow correct example
(iii) only some cells become GM / take up the plasmid / take up resistance gene
allow idea of transfer of gene / plasmid to some plant cells from bacteria

GM cells survive / non-GM cells are killed
(c) Pro:
(positive) correlation between use of glyphosate and number of cases of kidney disease
allow 1 mark for justified conclusion that the claim is not justified

+ any three from:
Con:
- lack of controls / control group
- correlation does not prove a causal link
- some other factor could be the cause
accept obesity / infection
- no evidence that kidney patients actually consumed GM crops / crops treated with glyphosate / no evidence about amount consumed or graph shows amount of herbicide not amount of GM crops grown or graph shows data only for maize and soya / not for other (GM) crops
- data have been manipulated by carefully chosen scales to make it look like they coincide
- data from some years is missing
- no data for the dosage of herbicide used
allow kidney disease has been around for much longer than
GM crops / better diagnosis of kidney disease.

Q43.
(a) (i) in the chromosome(s)
ignore genes / alleles
in the nucleus
allow nuclei
allow mitochondria
(ii) the DNA / chromosomes / genes are replicated / copied / multiplied / doubled / duplicated
allow DNA is cloned
ignore same DNA / chromosomes / genes if unqualified
(b) (i) $1 /$ one
(ii) 2 / two
(c) \mathbf{B}

