Topic 5 Forces and Motion
Name:

Class:

Time:	44 minutes
Marks:	42 marks

Comments:

Q1.The figure below shows the forces acting on a child who is balancing on a pogo stick.
The child and pogo stick are not moving.

(a) The downward force of the child on the spring is equal to the upward force of the spring on the child.

This is an example of which one of Newton's Laws of motion?
Tick one box.

(b) Complete the sentence.

Use an answer from the box.

elastic potential potential	gravitational kinetic

The compressed spring stores
energy.
(c) The child has a weight of 343 N .

Gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$
Write down the equation which links gravitational field strength, mass and weight.
\qquad
(d) Calculate the mass of the child.
\qquad
\qquad
\qquad
\qquad
(e) The weight of the child causes the spring to compress elastically from a length of 30 cm to a new length of 23 cm .

Write down the equation which links compression, force and spring constant.
\qquad
(f) Calculate the spring constant of the spring.

Give your answer in newtons per metre.
\qquad
\qquad
\qquad
\qquad

Q2.A student suspended a spring from a laboratory stand and then hung a weight from the spring.

Figure 1 shows the spring before and after the weight is added.

Figure 1

(a) Measure the extension of the spring shown in Figure 1.

Extension =
mm
(b) The student used the spring, a set of weights and a ruler to investigate how the extension of the spring depended on the weight hanging from the spring.

Before starting the investigation the student wrote the following prediction:
The extension of the spring will be directly proportional to the weight hanging from the spring.

Figure 2 shows how the student arranged the apparatus.
Figure 2

Page 4

Before taking any measurements, the student adjusted the ruler to make it vertical.
Explain why adjusting the ruler was important.
\qquad
\qquad
\qquad
\qquad
(c) The student measured the extension of the spring using a range of weights.

The student's data is shown plotted as a graph in Figure 3.
Figure 3

What range of weight did the student use?
\qquad
(d) Why does the data plotted in Figure 3 support the student's prediction?
\qquad
\qquad
(e) Describe one technique that you could have used to improve the accuracy of the measurements taken by the student.
\qquad
\qquad
\qquad
\qquad
(f) The student continued the investigation by increasing the range of weights added to the spring.

All of the data is shown plotted as a graph in Figure 4.
Figure 4

At the end of the investigation, all of the weights were removed from the spring.
What can you conclude from Figure 4 about the deformation of the spring?
\qquad
\qquad
Give the reason for your conclusion.
\qquad
\qquad

Q3.(a) Draw one line from each velocity-time graph to the statement describing the motion shown by the graph.

Velocity-time graph

Motion shown by graph

Constant acceleration

Not moving

Constant deceleration

Constant velocity

(b) Use the correct answer from the box to complete the sentence.

energy	momentum	speed

The velocity of an object includes both the \qquad of the object and the direction the object is moving.
(c) At the start of a race, a horse accelerates from a velocity of $0 \mathrm{~m} / \mathrm{s}$ to a velocity of 9 m / s in 4 seconds.
(i) Calculate the acceleration of the horse.
\qquad
\qquad
Acceleration = \qquad $\mathrm{m} / \mathrm{s}^{2}$
(ii) When the horse accelerates, what, if anything, happens to the air resistance acting against the horse?

Tick (\checkmark) one box.

The air resistance decreases

The air resistance is constant

The air resistance increases

(d) A horse and a pony walk across a field at the same constant speed.

The horse has 4000 joules of kinetic energy.
The pony is half the mass of the horse.
What is the kinetic energy of the pony?
Draw a ring around the correct answer

```
2000 J 4000 J 8000 J
```

Give a reason for your answer.
\qquad
\qquad

Q4. (a) A person takes their dog for a walk.
The graph shows how the distance from their home changes with time.

Which part of the graph, A, B, C or D, shows them walking the fastest?

Write your answer in the box. \square

Give the reason for your answer.
\qquad
\qquad
(b) During the walk, both the speed and the velocity of the person and the dog change.

How is velocity different from speed?
\qquad
\qquad

Q5.(a) Figure 1 shows the forces acting on a model air-powered rocket just after it has been launched vertically upwards.

Figure 1

(i) How does the velocity of the rocket change as the rocket moves upwards?

Give a reason for your answer.
\qquad
\qquad
(ii) The velocity of the rocket is not the same as the speed of the rocket.

What is the difference between the velocity of an object and the speed of an object?
\qquad
\qquad
\qquad
(b) The speed of the rocket just after being launched is $12 \mathrm{~m} / \mathrm{s}$. The mass of the rocket is 0.05 kg .
(i) Calculate the kinetic energy of the rocket just after being launched.
\qquad
\qquad
\qquad

Kinetic energy = \qquad J
(ii) As the rocket moves upwards, it gains gravitational potential energy.

State the maximum gravitational potential energy gained by the rocket.
Ignore the effect of air resistance.
Maximum gravitational potential energy $=$ \qquad J
(iii) Calculate the maximum height the rocket will reach.

Ignore the effect of air resistance.
Gravitational field strength $=10 \mathrm{~N} / \mathrm{kg}$.
\qquad
\qquad
\qquad
Maximum height $=$ \qquad m
(iv) Figure 2 shows four velocity-time graphs.

Figure 2

Taking air resistance into account, which graph, A, B, C or D, shows how the velocity of the rocket changes as it falls from the maximum height it reached until it just hits the ground?

Write the correct answer in the box.

(c) The rocket can be launched at different angles to the horizontal. The horizontal distance the rocket travels is called the range.

Figure 3 shows the paths taken by the rocket when launched at different angles. Air resistance has been ignored.

Figure 3

What pattern links the angle at which the rocket is launched and the range of the rocket?
\qquad
\qquad
\qquad
\qquad

M1.(a) Third Law
(b) elastic potential
(c) weight $=$ mass \times gravitational field strength accept gravity for gravitational field strength
accept $W=m g$
accept correct rearrangement ie mass = weight / gravitational field strength or $m=W / g$
(d) $343=\mathrm{m} \times 9.8$

$$
\mathrm{m}=\underline{343}
$$

9.8

$$
m=35
$$

allow 35 with no working shown for $\mathbf{3}$ marks
(e) force $=$ spring constant \times compression
accept force $=$ spring constant \times extension
accept $F=k e$
accept correct rearrangement ie constant $=$ force $/$ extension or $k=F / e$
(f) compression $=0.07 \mathrm{~m}$

$$
343=k \times 0.07
$$

$$
k=343 \div 0.07
$$

$$
k=4900
$$

allow 4900 with no working shown for 4 marks
allow 49 with no working shown for 3 marks

M2.(a) accept any value between 12 (mm) and 13 (mm) inclusive
(b) to reduce the error in measuring the extension of the spring accept length for extension throughout
as the ruler at an angle would make the measured extensions shorter
(c) $1(\mathrm{~N})$ to $6(\mathrm{~N})$
accept from $0(N)$ to $6(N)$
(d) gives a straight line through the origin
(e) any practical technique that would improve the accuracy of length measurement eg use a set square
to line up the bottom of the spring with the ruler scale
or
attach a horizontal pointer to the bottom of the spring (1)
so that the pointer goes across the ruler scale (1)
(f) the spring has been inelastically deformed
because it went past its limit of proportionality
accept elastic limit for limit of proportionality
accept it does not go back to its original length when the weights are removed

M3.(a)

if more than one line is drawn from a graph then all those lines are wrong allow 1 mark for 1 correct line
(b) speed
(c) (i) 2.25
allow 1 mark for correct substitution i.e.
$a=\frac{9-0}{4}$ or $a=\frac{9}{4}$
provided no subsequent step
(ii) the air resistance increases
(d) 2000 J
mass is half
or
kinetic energy depends on mass
do not accept weight for mass

M4. (a) B
reason only scores if B is chosen
gradient / slope is the steepest / steeper
answers must be comparative
accept steepest line
ignore greatest speed
(b) (velocity includes) direction
'it' refers to velocity

resultant force acts in opposite direction to motion accept air resistance and weight for resultant force accept resultant force acts downwards do not accept air resistance increases

(ii) velocity includes direction
or velocity is a vector (quantity)
(b) (i) 3.6
allow 1 mark for correct substitution i.e. $1 / 2 \times 0.05 \times 12^{2}$ provided no subsequent step
(ii) 3.6 or their (i)
(iii) 7.2
or
their (ii) $\div 0.5$ correctly calculated allow 1 mark for correct substitution i.e. 3.6 or their (ii) $=0.05 \times 10 \times h$
(iv) B
(c) range increases up to 45°
range decreases from 45°
the range is a maximum at 45° gains both marks
for any two angles that add up
to 90° the range is the same gains both marks
the range increases then decreases gains 1 mark

