Q1.Scientists investigated how exercise affects blood flow to different organs in the body.
The scientists made measurements of blood flow to different organs of:

- a person resting in a room at $20^{\circ} \mathrm{C}$
- the same person, in the same room, doing vigorous exercise at constant speed on an exercise cycle.

The table shows the scientists' results.

Organ	Blood flow in cm	
	resting	doing vigorous exercise
Brain	750	750
Heart	250	1000
Muscles	1200	22000
Skin	500	600
Other	3100	650

(a) In this investigation, it was better to do the exercise indoors on an exercise cycle than to go cycling outdoors on the road.

Suggest two reasons why.
Do not include safety reasons.
1
\qquad
\qquad
2. \qquad
\qquad
\qquad
(b) Blood flow to one organ did not change between resting and vigorous exercise.

Which organ? \qquad

Page 2

(c) (i) How much more blood flowed to the muscles during vigorous exercise than when resting?
\qquad
\qquad
Answer = \qquad cm^{3} per minute
(ii) Name two substances needed in larger amounts by the muscles during vigorous exercise than when resting.

1
2 \qquad
(iii) Tick (\checkmark) one box to complete the sentence.

The substances you named in part (c)(ii) helped the muscles to
make more lactic acid.

respire aerobically.

make more glycogen.

(iv) The higher rate of blood flow to the muscles during exercise removed larger amounts of waste products made by the muscles.

Which two substances need to be removed from the muscles in larger amounts during vigorous exercise?

Tick (\checkmark) two boxes.

Amino acids

Carbon dioxide

Glycogen

Lactic acid

(d) The total blood flow was much higher during exercise than when resting.

One way to increase the total blood flow is for the heart to pump out a larger volume of blood each beat.

Give one other way to increase the blood flow.
\qquad
\qquad

Q2. An athlete did a 6-month training programme.
The graph shows the effect of the same amount of exercise on his heart rate before and after the training programme.

(a) (i) What was the maximum heart rate of the athlete during exercise before the training programme?
beats per minute
(ii) Give two differences between the heart rate of the athlete before and after the training programme.

After the training programme
Difference 1 \qquad
\qquad
Difference 2
(b) Which two substances need to be supplied to the muscles in larger amounts during exercise?

Tick (\checkmark) two boxes.

Carbon dioxide

Glucose

Lactic acid

Oxygen

Urea

Q3. This question is about what happens during decay.
Draw a ring around the correct word to complete each sentence.
(a) After living things die, they are decayed by $\quad \begin{aligned} & \text { animals. } \\ & \text { microorganisms. } \\ & \text { plants. }\end{aligned}$
(1)
(b) Decay happens faster when there is plenty of oxygen and conditions are $\quad \begin{aligned} & \text { cold. } \\ & \text { dry. } \\ & \text { moist. }\end{aligned}$
(c) During decay carbon dioxide is produced by

osmosis.
respiration.
photosynthesi
s.

(d) Decay releases mineral salts into the soil.

These mineral salts are absorbed by plant | eaves. |
| :--- |
| roots. |
| stems. |

Q4. The diagrams show four types of cell, A, B, C and D. Two of the cells are plant cells and two are animal cells.
A

B

(a) (i) Which two of the cells are plant cells?
Tick (\checkmark) one box.

A and B \square

A and D \square

C and D \square

(ii) Which part is found only in plant cells?

Draw a ring around one answer.
cell membrane cell wall nucleus
(b) (i) Which cell, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}, is adapted for swimming?
(ii) Which cell, A, B, C or D, can produce glucose by photosynthesis? \square
(c) Cells A, B, C and D all use oxygen.

For what process do cells use oxygen?
Draw a ring around one answer.
osmosis photosynthesis respiration

Q5. Muscles need energy during exercise.
Draw a ring around the correct answer in parts (a) and (b) to complete each sentence.

(ii) The process that releases energy in muscles is
transpiration.
(b) The table shows how much energy is used by two men of different masses when swimming at different speeds.

Speed of swimming in metres per minute	Energy used in kJ per hour	
	$\mathbf{3 4} \mathbf{~ k g ~ m a n ~}$	$\mathbf{7 0} \mathbf{~ k g ~ m a n ~}$
25	651	1155
50	1134	2103

(i) When the 34 kg man swims at 50 metres per minute instead of at 25 metres per minute,

(ii) When swimming at 50 metres per minute, each man's heart rate is faster than when swimming at 25 metres per minute.

A faster heart rate helps to supply the muscles with more | carbon dioxide. |
| :--- |
| glycogen. |
| oxygen. |

(iii) During the exercise the arteries supplying the muscles would
constrict.
dilate.
pump
harder.
(c) When a person starts to swim, the breathing rate increases.

Give one way in which this increase helps the swimmer.
\qquad
\qquad

Q6. The diagram shows a plant cell from a leaf.

(a) List \mathbf{A} gives the names of three parts of the cell.List \mathbf{B} gives the functions of parts of the cell.

Draw a line from each part of the cell in List A to its function in List B.
List A
Parts of the cell
\square
Nucleus
Absorbs light energy to make food
Cytoplasm

Strengthens the cell

Chloroplast
Controls the activities of the cell
(b) Respiration takes place in the cell.

Draw a ring around the correct answer to complete the sentence.

All cells use respiration to release

energy
oxygen.
sugar.

(1)

Q7.The photograph shows an athlete at the start of a race.

(a) The athlete's sense organs contain special cells.

These special cells detect changes in the environment.
(i) List A shows changes in the environment.

List B shows some of the athlete's sense organs.
Draw one line from each change in the environment in List \mathbf{A} to the sense organ detecting the change in List \mathbf{B}.

List A
Change in the environment

Sight of the finishing
line

Sound of the starting gun
Pressure of the ground
on the fingers

List B
Sense
organ

(ii) Which cells detect changes in the environment?

Tick (\checkmark) one box.

(b) During the race, the concentration of sugar in the athlete's blood decreases. Why?
\qquad
\qquad
(c) Some athletes use anabolic steroids to improve performance.
(i) Draw a ring around the correct answer to complete the sentence.

Anabolic steroids increase	breathing rate.
growth of muscles.	
heart rate.	

(ii) Sporting regulations ban the use of anabolic steroids.

Suggest one reason why.

Q8.The mould Penicillium can be grown in a fermenter. Penicillium produces the antibiotic penicillin.

The graph shows changes that occurred in a fermenter during the production of penicillin.

(a) During which time period was penicillin produced most quickly?

Draw a ring around one answer.
0 - 20 hours
40 - 60 hours
80 - 100 hours
(b) (i) Describe how the concentration of glucose in the fermenter changes between 0 and 30 hours.
\qquad
\qquad
\qquad
\qquad
(ii) How does the change in the concentration of oxygen in the fermenter compare with the change in concentration of glucose between 0 and 30 hours?

Tick (\checkmark) two boxes.

The oxygen concentration changes after the glucose concentration.

The oxygen concentration changes before the glucose concentration.

The oxygen concentration changes less than the glucose concentration.

The oxygen concentration changes more than the glucose concentration.

(iii) What is the name of the process that uses glucose?

Draw a ring around one answer.

$$
\begin{array}{lll}
\text { distillation } & \text { filtration } & \text { respiration }
\end{array}
$$

Q9.The diagram shows one type of biogas generator.

(a) With this type of biogas generator, the concentration of solids that are fed into the reactor must be kept very low.

Suggest one reason for this.
Tick (\checkmark) one box.

A higher concentration contains too little oxygen.

A higher concentration would be difficult to stir.

A higher concentration contains too much carbon dioxide.

(b) The pie chart shows the percentages of the different gases found in the biogas.

Gas \mathbf{X} is the main fuel gas found in the biogas.
(i) What is the name of gas \mathbf{X} ?

Draw a ring around one answer.
methane nitrogen oxygen
(ii) What is the percentage of gas \mathbf{X} in the biogas?

Show clearly how you work out your answer.
\qquad
\qquad
Percentage of gas $\mathbf{X}=$
(c) If the biogas generator is not airtight, the biogas contains a much higher percentage of carbon dioxide.

Draw a ring around one answer in each part of this question.
(i) The air that leaks in will increase the rate of $\begin{aligned} & \text { aerobic respiration. } \\ & \text { anaerobic respiration. }\end{aligned}$

Q10.The diagrams show four types of cell, A, B, C and D. Two of the cells are plant cells and two are animal cells.
A

B

(a) (i) Which two of the cells are plant cells?

Tick (\checkmark) one box.
A and B \square
A and D $\quad \square$
C and D $\quad \square$
(ii) Give one reason for your answer.
\qquad
\qquad
(b) (i) Which cell, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}, is adapted for swimming?
(ii) Which cell, A, B, C or D, can produce glucose by photosynthesis? \square
(c) Cells A, B, C and D all use oxygen.

For what process do cells use oxygen?
Draw a ring around one answer.

M1. (a) methane is produced
ignore bad smell
which is a greenhouse gas / causes global warming
(b) $\quad(9.80 / 0.20=49$ therefore $) 49: 1$
(c) horse (manure)
allow ecf from 11.2
closest to 25:1 (ratio)
(d) Level 3 (5-6 marks):

A detailed and coherent explanation is given, which logically links how carbon is released from dead leaves and how carbon is taken up by a plant then used in growth.

Level 2 (3-4 marks):

A description of how carbon is released from dead leaves and how carbon is taken up
by a plant, with attempts at relevant explanation, but linking is not clear.

Level 1 (1-2 marks):

Simple statements are made, but no attempt to link to explanations.
0 marks:
No relevant content.
Indicative content
statements:

- (carbon compounds in) dead leaves are broken down by microorganisms / decomposers / bacteria / fungi
- photosynthesis uses carbon dioxide
explanations:
- (microorganisms) respire
- (and) release the carbon from the leaves as carbon dioxide
- plants take in the carbon dioxide released to use in photosynthesis to produce glucose

use of carbon in growth:

- glucose produced in photosynthesis is used to make amino acids / proteins / cellulose
- (which are) required for the growth of new leaves
(e) any three from:
(storage conditions)
- (at) higher temperature / hotter
- (had) more oxygen
- (had) more water / moisture
- (contained) more microorganisms (that cause decay) allow reference to bacteria / fungi / mould

M2. (a) (i) A lung

B rib

C diaphragm

D alveolus / alveoli
(ii) (B moves) up(wards) / out / up and out
(C moves) down(wards) / flattens
do not allow inwards
ignore outwards
if neither mark gained allow 1 mark for correct reference to muscle contraction
(b) (i) 1640

1440

1720
allow max 1 for 3 correct values using of bottom of piston:
$1380+1180+1480$ to 1485
(ii) 1600
correct answer gains 2 marks
if answer incorrect allow 1 mark for evidence of $(1640+1440+1720) \div 3$
allow ecf from (b)(i)
allow use of two numbers divided by two if one is considered anomalous:
$\frac{(1640+1720)}{2}=1680$
for 2 marks
(c) two groups of students - one group sports activity participants, other not allow students as a group
fair test eg groups same height / same mass / same sex
measure air breathed in by each student / repeat previous experiment then calculate mean for group
(d) pointer remains still after breathing / cylinder will move down after breathing (in)
error reading volume less likely allow more accurate / reliable
(e) (i) operator squeezes bag
air forced / pushed into lungs
or
positive pressure ventilator
(ii) any two from:

- air pressure / volume not regulated
- operator will tire / must be present at all times / variable intervals
- too much / too little air
allow may 'overbreathe' the patient

M3.
(a) A
no mark - can be specified in reason part
if B given - no marks throughout
if unspecified +2 good reasons $=1$ mark
high(er) pressure in A
allow opposite for B
do not accept 'zero pressure' for B
pulse / described in A
accept fluctuates / 'changes'
allow reference to beats / beating ignore reference to artery pumping
(b) (i) 17
(ii) 68 accept correct answer from student's (b)(i) $\times 4$
(c) oxygen / oxygenated blood allow adrenaline ignore air
glucose / sugar
extra wrong answer cancels - eg sucrose / starch / glycogen / glucagon / water
allow fructose ignore energy
ignore food

M4. (a) anaerobic respiration
allow phonetic spelling
(b) (i) 4.4
4.2, 4.3, 4.5 or 4.6 with figures in tolerance (6.7 to 6.9 and
2.3 to 2.5) and correct working gains 2 marks
4.2, 4.3, 4.5 or 4.6 with no working shown or correct working with one reading out of tolerance gains 1 mark correct readings from graph in the ranges of 6.7 to 6.9 and 2.3 to 2.5 but no answer/wrong answer gains 1 mark
(ii) more energy is needed / used / released
do not allow energy production
(at 14 km per hour)
ignore work
not enough oxygen (can be taken in / can be supplied to muscles)
allow reference to oxygen debt
do not allow less / no oxygen
so more anaerobic respiration (to supply the extra energy) or more glucose changed to lactic acid
allow not enough aerobic respiration

M5. (a) $6 \mathrm{H}_{2} \mathrm{O}$ in the correct order $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(b) (i) control
do not accept 'control variable'
allow:
to show the effect of the organisms
or
to allow comparison
or
to show the indicator doesn't change on its own
(ii) snail respires
releases CO_{2}
(iii) turns yellow
plant can't photosynthesise so CO_{2} not used up but the snail (and plant) still respires so CO_{2} produced

Q1.A gardener wants to add compost to the soil to increase his yield of strawberries.
The gardener wants to make his own compost.
(a) An airtight compost heap causes anaerobic decay.

Explain why the gardener might be against producing compost using this method.
\qquad
\qquad
\qquad
\qquad
(b) The gardener finds this research on the Internet:
'A carbon to nitrogen ratio of $\mathbf{2 5 : 1}$ will produce fertile compost.'
Look at the table below.

Type of material to compost	Mass of carbon in sample in \mathbf{g}	Mass of nitrogen in sample in g	Carbon:nitrogen ratio
Chicken manure	8.75	1.25	$7: 1$
Horse manure	10.00	0.50	$20: 1$
Peat moss	9.80	0.20	\mathbf{X}

Determine the ratio \mathbf{X} in the table above.

Ratio
(c) Which type of material in the table above would be best for the gardener to use to make his compost?

Justify your answer.
\qquad
(d) Some of the leaves from the gardener's strawberry plant die. The dead leaves fall off the strawberry plant onto the ground. The carbon in the dead leaves is recycled through the carbon cycle. Explain how the carbon is recycled into the growth of new leaves.
\qquad
(e) The diagram below shows two strawberries.

- Both strawberries were picked from the same strawberry plant.
- Both strawberries were picked 3 days ago.
- The strawberries were stored in different conditions.

Strawberry A
Strawberry B

A © sarahdoow/iStock/Thinkstock, B © Mariusz Vlack/iStock/Thinkstock
Give three possible reasons that may have caused strawberry A to decay.

1
\qquad

2
\qquad
3 \qquad

Q2.(a) Diagram 1 shows part of the breathing system.

Diagram 1

(i) Use words from the box to name the parts labelled $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}.

alveolus	diaphragm	lung	rib	trachea

A \qquad

B \qquad
C \qquad
D \qquad
(ii) Parts B and \mathbf{C} move when we breathe in.

Part B moves \qquad
Part C moves \qquad
(b) A student used the apparatus shown in Diagram 2 to measure the maximum volume of air that he could breathe in one breath.
When the student breathes in, the piston moves upwards.

The piston moves back down after the student has breathed out.
Diagram 2

The student breathes in through the apparatus three times.
The drawings show the position of the piston after each of the three breaths.
The volumes are measured in cm^{3}.

(i) Read the volume of each breath and write the volume in the table.

	Breath 1	Breath 2	Breath 3
Volume in cm^{3}

(ii) Calculate the mean volume of air breathed in.
\qquad
\qquad
Mean volume of air breathed in $=$ cm^{3}
(c) A teacher asks the student to investigate if students who take part in sports activities can breathe in a larger volume of air than students who do not take part.

Describe briefly how the student could use the same apparatus to do the investigation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Photograph 1 shows a different piece of apparatus used to measure the volume of air that a person can breathe in one breath.

Photograph 1

Digital Vision/Photodisc

When the student breathes out through the apparatus the pointer on the scale moves. The pointer stays in the same position when the student has finished.

Explain one advantage, apart from size, of using this apparatus rather than the apparatus described in part (b).
\qquad
\qquad
\qquad
\qquad
(e) Photograph 2 shows one type of mechanical ventilator.

Photograph 2

(i) Use information from Photograph 2 to suggest how this type of ventilator works.
\qquad
\qquad
\qquad
\qquad
(ii) Use information from Photograph 2 to suggest two disadvantages of this type of ventilator.

1. \qquad
\qquad
2. \qquad
\qquad

Q3.The heart pumps the blood around the body. This causes blood to leave the heart at high pressure.

The graph shows blood pressure measurements for a person at rest. The blood pressure was measured in an artery and in a vein.

(a) Which blood vessel, \mathbf{A} or \mathbf{B}, is the artery?

Blood vessel
Give two reasons for your answer.
Reason 1 \qquad
\qquad
Reason 2
(b) Use information from the graph to answer these questions.
(i) How many times did the heart beat in 15 seconds?
(ii) Use your answer from part (b)(i) to calculate the person's heart rate per minute.
\qquad
\qquad

$$
\text { Heart rate }=\text {.................... beats per minute }
$$

(c) During exercise, the heart rate increases.

The increased heart rate supplies useful substances to the muscles at a faster rate.
Name two useful substances that must be supplied to the muscles at a faster rate during exercise.

1 \qquad
2 \qquad

Q4.Figure 1 shows an athlete running on a treadmill.
Figure 1

© Starush/istock/Thinkstock

After running for several minutes, the athlete's leg muscles began to ache.
This ache was caused by a high concentration of lactic acid in the muscles.
(a) The equation shows how lactic acid is made.

$$
\text { glucose } \longrightarrow \text { lactic acid (+ energy) }
$$

Name the process that makes lactic acid in the athlete's muscles.
\qquad
(b) Scientists investigated the production of lactic acid by an athlete running at different speeds.

In the investigation:

- the athlete ran on the treadmill at 4 km per hour
- the scientists measured the concentration of lactic acid in the athlete's blood after 2 minutes of running.

The investigation was repeated for different running speeds.
Figure 2 shows the scientists' results.

Figure 2

Concentration

 of lactic acid in the blood in mmol per dm^{3}
(i) How much more lactic acid was there in the athlete's blood when he ran at 14 km per hour than when he ran at 8 km per hour?
\qquad
\qquad
\qquad
Answer =
\qquad mmol per dm^{3}
(ii) Why is more lactic acid made in the muscles when running at 14 km per hour than when running at 8 km per hour?
\qquad
\qquad
\qquad
\qquad
\qquad

Q5.Photosynthesis needs light.
(a) Complete the balanced symbol equation for photosynthesis.

$$
6 \mathrm{CO}_{2}+\ldots \ldots \ldots . ~ l i n h ~\left(. ~+~ 6 O_{2}\right.
$$

(b) A green chemical indicator shows changes in the concentration of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ in a solution.

The indicator solution is green when the concentration of CO_{2} is normal.
The indicator solution turns yellow when the concentration of CO_{2} is high.
The indicator solution turns blue when the concentration of CO_{2} is very low or when there is $\mathrm{no} \mathrm{CO}_{2}$.

The indicator solution does not harm aquatic organisms.
Students investigated the balance of respiration and photosynthesis using an aquatic snail and some pondweed.

The students set up four tubes, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}, as shown in the table below.
The colour change in each tube, after 24 hours in the light, is recorded.

Tube A	Tube B	Tube C	Tube D		
Indicator solution					
only					Indicator solution
:---:					
+ pondweed	\quad	Indicator solution			
:---:					
+ snail		Indicator solution + pondweed + snail			
:---:					
Starns blue					

(i) What is the purpose of Tube A?

\qquad
\qquad
(ii) Explain why the indicator solution in Tube \mathbf{C} turns yellow.
\qquad
\qquad
\qquad
\qquad
(iii) Predict the result for Tube \mathbf{D} if it had been placed in the dark for 24 hours and not in the light.

Explain your prediction.
Prediction. \qquad
\qquad
Explanation \qquad
\qquad
\qquad
\qquad

M1.(a) $\quad(140+240+380+450=) 1210$
(b) the local people decided to farm cattle
a company starts growing plants for biofuels
(c) carbon dioxide
in this order only
photosynthesis
(d) animals and birds migrate because there is less food
more habitats are destroyed
(e) any one from:

- breeding programmes (for endangered species)
- regeneration (programmes)
- reintroduction of field margins / hedgerows
- awareness raising with politicians / public
- recycling

M2. (a) water
oxygen
in this order only
accept correct chemical symbols
allow $\mathrm{H}_{2} \mathrm{O} / \mathrm{OH}_{2}$
(b) allow light (in / through) / need light do not accept attracts light ignore heat / moisture / carbon dioxide ignore so the plants can be seen accept the converse, ie the black plastic bag would not let light in (1)
for photosynthesis / make sugar / glucose
so there would be no photosynthesis (1)
do not allow make food unqualified
(c) Increase (in leaves / new leaves)
ignore growth unqualified
(then) level off or number of (new) leaves (then) stays the same
numerical statement eg max at 3 tablets / 5 (new) leaves should refer to one of the first two marking points for every extra tablet get 1 extra leaf = $\mathbf{2}$ marks for every extra tablet get 1 extra leaf then it levels off $=3$ marks

M3.
(a) xylem and phloem
either order
allow words ringed in box
allow mis-spelling if unambiguous
(b) (i) movement / spreading out of particles / molecules / ions / atoms ignore names of substances / 'gases'
from high to low concentration
accept down concentration gradient ignore 'along'/ 'across' gradient ignore 'with' gradient
(ii) oxygen / water (vapour)
allow O_{2} / O2
ignore $\mathrm{O}^{2} / \mathrm{O}$
allow $\mathrm{H}_{2} \mathrm{O} / \mathrm{H} 2 \mathrm{O}$
ignore $\mathrm{H}^{2} \mathrm{O}$

M4. (a) protein
(ii) A gave highest number of leaves / plants or more than others it equals ' A ' use of numbers must compare \boldsymbol{A} with at least one other or

A gave most growth / most duckweed or more than others allow faster / fastest / better / best growth allow more growth with nitrate / less growth without nitrate do not allow 'no' growth without nitrate
(c) (i) mark (c) as a whole
sensible method:
e.g. mass / weighing
ignore dry or fresh
allow other sensible method involving measuring eg length of roots - ignore 'size' of roots or measure roots unqualified
(ii) corresponding explanation:
ignore accuracy
e.g. includes roots / includes whole plantorleaves vary in sizeor(length / mass / surface area given in $c(i)$) is a continuous variable

M5.(a) oxygen
allow O_{2} / O2
do not accept O^{2} or O
(b) (i) light
(ii) chlorophyll
(iii) decrease
(c) any three from:

- for respiration / energy
do not accept use energy for photosynthesis
- to make cellulose / starch
accept named carbohydrate other than glucose
- to make lipid / fat / oil
accept fatty acid / glycerol
- to make protein
accept named protein / amino acid / named amino acid
- to build big molecules from small molecules / metabolism
if no other marks awarded for making molecules allow 1 mark for growth / repair / new cells

M6. (a) (i) C and D
no mark if more than one box is ticked
(ii) any one from: do not allow if other cell parts are given in a list

- (have) cell wall(s)
- (have) vacuole(s)
(b) (i) \mathbf{A} apply list principle
(ii) D
apply list principle
(c) respiration
apply list principle

M7.(a) chlorophyll is needed for photosynthesis
light is needed for photosynthesis
(b) increases

levels off / reaches a maximum / remains constant / stays the same / plateaus do not allow stops / stationary / peaks allow stops increasing

goes up to / reaches a maximum / levels off at (a rate of) 200 (arbitrary units) or
levels off at 225 - 240 (light units)
ignore references to other numerical values
(c) (i) higher light intensity does not increase rate of photosynthesis accept the graph stays level (above this value)
allow stops increasing allow the rate of photosynthesis stays the same (above this value)
(ii) any two from:

- carbon dioxide (concentration)
- temperature / heat
- (amount of) chlorophyll / chloroplasts allow water allow ions / nutrients ignore ref to surface area of the leaf

M8.(a) (i) in the direction of the force of gravity
(ii) against the force of gravity
(b) (i) diagram completed to show stem bending / leaning towards the window the bend / lean can be at / from any point above pot level ignore any leaves
(ii) more light (for leaves)
ignore heat
more photosynthesis / biomass / glucose
ref to 'more' needed once only, eg 'more light for photosynthesis' = 2 marks
if no other marks given allow 1 mark for 'to get light for photosynthesis'

M9.(a) (i) LHS = water
accept $\mathrm{H}_{2} \mathrm{O}$
do not accept $\mathrm{H}^{2} \mathrm{O} / \mathrm{H} 2 \mathrm{O}$

$$
\begin{aligned}
& \text { RHS }=\text { oxygen } \\
& \quad \text { accept } \mathrm{O}_{2} \\
& \text { do not accept } \mathrm{O} / \mathrm{O}^{2} / \mathrm{O} 2
\end{aligned}
$$

(ii) light / sunlight
ignore solar / sun / sunshine
do not allow thermal / heat
(iii) chloroplasts
allow chlorophyll
(b) (i) 20
(ii) any one from:

- light (intensity)
- temperature.
(c) (i) To increase the rate of growth of the tomato plants
(ii) Because it would cost more money than using 0.08\%

Because it would not increase the rate of photosynthesis of the tomato plants any further

Q1.The graph below shows the area of forest lost in Madagascar from 2009 to 2012.

(a) The area of forest lost each year in Madagascar increased between 2009 and 2012.

Determine the total area of forest lost from the start of 2009 to the end of 2012.
\qquad
\qquad
Total area of forest lost = \qquad thousand hectares
(b) What are the possible reasons for the change in the area of forest lost per year between 2009 and 2012?

Tick two boxes.
The local people stop growing rice \square
Fewer new houses are needed for the population \square

The local people decided to farm cattle \square

More trees have been planted \square
A company starts growing plants for biofuels

(c) More forest was lost in 2012 than in 2009.

Use words from the box to complete the sentences.

carbon dioxide	excretion	nitrogen
oxygen	photosynthesis	respiration

The increase in the area of forest lost has caused an increase in the gas

The increase of this gas has been caused because less of the gas is being absorbed by plants for the process of \qquad
(d) Deforestation can have negative effects on our ecosystems.

What are the negative effects of deforestation?
Tick two boxes.
Animals and birds migrate because there is less food

More habitats are destroyed \square
There is less acid rain

There is more biodiversity

The global temperature decreases

(e) Scientists try to reduce the negative effects of human activity on our ecosystems.

One way is to protect rare habitats.
Give one other way of reducing the negative effects of human activity on our ecosystems.
\qquad
\qquad

Q2. (a) Complete the word equation for photosynthesis.
Use words from the box.
chlorophyll minerals oxygen water

(b) Plants may grow faster if they have more carbon dioxide.

Indigestion tablets dissolve in water to form a solution.
This solution slowly gives off carbon dioxide.
A student set up an investigation to see what concentration of carbon dioxide is best for increasing the growth of geranium plants.

The student:

- put a geranium plant in a clear plastic bag
- put a dish containing water and one tablet in the bag
- sealed the top of the bag.

The student:

- set up 5 more experiments each with water and a different number of tablets - left all the plants in a well-lit place for four weeks.

The student used a clear plastic bag, not a black plastic bag.
Explain why.
\qquad
\qquad
\qquad
\qquad
(c) After four weeks, the student counted the number of new leaves on each plant. The graph shows his results.

Describe the effect of increasing the number of tablets dissolved in water on the number of new leaves that grew in four weeks.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q3.The diagram shows a section through a plant leaf.

(a) Use words from the box to name two tissues in the leaf that transport substances around the plant.

epidermis	mesophyll	phloem	xylem

and
(b) Gases diffuse between the leaf and the surrounding air.
(i) What is diffusion?
\qquad
\qquad
\qquad
\qquad
(ii) Name one gas that will diffuse from point \mathbf{A} to point \mathbf{B} on the diagram on a sunny day.

Q4.Duckweed is a plant. Duckweed grows in ponds. The leaves of duckweed float on the surface of the water and its roots hang down in the water.

The drawing shows a duckweed plant.

(a) Duckweed roots absorb nitrate ions from the water.

The nitrate ions help the duckweed to grow.
Draw a ring around the correct answer to complete the sentence.

Duckweed needs nitrate ions to make | | carbohydrate |
| :--- | :--- |
| fat. | |
| protein. | |

(b) Some students grew duckweed plants in three different solutions of mineral ions, A, \mathbf{B} and \mathbf{C}, and in distilled water (D).

Table 1 shows the concentrations of mineral ions in each of $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} at the start of the investigation.

Table 1

\square

Mineral ion	Concentration of mineral ions

	in mg per dm the investigation the			
	A	\mathbf{B}	C	D
	1000	4	4	0
Phosphate	300	0	0	0
Magnesium	200	84	24	0

The students counted the number of duckweed leaves in $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} at the start of the investigation and after 28 days.

Table 2 shows their results.

Table 2						
	A	B	C	D		
Number of leaves at start	4	4	4	4		
Number of leaves after 28 days	50	27	14	6		

(i) Using Table 1 and Table 2, describe the effect of magnesium ions on the growth of duckweed.
\qquad
\qquad
(ii) Solution \mathbf{A} contained the highest concentration of nitrate ions.

One student said, 'The results show that nitrate ions are needed for the growth of duckweed.'

What evidence in Table 2 supports what the student said?
\qquad
\qquad
(c) The students measured the growth of the duckweed by counting the number of leaves.
(i) Suggest a better method of measuring the growth of the duckweed.
\qquad
\qquad
(ii) Suggest why your method is better than the students' method.
\qquad
\qquad

Q5.(a) Complete the word equation for photosynthesis.

(b) Draw a ring around the correct answer to complete each sentence.
(i) The energy needed for photosynthesis comes from $\begin{aligned} & \text { light. } \\ & \text { osmosis. } \\ & \text { respiration. }\end{aligned}$
(ii) Energy is absorbed by a green pigment called chloride.
chloroplast.

Page 10
(iii) If the temperature is decreased the rate of photosynthesis will

decrease.
increase.
stay the same.

(c) Give three ways in which plants use the glucose made in photosynthesis.

1. \qquad
\qquad
2 \qquad
\qquad
3 \qquad
\qquad

Q6.The diagrams show four types of cell, A, B, C and D.
Two of the cells are plant cells and two are animal cells.

(a) (i) Which two of the cells are plant cells?

Tick (\checkmark) one box.
A and B $\quad \square$

(ii) Give one reason for your answer.
\qquad
\qquad
(b) (i) Which cell, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}, is adapted for swimming?
(ii) Which cell, A, B, C or D, can produce glucose by photosynthesis? \square
(c) Cells A, B, C and D all use oxygen.

For what process do cells use oxygen?
Draw a ring around one answer.
osmosis photosynthesis respiration

Q7.(a) A student carried out the following investigation using a plant with variegated leaves.
A variegated leaf has green and white stripes.
The student:

- left the plant in the dark for 3 days to remove the starch
- fixed two pieces of card to a leaf on the plant
- left the plant in the light for 2 days
- removed the leaf from the plant
- tested the leaf for starch.

Figure 1 shows how the two pieces of card were attached to the leaf.

Figure 1

Leaf without card

Leaf with card

Figure 2 shows the same leaf after 2 days in the light. The leaf has been tested for starch.

Figure 2

Give two conclusions from this investigation.
Tick (\checkmark) two boxes.
Carbon dioxide is needed for photosynthesis. \square

Chlorophyll is needed for photosynthesis.

Light is needed for photosynthesis.

Water is needed for photosynthesis.

(b) Scientists investigated the effect of light intensity on the rate of photosynthesis.

Figure 3 shows the scientists' results.

Figure 3

Describe the effect of increasing light intensity on the rate of photosynthesis.
You should include numbers from Figure 3 in your description.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) At a light intensity of 250 arbitrary units, light is not a limiting factor of photosynthesis.
(i) What is the evidence for this in Figure 3?
\qquad
\qquad
(ii) Give two factors that could be limiting the rate of photosynthesis at a light intensity of 250 arbitrary units.
\qquad

2

Q8.A student investigated growth in plants.

The student:

- planted a seed in damp soil in a plant pot
- put the plant pot in a dark cupboard.

The image below shows the result after 5 days.

(a) Draw a ring around the correct answer to complete each sentence.

(i) After the 5 days, the root had grown | away from water. |
| :--- |
| in the direction of the force of gravity. |
| towards light. |

(ii) After the 5 days, the shoot had grown against the force of gravity.
away from light.
towards water.
(b) After the plant had grown, the student put the plant pot by a window with lots of light.

The illustration below shows this.

(i) Complete the diagram below to show the appearance of the student's plant after 20 days by the window.

(ii) Explain the advantage to the plant of growing in the way that you have drawn in part (b)(i).
\qquad
\qquad
\qquad

Q9.Photosynthesis uses carbon dioxide to make glucose.
(a) (i) Complete the equation for photosynthesis.

(ii) What type of energy does a plant use in photosynthesis?
\qquad
(iii) Which part of a plant cell absorbs the energy needed for photosynthesis?
\qquad
(b) The graph shows the effect of the concentration of carbon dioxide on the rate of photosynthesis in tomato plants at $20^{\circ} \mathrm{C}$.

(i) What is the maximum rate of photosynthesis of the tomato plants shown in the graph?
(ii) At point \mathbf{X}, carbon dioxide is not a limiting factor of photosynthesis.

Suggest one factor that is limiting the rate of photosynthesis at point \mathbf{X}.
\qquad
(c) A farmer plans to grow tomatoes in a large greenhouse.

The concentration of carbon dioxide in the atmosphere is 0.04%.
The farmer adds carbon dioxide to the greenhouse so that its concentration is 0.08\%.
(i) Why does the farmer use 0.08% carbon dioxide?

Tick (\checkmark) one box.

To increase the rate of growth of the tomato plants

To increase the rate of respiration of the tomato plants

To increase water uptake by the tomato plants

(ii) Why does the farmer not use a concentration of carbon dioxide higher than 0.08\%?

Tick (\checkmark) two boxes.

Because it would cost more money than using 0.08% \square

Because it would decrease the temperature of the greenhouse

Because it would not increase the rate of photosynthesis of the tomato plants any further

Because it would increase water loss from the tomato plants

M1. (a) (i) chloroplast
(ii) cell wall
(b) (i) osmosis
accept diffusion
(ii) cell wall (prevents bursting)
(c) (i) carbon dioxide
allow correct formula
glucose
allow sugar / starch
(ii) any two from:

- light sensitive spot detects light
- tells flagellum to move towards light
- more light = more photosynthesis
(d) (cell has) larger SA:volume ratio
short (diffusion) distance
(diffusion) via cell membrane is sufficient / good enough
or
flow of water maintains concentration gradient

M2. (a) LHS = water

RHS = glucose
(b) any three from:

- (measure) temperature
ignore reference to fair test
- to check that the temperature isn't changing
- rate of reaction changes with temperature
- temperature is a variable that needs to be controlled
allow lamp gives out heat
(c) (i) 10
correct answer = 2 marks
allow 1 mark for: $\frac{(10+9+11)}{3}$
allow 1 mark for correct calculation without removal of anomalous result ie 15
(ii) graph:
allow ecf from (c)(i)
label on y-axis as 'number of bubbles per minute'
three points correct = 1 mark
allow $\pm 1 \mathrm{~mm}$
four points correct $=\mathbf{2}$ marks
line of best fit = smooth curve
(iii) as distance increases, rate decreases - pro allow yes between 20-40
but should be a straight line / but line curves - con / not quite pro allow not between 10-20
if line of best fit is straight line, allow idea of poor fit
(d) any four from:
- make more profit / cost effective
- raising temp. to $25^{\circ} \mathrm{C}$ makes very little difference at $0.03 \% \mathrm{CO}_{2}$
- (at $20^{\circ} \mathrm{C}$) with CO_{2} at 0.1%, raises rate
- (at $20^{\circ} \mathrm{C}$ with CO_{2} at $\left.0.1 \%\right) \rightarrow>3 x$ rate / rises from 5 to 17
- although $25^{\circ} \mathrm{C} \rightarrow$ higher rate, cost of heating not economical
- extra light does not increase rate / already max. rate with daylight accept ref to profits c.f. costs must be favourable

M3.
(a) to kill virus
or
to prevent virus spreading
(b) take (stem) cells from meristem
or
tissue culture
allow take cuttings
(c) use Benedict's solution
glucoses turns solution blue to orange
(d) Level 2 (3-4 marks):

A detailed and coherent explanation is provided. The student makes logical links between clearly identified, relevant points that explain why plants with TMV have stunted growth.

Level 1 (1-2 marks):
Simple statements are made, but not precisely. The logic is unclear.
0 marks:
No relevant content.

Indicative content

- less photosynthesis because of lack of chlorophyll
- therefore less glucose made

so

- less energy released for growth
- because glucose is needed for respiration and / or
- therefore less amino acids / proteins / cellulose for growth
- because glucose is needed for making amino acids / proteins / cellulose

M4. (a) $6 \mathrm{H}_{2} \mathrm{O}$
in the correct order
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(b) (i) control
do not accept 'control variable'
allow:
to show the effect of the organisms
or
to allow comparison
or
to show the indicator doesn't change on its own
(ii) snail respires
releases CO_{2}
(iii) turns yellow
plant can't photosynthesise so CO_{2} not used up
but the snail (and plant) still respires so CO_{2} produced

M5. (a) methane is produced
ignore bad smell
which is a greenhouse gas / causes global warming
(b) $\quad(9.80 / 0.20=49$ therefore) $49: 1$
(c) horse (manure)
allow ecf from 11.2
closest to 25:1 (ratio)
(d) Level 3 (5-6 marks):

A detailed and coherent explanation is given, which logically links how carbon is released from dead leaves and how carbon is taken up by a plant then used in growth.

Level 2 (3-4 marks):
A description of how carbon is released from dead leaves and how carbon is taken up
by a plant, with attempts at relevant explanation, but linking is not clear.

Level 1 (1-2 marks):

Simple statements are made, but no attempt to link to explanations.
0 marks:
No relevant content.
Indicative content

statements:

- (carbon compounds in) dead leaves are broken down by microorganisms / decomposers / bacteria / fungi
- photosynthesis uses carbon dioxide

explanations:

- (microorganisms) respire
- (and) release the carbon from the leaves as carbon dioxide
- plants take in the carbon dioxide released to use in photosynthesis to produce glucose

use of carbon in growth:

- glucose produced in photosynthesis is used to make amino acids / proteins / cellulose
- (which are) required for the growth of new leaves
(e) any three from:
(storage conditions)
- (at) higher temperature / hotter
- (had) more oxygen
- (had) more water / moisture
- (contained) more microorganisms (that cause decay) allow reference to bacteria / fungi / mould

Q1.The diagram below shows a single-celled alga which lives in fresh water.

(a) Which part of the cell labelled above:
(i) traps light for photosynthesis
\qquad
(ii) is made of cellulose?
\qquad
(b) In the freshwater environment water enters the algal cell.
(i) What is the name of the process by which water moves into cells?
\qquad
(ii) Give the reason why the algal cell does not burst.
\qquad
\qquad
(c) (i) The alga can photosynthesise.

Complete the word equation for photosynthesis.

```
Light energy
```


(ii) The flagellum helps the cell to move through water. Scientists think that the flagellum and the light-sensitive spot work together to increase photosynthesis.

Suggest how this might happen.
\qquad
\qquad
\qquad
\qquad
(d) Multicellular organisms often have complex structures, such as lungs, for gas exchange.

Explain why single-celled organisms, like algae, do not need complex structures for gas exchange.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q2.(a) Complete the equation for photosynthesis. Draw a ring around each correct answer.

Some students investigated the effect of light intensity on the rate of photosynthesis in pondweed.

The diagram shows the apparatus the students used.

The closer the lamp is to the pondweed, the more light the pondweed receives.
The students placed the lamp at different distances, \mathbf{d}, from the pondweed.
They counted the number of bubbles of gas released from the pondweed in 1 minute for each distance.
(b) A thermometer was placed in the glass beaker.

Why was it important to use a thermometer in this investigation?
\qquad
\qquad
\qquad
\qquad
\qquad
(c) The students counted the bubbles four times at each distance and calculated the correct mean value of their results.

The table shows the students' results.

Distance d in cm	Number of bubbles per minute				
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	Mean
10	52	52	54	54	53
20	49	51	48	52	50
30	32	30	27	31	30
40	30	10	9	11	

(i) Calculate the mean number of bubbles released per minute when the lamp was 40 cm from the pondweed.
\qquad
\qquad
Mean number of bubbles at $40 \mathrm{~cm}=$ \qquad
(ii) On the graph paper below, draw a graph to show the students' results:

- add a label to the vertical axis
- plot the mean values of the number of bubbles
- draw a line of best fit.

(iii) One student concluded that the rate of photosynthesis was inversely proportional to the distance of the lamp from the plant.

Does the data support this conclusion?
Explain your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Light intensity, temperature and concentration of carbon dioxide are factors that affect the rate of photosynthesis.

Scientists investigated the effects of these three factors on the rate of photosynthesis in tomato plants growing in a greenhouse.

The graph below shows the scientists' results.

A farmer in the UK wants to grow tomatoes commercially in a greenhouse.
The farmer read about the scientists' investigation.
During the growing season for tomatoes in the UK, natural daylight has an intensity higher than 30000 lux.

The farmer therefore decided to use the following conditions in his greenhouse during the day:

- $\quad 20^{\circ} \mathrm{C}$
- $\quad 0.1 \% \mathrm{CO}_{2}$
- no extra lighting.

Suggest why the farmer decided to use these conditions for growing the tomatoes.
You should use information from the scientists' graph in your answer.
\qquad

Q3.Tobacco mosaic virus (TMV) is a disease affecting plants.
The diagram below shows a leaf infected with TMV.

(a) All tools should be washed in disinfectant after using them on plants infected with TMV.

Suggest why.
\qquad
\qquad
(b) Scientists produced a single plant that contained a TMV-resistant gene.

Suggest how scientists can use this plant to produce many plants with the TMV-resistant gene.
\qquad
\qquad
(c) Some plants produce fruits which contain glucose.

Page 9

Describe how you would test for the presence of glucose in fruit.
\qquad
\qquad
\qquad
\qquad
(d) TMV can cause plants to produce less chlorophyll.

This causes leaf discoloration.
Explain why plants with TMV have stunted growth.
\qquad

Q4.Photosynthesis needs light.
(a) Complete the balanced symbol equation for photosynthesis.

(2)
(b) A green chemical indicator shows changes in the concentration of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ in a solution.

The indicator solution is green when the concentration of CO_{2} is normal.
The indicator solution turns yellow when the concentration of CO_{2} is high.
The indicator solution turns blue when the concentration of CO_{2} is very low or when there is $\mathrm{no} \mathrm{CO}_{2}$.

The indicator solution does not harm aquatic organisms.
Students investigated the balance of respiration and photosynthesis using an aquatic snail and some pondweed.

The students set up four tubes, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}, as shown in the table below.
The colour change in each tube, after 24 hours in the light, is recorded.

Tube A	Tube B	Tube C	Tube D
Indicator solution only	Indicator solution + pondweed		Indicator solution + pondweed + snail
Stays green	Turns blue	Turns yellow	Stays green

(i) What is the purpose of Tube A?
\qquad
\qquad
(ii) Explain why the indicator solution in Tube \mathbf{C} turns yellow.
\qquad
\qquad
\qquad
\qquad
(iii) Predict the result for Tube \mathbf{D} if it had been placed in the dark for 24 hours and not in the light.

Explain your prediction.
Prediction.
\qquad
Explanation
\qquad
\qquad
\qquad

Q5.A gardener wants to add compost to the soil to increase his yield of strawberries.
The gardener wants to make his own compost.
(a) An airtight compost heap causes anaerobic decay.

Explain why the gardener might be against producing compost using this method.
\qquad
\qquad
\qquad
\qquad
(b) The gardener finds this research on the Internet:
'A carbon to nitrogen ratio of $\mathbf{2 5 : 1}$ will produce fertile compost.'
Look at the table below.

Type of material to compost	Mass of carbon in sample in \mathbf{g}	Mass of nitrogen in sample in \mathbf{g}	Carbon:nitrogen ratio
Chicken manure	8.75	1.25	$7: 1$
Horse manure	10.00	0.50	$20: 1$
Peat moss	9.80	0.20	\mathbf{X}

Determine the ratio \mathbf{X} in the table above.
\qquad
Ratio \qquad
(c) Which type of material in the table above would be best for the gardener to use to make his compost?

Justify your answer.
\qquad
\qquad
(d) Some of the leaves from the gardener's strawberry plant die. The dead leaves fall off the strawberry plant onto the ground.

The carbon in the dead leaves is recycled through the carbon cycle.
Explain how the carbon is recycled into the growth of new leaves.
\qquad
(e) The diagram below shows two strawberries.

- Both strawberries were picked from the same strawberry plant.
- Both strawberries were picked 3 days ago.
- The strawberries were stored in different conditions.

Strawberry A
Strawberry B

A © sarahdoow/iStock/Thinkstock, B © Mariusz Vlack/iStock/Thinkstock
Give three possible reasons that may have caused strawberry A to decay.

1
\qquad

2
\qquad
3 \qquad
\qquad

M1. (a) any two from:
or allow converse for outdoors

- constant speed
- variable speed
- constant effort
- variable terrain
- constant temperature
- traffic conditions
- variable temperature
- wind (resistance)
- rain / snow
allow
weather
allow pollution only if qualified by effect on body function but ignore pollution unqualified
if no other marks obtained allow variable conditions outdoors
(b) Brain
(c) (i) 20800
correct answer with or without working gains $\mathbf{2}$ marks if answer incorrect, allow 1 mark for use of 1200 and 22000 only
(ii) oxygen
apply list principle
do not accept other named substances eg CO_{2} water
Page 2

glucose / sugar
 allow glycogen
 ignore food / carbohydrate

(iii) respire aerobically
(iv) carbon dioxide
lactic acid
(d) increased heart rate
ignore adrenaline / drugs
accept heart beats more but not heart pumps more

M2. (a) (i) 150

(ii) any two from:
accept correct use of numbers
accept pulse rate

- lower resting rate
- lower rate during exercise
- recovers faster after exercise
allow a general statement about lower rate if neither of the first two points given
(b) glucose
oxygen

M3. (a) microorganisms
(b) moist
(c) respiration
(d) roots

M4. (a) (i) C and D
(ii) cell wall
(b) (i) A
(ii) D
(c) respiration

1

Page 5

M5. (a) (i) glycogen
(ii) respiration
(b) (i) 483 kJ
(ii) oxygen
(iii) dilate
(c) supplies more / a lot of oxygen or removes more carbon dioxide or release more energy / faster respiration

1 mark for each correct line mark each line from left hand box
two lines from left hand box cancels mark for that box
(b) energy

1 mark for each line do not award a mark for a 'change' that has two lines
(ii) receptor cells
(b) used to provide (extra) energy
allow (more) used in respiration
allow suitable reference to muscles
do not accept used for sweat
(c) (i) growth of muscles
(ii) (these drugs have) possible side / harmful effectsoranswers that refer to 'fairness of competition' e.g. cheating

M8.
(a) 40-60 hours
(b) (i) decrease
$1^{\text {st }}$ slowly then faster / appropriate detail from the graph - e.g. from 7.8 to 0 / faster after 4 - 10h
(ii) oxygen after glucose
extra box ticked cancels 1 mark
oxygen less than glucose
(iii) respiration

M9.(a) a higher concentration would be difficult to stir
(b) (i) methane
(ii) 60

100-(5 + 35) but incorrect answer allow 1 mark
(c) (i) aerobic respiration
(ii) oxygen

M10.(a) (i) \mathbf{C} and \mathbf{D}
no mark if more than one box is ticked
(ii) any one from:
do not allow if other cell parts are given in a list

- (have) cell wall(s)
- (have) vacuole(s)
(b) (i) A apply list principle
(ii) D

apply list principle

(c) respiration
apply list principle

