GCSE AQA Chemistry Third Edition Chapter C4 QA

Questions By Topic:

C4: Chemical Calculations

Intext Questions:

C4.1 Relative masses and moles:

1. What is the relative atomic mass of an element? [2 marks]

Answer.
Relative atomic mass is also known as atomic weight, is a dimensionless physical quantity. In its modern definition, it is the ratio of the average mass of atoms of an element (in a given sample) to one unified atomic mass unit.
2. What is the relative formula mass of:
a) $\quad \mathrm{MgF}_{2}\left(\mathrm{~A}_{\mathrm{r}}\right.$ values: $\left.\mathrm{Mg}=24, \mathrm{~F}=19\right)$ [1 mark]

Answer.

Relative formula mass $=24+(19 \times 2)=62$
b) $\quad \mathrm{C}_{2} \mathrm{H}_{12} \mathrm{O}_{6}\left(\mathrm{~A}_{\mathrm{r}}\right.$ values: $\left.\mathrm{C}=12, \mathrm{H}=1, \mathrm{O}=16\right)$? [1 mark]

Answer.

Relative formula mass $=(12 \times 2)+(1 \times 12)+(16 \times 6)=132$
3.
a) How many moles of helium atoms are there in 0.02 g of helium? [1 mark]
b) How many moles of sulfur atoms are there in:
i) 9.6 g of sulfur [1 mark]
ii) 16 tonnes of sulfur (where 1 tonne $=1000 \mathrm{~kg}$)? [1 mark]
4. What is the mass of:
a) 50 moles of calcium carbonate, CaCO_{3} [1 mark]
b) 0.05 moles of hydrogen, H_{2} [1 mark]
c) 0.6 moles of phosphorus, P_{4} ? [1 mark]
5. Why can you have relative atomic masses, which are not whole numbers, e.g., the A_{r} of chlorine, Cl , is 35.5 . [1 mark]

4.2 Equations and calculations:

1. 2 HCl can have two meanings. What are they? [1 mark]
2. Magnesium burns in oxygen with a bright white flame:

2 Mg (s) $+\mathrm{O}_{2}$ (g) $\rightarrow 2 \mathrm{MgO}$ (s)
What mass of oxygen will react exactly with 6.0 g of magnesium?
(A_{r} values: $O=16, M g=24$) [2 marks]
3.
a) An aqueous solution of hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, decomposes to form water and oxygen gas. Write a balanced symbol equation, including state symbols, for this reaction. [3 marks]
b) When hydrogen peroxide decomposes, what mass of hydrogen peroxide is needed in solution to produce 1.6 g of oxygen gas? [2 marks]
4. When a small lump of calcium metal, Ca, is added to water, it reacts giving off hydrogen gas. A solution of calcium hydroxide, $\mathrm{Ca}(\mathrm{OH})_{2}$, is also formed in the reaction.
a) Write a balanced symbol equation, including state symbols, for the reaction. [3 marks]
b) Calculate how much calcium metal must be added to an excess of water to produce 3.7 g of calcium hydroxide. [2 marks]

4.3 From masses to balanced equations:

1. State what we mean by a limiting reactant in a chemical reaction. [1 mark] Answer.
The limiting reagent in a chemical reaction is the substance that is totally consumed when the chemical reaction is complete.
2. When copper metal reacts with oxygen gas, black copper oxide, CuO , is formed. In an experiment it was found that when copper reacted completely with oxygen, 6.35 g of copper reacted with 1.60 g of oxygen gas, O 2 , to form 7.95 g of copper oxide.
a) Calculate the number of moles of each reactant and product. [3 marks]
b) Show how this relates to the balanced symbol equation for the reaction. [2 marks]
3. Aluminium reacts with iron(III) oxide, $\mathrm{Fe}_{2} \mathrm{O}_{3}$, to give iron metal and aluminium oxide, $\mathrm{Al}_{2} \mathrm{O}_{3}$.
a) Write a balanced symbol equation for this reaction. [3 marks]
b) In an experiment, 32.0 g of iron(III) oxide was reacted with 16.2 g of aluinium. Which of the two reactants is limiting reactant? Show you working. [2 marks]
c) Calculate the maximum mass of iron that could be collected at the end of this experiment. [2 marks].

4.4 The yield of a chemical reaction:

1. State why it is good for the environment if industry finds ways to make products using high yield reactions and processes that waste as little energy as possible. [2 marks]

Answer.

Because

- It reduces the waste of reactants.
- It reduces the cost of the process.

2. List the factors that can affect the percentage yield of a reaction. [5 marks]

Answer.

Some factors are as follows:
a) The product of a step doesn't get fully dried.
b) We weighed 14 g of a reactant instead of 15 g which are required for the experiment, but we noted down 15 g .
c) A reactant that has to be heated in order to produce another product, doesn't get enough heated.
d) If a solid gets rinsed with only cold water, but not with acetone.
3. Ammonia gas, NH_{3}, is made by heating the gases nitrogen and hydrogen under pressure in the presence of an iron catalyst:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
If 7.0 g of nitrogen are reacted with excess hydrogen and 1.8 g of ammonia is collected, what is the percentage yield? [3 marks]
4. Sodium hydrogen carbonate, NaHCO_{3}, can be converted into sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, by heating. This is a thermal decomposition reaction in which water vapour and carbon dioxide are also products of the reaction. A student started with 16.8 g of sodium hydrogen carbonate and collected 9.20 g of sodium carbonate.
a) Write a balanced symbol equation for the thermal decomposition. [1 mark]
b) Calculate the percentage yield the student obtained. [3 marks]

4.5 Atom economy

1. Write down the formula that chemists use to calculate the percentage atom economy of a reaction. [1 mark]
Answer.
The formula is atom economy $=$ mass of atoms in product $/$ /mass of atoms in reactant $\times 100$
2. Calculate the atom economy of the thermal decomposition of calcium carbonate. [2 marks]

Answer.

The thermal decomposition of copper carbonate, with the desired product being copper oxide and waste product being carbon dioxide is shown like this:
$\mathrm{CuCO} 3(\mathrm{~s}) \rightarrow \mathrm{CuO}(\mathrm{s})+\mathrm{CO} 2(\mathrm{~g})$
In the reactants there is one copper atom $(1 \mathrm{Cu})$, one carbon atom $(1 \mathrm{C})$ and three oxygen atoms (30).
The relative formula mass is $63.5+12.0+(3 \times 16.0)=123.5$
The desired product is copper oxide (CuO) with a relative formula mass of $63.5+16=79.5$
atom economy $=79.5 / 123.5 \times 100=64.4 \%$
3. A chemical company is setting up a plant to manufacture the compound called chloro ethane, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$. Their chemists can make is in two ways, either from ethane (Reaction

1) or ethanol (reaction 2):

Reaction 1: $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{HCl} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$
Reaction 2: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{HCl} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}$
a) Calculate the percentage atom economy of Reaction 2. [2 marks]
b) Many factors have to be considered before deciding which route to make too many chloro ethane. However, on the basic of atom economy, explain which reaction is preferable. [2 marks]
c) Suggest two factors that the chemical company should consider before making their decision and give a reason for each. [4 marks]

