M1. (a) 450
allow 1 mark for correct substitution, ie $18 \times 10 \times 2.5$ provided no subsequent step shown
(b) (i) friction between child ('s clothing) and slide
accept friction between two insulators accept child rubs against the slide accept when two insulators rub (together)
causes electron / charge transfer (between child and slide)
accept specific reference, eg electrons move onto / off the child / slide
reference to positive electrons / protons / positive charge / atoms transfer negates this mark answers in terms of the slide being initially charged score zero
(ii) all the charges (on the hair) are the same (polarity) accept (all) the charge/hair is negative / positive accept it is positive/negative
charges / hairs are repelling both parts should be marked together
(iii) charge would pass through the metal (to earth) accept metal is a conductor accept metal is not an insulator accept there is no charge / electron transfer accept the slide is earthed accept metals contain free electrons
M2. (a) (i) Ends have chargeWhich is opposite on each rod
(ii) Attracts
(b) (i) Repulsion
(ii) Ends have same charge
(c) Electrons move between cloth and rod Where gather is negative Where move from is positive

M3. (a) clothing and seat rub together accept friction between clothing and seat
electrons transfer from seat to driver
or
electrons transfer from driver to seat
accept electrons transfer on its own if first mark scores an answer in terms of rubbing, between clothing and seat and charge transfer without mention of electrons gains 1 mark an answer in terms of friction / rubbing and electron transfer without mention of clothing and seat gains 1 mark
(b) (i) how wet the air is affects charge (build up) accept humidity affects charge
or
damp air is a better conductor
or
damp air has a lower resistance do not accept fair test or as a control unless explained
(ii) No - it was only the lowest under these conditions accept answer in terms of changing the conditions may change the results
or
No - there are lots of other materials that were not tested
or
Yes - the highest value for cotton is smaller than the lowest value for the other materials
do not accept results show that it is always less / smallest

M4. (a) $3^{\text {ra }}$ box
The negative charge in the water is repelled by the rod and the positive charge is attracted.
(b) (i) friction between bottles and conveyor belt / (plastic) guides accept bottles rub against conveyor belt / (plastic) guides
charge transfers between bottles and conveyor belt / (plastic) guides accept specific reference eg electrons move onto / off the bottles reference to positive electrons / protons negates this mark
(ii) an atom that has lost / gained electron(s) do not accept a charged particle
(iii) charge will not (easily) flow off the conveyor belt accept the conveyor belt / bottle is an insulator / not a conductor accept conveyor belt is rubber

M5. (a) electrons transfer / removed
do not accept negatively charged atoms for electrons this only scores if first mark given
to the rod / from the cloth
this does not score if there is reference to any original charge on cloth or rod
'it' refers to the rod
accept negative charge transfer to rod / removed from cloth for 1 mark transfer of positive charge / positive electrons scores zero
(b) (i) rods / charges repel
creating downward / extra force (on the balance)
accept pushing (bottom) rod downwards do not accept increasing the weight / mass charges attracting scores zero
(ii) the (repulsion) force increases as the distance between the chargesdecreases accept there is a negative correlation between (repulsion) force and distance between chargesor(repulsion) force and distance between charges are inversely proportional for both marks examples of 1 mark answers force increases as distance decreases force and distance are inversely proportional negative correlation between force and distance repels more as distance decreases if given in terms of attracting or attraction force this mark does not score

M6. (a) (i) friction between the beads and pipe accept beads rub against the pipe
(cause) electrons to transfer accept electrons are lost/gained do not accept negatively charged atoms for electrons $3^{\text {td }}$ mark point only scores if 2nd mark scores
from the pipe do not accept from the (negatively) charged pipe orto the beads do not accept to the (positively) charged beads accept negative charge transfer to the beads for 1 mark provided $2^{n d}$ or 3^{d} marking point not awarded mention of positive charge transfer negates last 2 marking points
(ii) volume of beads
accept (75) cm^{3}
or
length of pipe
accept use the same pipe
or
speed the beads are poured poured the same way is insufficient
or
angle of pipe
(b) (i) the larger the beads the less charge do not accept inversely proportional negative correlation is insufficient
(ii) (total) charge decrease
results would be lower/smaller would be insufficient
beads in contact with pipe (walls) for less time accept less contact (between beads and pipe) accept beads in pipe for less time

or

smaller surface area (to rub against) accept less pipe to rub against less friction is insufficient
(c) (i) (pumping very) fine powders reason only scores if (very) fine powders given
greater charge (build up)
accept more static (electricity)
accept an answer that correctly relates back to the experimental data
orhigher pd/voltageorgreater energy
accept larger surface area to volume (ratio)
(ii) idea of earthing (the pipe)
accept use metal pipes
do not accept use larger particles
(d) to compare (the relative risks)
fair test is insufficient
you can only have one
independent variable is insufficient
ordifferent conditions change the MIE value
accept different conditions change the results
do not accept avoid bias

M7. (a) $3^{r d}$ box
The negative charge in the water is repelled by the rod and the positive charge is attracted to the rod.
(b) (i) friction between bottles and conveyor belt / (plastic) guides accept bottles rub against conveyor belt / (plastic) guides
charge transfers between bottles and conveyor belt / (plastic) guides accept specific reference eg electrons move onto / off the bottles reference to positive electrons / protons negates this mark
(ii) (the atom) loses or gains one (or more) electrons
(iii) charge will not (easily) flow off the conveyor belt / bottles accept the conveyor belt / bottles is an insulator / not a conductor accept conveyor belt is rubber

Q1.The figure below shows a slide in a children's playground.

(a) A child of mass 18 kilograms goes down the slide.

The vertical distance from the top to the bottom of the slide is 2.5 metres.
Calculate the decrease in gravitational potential energy of the child sliding from the top to the bottom of the slide.

Gravitational field strength $=10 \mathrm{~N} / \mathrm{kg}$
\qquad
\qquad
\qquad
Decrease in gravitational potential energy $=$ \qquad J
(b) The slide is made of plastic.
(i) The child becomes electrically charged when he goes down the slide.

Explain why.
\qquad
\qquad
\qquad
\qquad
(ii) Going down the slide causes the child's hair to stand on end.

What conclusion about the electrical charge on the child's hair can be made

Page 2

from this observation?

\qquad
\qquad
Give a reason for your answer.
\qquad
\qquad
(iii) Why would the child not become electrically charged if the slide was made from metal?
\qquad
\qquad

Q2. A pupil did an experiment following the instructions below.

1. Take a polythene rod $(A B)$, hold it at its centre and rub both ends with a cloth.
2. Suspend the rod, without touching the ends, from a stand using a stirrup and nylon thread.
3. Take a perspex rod (CD) and rub it with another cloth.
4. Without touching the ends of the perspex rod bring each end of the perspex rod up to, but without touching, each end of the polythene rod.
5. Make notes on what is observed.

The diagram below shows how the apparatus is to be set up.

(a) When end C was brought near to end B they attracted each other.
(i) Explain why they attracted each other.
\qquad
\qquad

(ii) What would happen if end C were brought near end A ?

\qquad
(b) The experiment was repeated with two polythene rods.
(i) Describe what you would expect the pupil to observe as the end of one rod was brought near to the end of the other.
\qquad
\qquad
(ii) Explain your answer.
\qquad
\qquad
(c) Explain, in terms of electron movement, what happened as the rods were rubbed with the cloths.
\qquad
\qquad
\qquad
\qquad
\qquad

Q3. During car journeys, the driver will often become electrostatically charged.
This is more noticeable on dry days than on damp, humid days.
(a) Explain what happens to cause the driver to become charged.
\qquad
\qquad
\qquad
\qquad
(b) Scientists were asked to find out whether the build-up of charge on the driver depends on the type of material used to make the driver's clothes. The results of the investigation are given in the table.

Material	Humidity	Temperature in ${ }^{\circ} \mathbf{C}$	Charge on the driver in millicoulombs
Nylon	48%	18	3.0 to 3.2
Wool	48%	18	2.4 to 2.5
Cotton	48%	18	1.4 to 1.7

Humidity is a measure of how much water vapour the air can hold.
(i) Why was it important that the scientists controlled the humidity?
\qquad
\qquad
(ii) Does the data in the table show that the charge on the driver would always be less if they were to wear cotton clothing?

Give a reason for your answer.

Q4. (a) The diagram shows a negatively charged plastic rod held close to a thin stream of water. The water is attracted towards the rod.

Which one of the following statements explains what is happening to the charge in the water?

Tick (\checkmark) one box.
The positive and the negative charges in the water are attracted to the rod.

The positive and the negative charges in the water are repelled by the rod.

The negative charge in the water is repelled by the rod and the positive charge is attracted.

The negative charge in the water is attracted by the rod and the positive charge is repelled.

(b) A company that produces bottles of mouthwash found a problem with the automatic filling system.

As the bottles go towards the filler, they move around on the conveyer belt and become electrostatically charged. This causes the stream of mouthwash to move sideways, missing the open top of the bottle.

The company came up with a solution to the problem. Before the bottles reach the filler, they pass through a stream of ionised air. The ions in the air neutralise the charge on the bottles.
(i) Explain why the plastic bottles become charged.
\qquad
\qquad
\qquad
\qquad
(ii) What is an ion?
\qquad
\qquad
(iii) Earthing the conveyor belt with a conducting wire would not have solved this problem.

Give a reason why.

Q5.(a) The diagram shows a polythene rod being rubbed with a woollen cloth.

The polythene rod becomes negatively charged.
Explain how this happens.
\qquad
\qquad
\qquad
\qquad
(b) A student put the charged polythene rod on to a balance. The rod was separated from the metal pan of the balance by a thin block of insulating material. The student then held a second charged polythene rod above, but not touching, the first rod. The reading on the balance increased.

(i) Explain why the reading on the balance increases.
\qquad
\qquad
\qquad
\qquad
(ii) The student observed that the nearer the two rods are to each other, the bigger the increase in the balance reading.

What should the student conclude from this observation?
\qquad
\qquad
\qquad
\qquad

Q6.(a) Fine powders poured through a pipe can become charged. The diagram shows the apparatus used by a student to investigate this effect.

The student poured $75 \mathrm{~cm}^{3}$ of polystyrene beads down the pipe. The beads fell into a metal can and the charge on them was measured directly using a coulombmeter.

The student repeated this twice more, but each time used $75 \mathrm{~cm}^{3}$ of beads of a different size.
(i) When they fell through the pipe, the polystyrene beads became negatively charged.

Explain how this happened.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Give one control variable in the student's investigation.
(b) The results obtained by the student are shown in the table.

Diameter of polystyrene beads in $\mathbf{m m}$	Charge in microcoulombs
1.0	0.080
2.0	0.044
3.0	0.012

(1 000000 microcoulombs = 1 coulomb)
(i) Describe the connection between the size of the polystyrene beads and the total charge on the beads.
\qquad
\qquad
(ii) Explain how these results might be different if the student had used a shorter pipe.
\qquad
\qquad
\qquad
\qquad
(c) In industry, powders are often pumped through pipes. If the static charge caused a spark, the powder could ignite and cause an explosion.
(i) Is an explosion more likely to happen when pumping very fine powders or when pumping powders that consist of much larger particles?
\qquad
Give a reason for your answer.
\qquad
\qquad
(ii) Suggest one way that the risk of an explosion could be reduced.
\qquad
\qquad
(d) The table gives the minimum ignition energy (MIE) value for a number of fine powders.
The MIE is the minimum amount of energy required to cause a fine powder to ignite.

Type of powder	MIE in millijoules
Coal dust	60.00
Aluminium powder	10.00
Cornstarch dust	0.30
Iron powder	0.12

The MIE values for different substances are all measured in the same way and under the same conditions of pressure and temperature.

Why is this important?
\qquad
\qquad

Q7.(a) The diagram shows a negatively charged plastic rod held near to a thin stream of water. The water is attracted towards the rod.

Which one of the following statements explains what is happening to the charge in the water?

Tick (\checkmark) one box.

The positive and the negative charges in the water are attracted to the rod.

The positive and the negative charges in the water are repelled by the rod.

The negative charge in the water is repelled by the rod and the positive charge is attracted to the rod.

The negative charge in the water is attracted to the rod and the positive charge is repelled by the rod.

(b) A company that produces bottles of mouthwash found a problem with the automatic filling system.

As the bottles go towards the filler, the bottles move around on the conveyor belt and become electrostatically charged. This causes the stream of mouthwash to move sideways, missing the open top of the bottle.

The company came up with an answer to the problem. Before the bottles reach the dfiller, the bottles pass through a stream of ionised air. The ions in the air neutralise the charge on the bottles.
(i) Explain why the plastic bottles became charged.
\qquad
\qquad
\qquad
\qquad
(ii) What happens to the structure of an atom to change the atom into an ion?
\qquad
\qquad
(iii) Earthing the conveyor belt with a conducting wire would not have solved this problem. Give a reason why.
\qquad
\qquad

M1. (a) current that is always in the same direction
(b) total resistance $=30(\Omega)$
$V=0.4 \times 30$

12 (V)
allow 12 (V) with no working shown for 3 marks an answer of $8(\mathrm{~V})$ or $4(\mathrm{~V})$ gains 2 marks only
(c) $\mathrm{P}=0.4 \times 12=4.8$
allow 5 (W) with no working shown for 2 marks allow 4.8 (W) with no working shown for 1 mark

```
M2. (a) (i) 15
```

(ii) 4.5 or their (a)(i) $\times 0.3$ correctly calculated allow 1 mark for correct substitution, ie $0.3 \times 15 / t h e i r ~(a)(i)$, provided no subsequent step
(ii) decrease
(b) \mathbf{Y}
accept any correct indication
reason only scores if \mathbf{Y} is chosen accept voltage for p.d.
(only one that) shows a direct current / p.d. or a battery / cell gives a direct current accept both \boldsymbol{X} and \mathbf{Z} are a.c.
or
a battery/cell gives a constant current/p.d.
accept it's a constant current/p.d. it is not changing is insufficient

M3. (a) (i) $50(\mathrm{~Hz})$
(ii) 2760 (W)
(b) 12
allow 1 mark for correct substitution, ie 2400/200
or
allow 1 mark for 2760/230 provided no subsequent step shown
amps
(c) the charge is directly proportional to the time switched on for accept for 1 mark the longer time (to boil), the greater amount of charge
or positive correlation
or they are proportional

M4. (a) $\quad 25(\Omega)$
(b) (i) $2(\mathrm{~V})$
allow 1 mark for showing a correct method, ie 6 / 3
(ii) equal to

M5.(a)

allow 1 mark for each correct line if more than one line is drawn from any symbol then all of those lines are wrong
(b) (i) half
(ii) $3(\mathrm{~V})$
(iii) V_{1}
(c) (i) potential difference / voltage of the power supply
accept the power supply accept the voltage / volts accept number of cells / batteries accept (same) cells / batteries do not accept same ammeter / switch / wires
(ii) bar drawn - height 1.(00)A
ignore width of bar
allow 1 mark for bar shorter than $3^{\text {rd }}$ bar
(iii) as the number of resistors increases the current decreases

M6.(a) battery, lamp and ammeter connected in series with variable resistor
voltmeter in parallel with (filament) lamp
(b) Level 2 (3-4 marks):

A detailed and coherent description of a plan covering all the major steps is provided.
The steps are set out in a logical manner that could be followed by another person to
obtain valid results.

Level 1 (1-2 marks):

Simple statements relating to relevant apparatus or steps are made but they may not be in a logical order. The plan would not allow another person to obtain valid results.

0 marks:

No relevant content

Indicative content

- ammeter used to measure current
- voltmeter used to measure potential difference
- resistance of variable resistor altered to change current in circuit or change potential difference (across filament lamp)
- resistance (of filament lamp) calculated or $\mathrm{R}=\mathrm{V} / \mathrm{I}$ statement
- resistance calculated for a large enough range of different currents that would allow a valid conclusion about the relationship to be made
(c) (as current increases) resistance increases (at an increasing rate)
(d) any value between 6.3 and $6.9(\Omega)$
(e) A: Filament lamp

B: Resistor at constant temperature

C: Diode

M7.(a) (i) any six from:

- switch on
- read both ammeter and voltmeter
allow read the meters
- adjust variable resistor to change the current
- take further readings
- draw graph
- (of) V against I
allow take mean
- $\mathrm{R}=\mathrm{V} / \mathrm{I}$
allow take the gradient of the graph
(ii) resistor would get hot if current left on
so its resistance would increase
(iii) $12(\mathrm{~V})$
0.75×16 gains 1 mark
(iv) $15(\Omega)$

16 is nearer to that value than any other
(b) if current is above 5 A / value of fuse
fuse melts
allow blows / breaks
do not accept exploded

Q1.An electrical circuit is shown in the figure below.

(a) The current in the circuit is direct current.

What is meant by direct current?
Tick one box.
Current that continuously changes direction.

Current that travels directly to the component.
\square

Current that is always in the same direction.
(b) The equation which links current, potential difference and resistance is: potential difference $=$ current \times resistance

Calculate the potential difference across the battery in the circuit in the figure above.
\qquad
\qquad
Potential difference $=$
V
(c) The equation which links current, potential difference and power is:
power $=$ current \times potential difference
Calculate the power output of the battery in the figure above.

Give your answer to one significant figure.
Power = .. W

Q2. (a) The diagram shows a simple circuit.

(i) Calculate the total resistance of the two resistors in the circuit.

$$
\text { Total resistance = ... } \Omega
$$

(ii) Calculate the reading on the voltmeter.

Show clearly how you work out your answer.
\qquad
\qquad
Voltmeter reading $=$ \qquad V
(iii) Draw a ring around the correct answer in the box to complete the sentence.

the reading on the ammeter.
(b) The voltmeter in the circuit is replaced with an oscilloscope.

Which one of the diagrams, \mathbf{X}, \mathbf{Y} or \mathbf{Z}, shows the trace that would be seen on the oscilloscope?

Write your answer, \mathbf{X}, \mathbf{Y} or \mathbf{Z}, in the box.

Give a reason for your answer.
\qquad
\qquad
\qquad

Q3.(a) The diagram shows the information plate on an electric kettle. The kettle is plugged into the a.c. mains electricity supply.

```
230 V 2760 W
50 Hz
```

Use the information from the plate to answer the following questions.
(i) What is the frequency of the a.c. mains electricity supply?
\qquad
(ii) What is the power of the electric kettle?
\qquad
(b) To boil the water in the kettle, 2400 coulombs of charge pass through the heating element in 200 seconds.

Calculate the current flowing through the heating element and give the unit.
Choose the unit from the list below.
amps
volts
watts
\qquad
\qquad
\qquad
Current $=$ \qquad
(c) The amount of charge passing through the heating element of an electric kettle depends on the time the kettle is switched on.

What pattern links the amount of charge passing through the heating element and the time the kettle is switched on?
\qquad
\qquad

Q4.(a) Electrical circuits often contain resistors.
The diagram shows two resistors joined in series.

Calculate the total resistance of the two resistors.

$$
\text { Total resistance = ... } \Omega
$$

(b) A circuit was set up as shown in the diagram. The three resistors are identical.

(i) Calculate the reading on the voltmeter.
\qquad
\qquad
Reading on voltmeter $=$ \qquad V
(ii) The same circuit has now been set up with two ammeters.

Draw a ring around the correct answer in the box to complete the sentence.

The reading on ammeter \mathbf{A}_{2} will be | smaller than |
| :--- |
| equal to |
| greater than | the reading on ammeter \mathbf{A}_{1}.

Q5.(a) Draw one line from each circuit symbol to its correct name.

Circuit symbol

Name
Diode

Light-dependent resistor (LDR)

Light-emitting diode (LED)
(b) Figure 1 shows three circuits.

The resistors in the circuits are identical.
Each of the cells has a potential difference of 1.5 volts.
Figure 1

Circuit 1

Circuit 2
Circuit 3

(i) Use the correct answer from the box to complete the sentence.

half	twice	the same as

The resistance of circuit 1 is \qquad the resistance of circuit 3.
(ii) Calculate the reading on voltmeter \mathbf{V}_{2}.

$$
\begin{equation*}
\text { Voltmeter reading } \mathbf{V}_{2}=\text {............................... V } \tag{1}
\end{equation*}
$$

(iii) Which voltmeter, $\mathbf{V}_{1}, \mathbf{V}_{2}$ or \mathbf{V}_{3}, will give the lowest reading?

Draw a ring around the correct answer.
\mathbf{V}_{1}
\mathbf{V}_{2}
V_{3}
(c) A student wanted to find out how the number of resistors affects the current in a series circuit.

Figure 2 shows the circuit used by the student.
Figure 2

The student started with one resistor and then added more identical resistors to the circuit.

Each time a resistor was added, the student closed the switch and took the ammeter reading.

The student used a total of 4 resistors.
Figure 3 shows three of the results obtained by the student.
Figure 3

(i) To get valid results, the student kept one variable the same throughout the experiment.

Which variable did the student keep the same?
\qquad
(ii) The bar chart in Figure 3 is not complete. The result using 4 resistors is not shown.

Complete the bar chart to show the current in the circuit when 4 resistors were used.
(iii) What conclusion should the student make from the bar chart?
\qquad
\qquad

Q6.A student wants to investigate how the current through a filament lamp affects its resistance.
(a) Use the circuit symbols in the boxes to draw a circuit diagram that she could use.

12 V battery	variable resistor	filament lamp	voltmeter	ammeter
${ }^{+12 \mathrm{~V}}$	\square	\boxed{y}	V	A

(b) Describe how the student could use her circuit to investigate how the current through a filament lamp affects its resistance.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) The student's results are shown in Figure 1.

Figure 1

Describe how the resistance of the filament lamp changes as the current through it increases.
\qquad
\qquad
(d) Use Figure 1 to estimate the resistance of the filament lamp when a current of 0.10 A passes through the lamp.

$$
\text { Resistance = ... } \Omega
$$

(e) The current- potential difference graphs of three components are shown in Figure 2.

Use answers from the box to identify each component.

diode \quad filament lamp	light dependent resistor
resistor at constant temperature	thermistor

Figure 2

\qquad

Q7.(a) A resistor is a component that is used in an electric circuit.

(i) Describe how a student would use the circuit to take the readings necessary to determine the resistance of resistor \mathbf{R}.
\qquad
(ii) Explain why the student should open the switch after each reading.
\qquad
\qquad
\qquad
\qquad
(iii) In an experiment using this circuit, an ammeter reading was 0.75 A . The calculated value of the resistance of resistor \mathbf{R} was 16Ω.

What is the voltmeter reading?
\qquad
\qquad
Voltmeter reading $=$ V
(iv) The student told his teacher that the resistance of resistor \mathbf{R} was 16Ω.

The teacher explained that the resistors used could only have one of the following values of resistance.
$10 \Omega \quad 12 \Omega \quad 15 \Omega \quad 18 \Omega \quad 22 \Omega$

Suggest which of these resistors the student had used in his experiment.
Give a reason for your answer.
\qquad
\qquad
\qquad
\qquad
(b) The diagram shows a fuse.

Describe the action of the fuse in a circuit.

M1.
(a) $\mathrm{V}=0.10 \times 45$
4.5 (V)
(b) $\mathrm{R}=12 / 0.10$

$$
\text { total resistance }=120(\Omega)
$$

$$
R=120-105=15(\Omega)
$$

(c) (total) resistance decreases
(so) current increases

M2. (a) (i) also double increases is insufficient
(ii) variable resistor accept rheostat / potentiometer
(b) (i) the data / results / variables are continuous accept data / results / variables are not categoric / discrete
(ii) misreading the ammeter do not accept misreading the meter/results do not accept misreading the ammeter and / or voltmeter reading / human error is insufficient
(iii) straight line from the origin drawn passing close / through points at $1 \mathrm{~V}, 5 \mathrm{~V}, 6 \mathrm{~V}$ and ignoring anomalous point
do not accept line drawn 'dot-to-dot'
(iv) yes
mark is for the reason
supports predictionor(straight) line passes through the origin accept a mathematical argument, eg when p.d. went from 2 to 4 the current went from 0.3 to 0.6
it's directly proportional is insufficient

M3. (a) decreases
(c) Marks awarded for this answer will be determined by the Quality of Communication (QoC) as well as the standard of the scientific response.

0 marks

No relevant content.
Level 1 (1-2 marks)
There is a basic description of the method. This is incomplete and would not lead to any useful results.

Level 2 (3-4 marks)

There is a description of the method which is almost complete with a few minor omissions and would lead to some results.

Level 3 (5-6 marks)

There is a detailed description of the method which would lead to valid results.
To gain full marks an answer including graph, or another appropriate representation of results, must be given.
examples of the physics points made in the response:

- read V and I
- read temperature
- apply heat
allow hot water to cool
- read V and I at least one other temperature
- determine R from V / I
- range of temperatures above $50^{\circ} \mathrm{C}$
extra detail:
- use thermometer to read temperature at regular intervals of temperature
- remove source of heat and stir before taking readings
- details of attaining $0^{\circ} \mathrm{C}$ or $100^{\circ} \mathrm{C}$
- last reading taken while boiling
- graph of R against T
- at least 3 different temperatures
(d) (i) Q
(ii) $(80,3.18)$
(iii) any one from:
- measurement of V too small
- measurement of I too big
- incorrect calculation of R
- thermometer misread
allow misread meter
ignore any references to an error that is systematic
(iv) any two from:
- not portable
allow requires a lot of equipment allow takes time to set up
- needs an electrical supply
- cannot be read directly
accept it is more difficult to read compared to liquid-in-glass

M4. (a) (i) ammeter symbol correct and drawn in series

do not accept lower case a
voltmeter symbol correct and drawn in parallel with the material
do not accept

(ii) adjust / use the variable resistor accept change the resistance orchange the number of cells
accept battery for cell
accept change the pd / accept change the voltage accept increase / decrease for change
(b) (i) $37.5(\Omega)$ accept answer between 36 and 39 inclusive
(ii) $\quad 5.6(25)$ or their (b)(i) $\times 0.15$ allow 1 mark for correct substitution ie 37.5 or their (b)(i) \times 0.15 provided no subsequent step shown
(c) (i) the thicker the putty the lower the resistance answer must be comparativeaccept the converse
(ii) any one from:

- measuring length incorrectly accept may be different length
- measuring current incorrectly do not accept different currents
- measuring voltage incorrectly do not accept different voltage
- ammeter / voltmeter incorrectly calibrated
- thickness of putty not uniform do not accept pieces of putty not the same unless qualified
- meter has a zero error
do not accept systematic / random error accept any sensible source of error eg putty at different temperatures do not accept human error without an explanation do not accept amount of putty not same

M5.
(a) (i) to obtain a range of $p . d$. values
accept increase / decrease current / p.d. / voltage / resistance
accept to change / control the current / p.d. / voltage / resistance
to provide resistance is insufficient a variable resistor is insufficient do not accept electricity for current
(ii) temperature of the bulb increases
accept bulb gets hot(ter)
accept answers correctly
expressed in terms of collisions between (free) electrons and ions / atoms
bulb gets brighter is insufficient
(iii) 36
allow 1 mark for correct substitution, ie 12×3 provided no subsequent step shown
(b) Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response.
Examiners should also refer to the information in the Marking guidance, and apply a 'best-fit' approach to the marking.

0 marksNo relevant content.
Level 1 (1-2 marks)There is a basic comparison of either a cost aspect or an energy efficiency aspect.

Level 2 (3-4 marks)There is a clear comparison of either the cost aspect or
energy efficiency aspectORa basic comparison of both cost and energy efficiency aspects.

Level 3 (5-6 marks)There is a detailed comparison of both the cost aspect and the energy efficiency aspect.

For full marks the comparisons made should support a conclusion as to which type of bulb is preferable.

Examples of the points made in the response:

cost

- halogen are cheaper to buy
simply giving cost figures is insufficient
- 6 halogen lamps cost the same as one LED
- LEDs last longer
- need to buy 18 / more halogen lamps to last the same time as one LED
- $\quad 18$ halogens cost $£ 35.10$
- costs more to run a halogen than LED
- LED has lower maintenance cost (where many used, eg large departmental store lighting)
energy efficiency
- LED works using a smaller current
- LED wastes less energy
- LEDs are more efficient
- LED is 22% more energy efficient
- LED produces less heat
- LED requires smaller input (power) for same output (power)

M6. (a) (i) live
(ii) react faster
(iii) live and neutral
(b) (i) ammeter
to measure current
accept to measure amps
plus any one from:

- \quad variable resistor (1)
to vary current (1)
accept variable power supply
accept change or control
- \quad switch (1)
to stop apparatus getting hot / protect battery
or
to reset equipment (1)
- fuse (1)
to break circuit if current is too big (1)
(ii) any two from:
- use smaller mass(es)
- move mass closer to pivot
- reduce gap between coil and rocker
- more turns (on coil)coil / loop
- iron core in coil
accept use smaller weight(s)

Q1.A student set up the electrical circuit shown in the figure below.

(a) The ammeter displays a reading of 0.10 A.

Calculate the potential difference across the 45Ω resistor.
\qquad
\qquad
Potential difference = .. V
(b) Calculate the resistance of the resistor labelled \mathbf{R}.
\qquad
\qquad
\qquad
\qquad
(c) State what happens to the total resistance of the circuit and the current through the circuit when switch \mathbf{S} is closed.
\qquad
\qquad
\qquad
\qquad

Q2.The diagram shows the circuit set up by a student.

(a) The student uses the circuit to test the following hypothesis:
'The current through a resistor is directly proportional to the potential difference across the resistor.'
(i) If the hypothesis is correct, what should the student predict will happen to the current through the resistor when the potential difference across the resistor is doubled?
\qquad
\qquad
(ii) Name the component in the circuit used to change the potential difference across the resistor.
\qquad
(b) The student used the data obtained to plot the points for a graph of current against potential difference.

(i) Why has the student plotted the points for a line graph and not drawn a bar chart?
\qquad
\qquad
(ii) One of the points has been identified by the student as being anomalous.

What is the most likely cause for this anomalous point?
\qquad
\qquad
(iii) Draw a line of best fit for these points.
(iv) Does the data the student obtained support the hypothesis?

Give a reason for your answer.
\qquad

Q3.Electrical circuits have resistance.

(a) Draw a ring around the correct answer to complete the sentence.

(b) Use the correct answer from the box to complete each sentence.

a filament bulb an LED an LDR

An electrical component which has a resistance that increases as the temperature increases is \qquad .

An electrical component which emits light only when a current flows through it in the forward direction is \qquad . .
(c) When some metals are heated the resistance of the metal changes.

The equipment for investigating how the resistance of a metal changes when it is heated is shown in the diagram.

In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Describe an investigation a student could do to find how the resistance of a metal sample varies with temperature. The student uses the equipment shown.

Include in your answer:

- how the student should use the equipment
- the measurements the student should make
- how the student should use these measurements to determine the resistance
- how to make sure the results are valid.
\qquad
(d) The table shows some data for samples of four metals $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ and \mathbf{S}.

The metal samples all had the same cross-sectional area and were the same length.

Metal sample	Resistance at $\mathbf{0}^{\circ} \mathbf{C}$ in $\mathbf{~} \mathbf{h m s}$	Resistance at $\mathbf{1 0 0}$ in ohms
\mathbf{P}	4.05	5.67
\mathbf{Q}	2.65	3.48
\mathbf{R}	6.0	9.17
\mathbf{S}	1.70	2.23

A graph of the results for one of the metal samples is shown.

(i) Which metal sample, $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ or \mathbf{S}, has the data shown in the graph?
(ii) One of the results is anomalous. Circle this result on the graph.
(iii) Suggest a reason for the anomalous result.
\qquad
\qquad
(iv) The same equipment used in the investigation could be used as a

$$
\text { Page } 9
$$

thermometer known as a 'resistance thermometer.'

Suggest two disadvantages of using this equipment as a thermometer compared to a liquid-in-glass thermometer.

1 \qquad
\qquad

2 \qquad
\qquad

Q4.(a) The diagram shows the circuit used to investigate the resistance of a sample of a material.
The diagram is not complete; the ammeter and voltmeter are missing.

(i) Draw the symbols for the ammeter and voltmeter on the diagram in the correct places.
(ii) How can the current through the material be changed?
\qquad
\qquad
(b) The material, called conducting putty, is rolled into cylinders of different lengths but with equal thickness.

Graph 1 shows how the resistance changes with length.

Graph 1

(i) The current through a 25 cm length of conducting putty was 0.15 A .

Use Graph 1 to find the resistance of a 25 cm length of conducting putty.
Resistance = \qquad ohms
(ii) Use your answer to (b) (i) to calculate the potential difference across a 25 cm length of conducting putty.

Show clearly how you work out your answer.
\qquad
\qquad
\qquad
Potential difference $=$ \qquad volts
(c) A second set of data was obtained using thicker pieces of conducting putty. Both sets of results are shown in Graph 2.

Graph 2

(i) What is the relationship between the resistance and the thickness of the conducting putty?
\qquad
\qquad
(ii) Name one error that may have reduced the accuracy of the results.
\qquad

Q5.(a) The diagram shows the circuit used to obtain the data needed to plot the current-potential difference graph for a filament bulb.

Potential difference in volts
(i) Why is the component labelled ' \mathbf{J} ' included in the circuit?
\qquad
\qquad
(ii) The resistance of the bulb increases as the potential difference across the bulb increases. Why?
\qquad
\qquad
(iii) The bulb is at full brightness when the potential difference across the bulb is 12 V .
The current through the bulb is then 3 A .
Calculate the power of the bulb when it is at full brightness and give the unit.
\qquad
\qquad
\qquad
Power = .
(b) In this question you will be assessed on using good English, organising information
clearly and using specialist terms where appropriate.
The table gives data about two types of light bulb people may use in their homes.

Type of light bulb	Energy efficiency	Cost of one light bulb	Average lifetime in hours
Halogen	10%	$£ 1.95$	2000
Light Emitting Diode (LED)	32%	$£ 11.70$	36000

Both types of light bulb produce the same amount of light.
Evaluate, in terms of cost and energy efficiency, the use of the two types of light bulb.

To gain full marks you must compare both types of light bulb and conclude which light bulb would be the best to use.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q6.If a fault develops in an electrical circuit, the current may become too great. The circuit needs to be protected by being disconnected.

A fuse or a circuit breaker may be used to protect the circuit. One type of circuit breaker is a Residual Current Circuit Breaker (RCCB).
(a) (i) Use the correct answer from the box to complete the sentence.

earth	live	neutral

A fuse is connected in the \qquad wire.
(ii) Use the correct answer from the box to complete the sentence.

are bigger	are cheaper	react faster

RCCBs are sometimes preferred to fuses because they
(iii) RCCBs operate by detecting a difference in the current between two wires.

Use the correct answer from the box to complete the sentence.

> earth and live earth and neutral live and neutral

The two wires are the \qquad wires.
(b) An RCCB contains an iron rocker and a coil.

A student investigated how the force of attraction, between a coil and an iron rocker, varies with the current in the coil.

She supported a coil vertically and connected it in an electrical circuit, part of which is shown in the figure below .

She put a small mass on the end of the rocker and increased the current in the coil until the rocker balanced. She repeated the procedure for different masses.

Some of her results are shown in the table below.

Mass in grams	Current needed for the rocker to balance in amps
5	0.5
10	1.0
15	1.5
20	2.0

(i) State two extra components that must have been included in the circuit in the figure above to allow the data in the above table to be collected.

Give reasons for your answers.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) A teacher said that the values of current were too high to be safe.

Suggest two changes that would allow lower values of current to be used in this investigation.

Change 1 \qquad
\qquad
Change 2 \qquad
\qquad

M1.(a)

battery in series with bulb and ammeter
voltmeter in parallel with bulb
variable resistor
or
variable power pack
or
potentiometer
(b) A is brighter because it has a higher current (than lamp B at any p.d.)
(therefore A has a) higher power output (than bulb B)
accept higher energy output per second
(c) lower current (than lamp A) for the same potential difference accept answer in terms of $R=V / I$
(d) $0-2$ Volts
allow a range from 0 V up to any value between 1 and 2 V .
(for an ohmic conductor) current is directly proportional to potential difference allow lines (of best fit) are straight and pass through the origin
(so) resistance is constant

M2. (a) (i)

(ii) 360
allow 1 mark for correct substitution, ie $9=0.025 \times R$
(iii) sketch graph of correct shape, ie

(iv) An automatic circuit to switch a heating system on and off.
(b) so ammeter reduces / affects current as little as possible
accept so does not reduce / change the current (it is measuring)
accurate reading is insufficient
not change the resistance is insufficient
(c) gives a common understanding
accept is easier to share results accept can compare results do not need to be converted is insufficient prevent errors is insufficient
(d) replace Bunsen (and water) with a lamp accept any way of changing light level
replace thermometer with light sensor
accept any way of measuring a change in light level datalogger alone is insufficient

M3.
(a) 35
an answer with more than 2 sig figs that rounds to 35 gains 2 marks
allow 2 marks for correct method, ie $\frac{230}{6.5}$
allow 1 mark for $I=6.5(A)$ or $R=\frac{230}{26}$
an answer 8.8 gains 2 marks
an answer with more than 2 sig figs that rounds to 8.8 gains 1 mark
(b) (maximum) current exceeds maximum safe current for a $2.5 \mathrm{~mm}^{2}$ wire accept power exceeds maximum safe power for a $2.5 \mathrm{~mm}^{2}$ wire
or(maximum) current exceeds 20 (A) (maximum) current $=26(A)$ is insufficient
a $2.5 \mathrm{~mm}^{2}$ wire would overheat / melt
accept socket for wire
do not accept plug for wire
(c) a.c. is constantly changing direction
accept a.c. flows in two directions
accept a.c. changes direction
a.c. travels in different directions is insufficient
d.c. flows in one direction only

M4. (a) attempt to draw four cells in series
correct circuit symbols
circuit symbol should show a long line and a short line, correctly joined together example of correct circuit symbol:

(b) (i) $6(\mathrm{~V})$
allow 1 mark for correct substitution, ie $V=3 \times 2$ scores 1 mark provided no subsequent step
(ii) 12 (V)
ecf from part (b)(i)
18-6
or
18 - their part (b)(i) scores 1 mark
(iii) $9(\Omega)$
ecf from part (b)(ii) correctly calculated 3 + their part (b)(ii) / 2
or
18 / 2 scores 1 mark
provided no subsequent step
(c) (i) need a.c.
(ii) 3 (A)
allow 1 mark for correct substitution, ie $18 \times 2=12 \times l_{s}$ scores 1 mark

M5. (a) (because the) potential of the live wire is 230 V
(and the) potential of the electrician is 0 V
(so there is a) large potential difference between live wire and electrician
charge / current passes through his body
allow voltage for potential difference
(b) diameter between 3.50 and 3.55 (mm)
allow correct use of value of cross-sectional area of 9.5 to $9.9\left(\mathrm{~mm}^{2}\right)$ with no final answer given for 1 mark
(c) $18000=\mathrm{I} \times 300$

$$
I=18000 / 300=60
$$

$13800=\left(60^{2}\right) \times R$
$R=13800 / 60^{2}$
$3.83(\Omega)$
allow $3.83(\Omega)$ with no working shown for 5 marks answer may also be correctly calculated using $P=I V$ and V = IR if 230 V is used.

Q1.A student investigated how current varies with potential difference for two different lamps.
Her results are shown in the figure below.

(a) Complete the circuit diagram for the circuit that the student could have used to obtain the results shown in the figure above.

(b) Which lamp will be brighter at any potential difference?

Explain your answer.
Use the figure above to aid your explanation
\qquad
\qquad
\qquad
\qquad
(c) Lamp B has the higher resistance at any potential difference.

$$
\text { Page } 2
$$

Explain how the figure above shows this.

\qquad
\qquad
\qquad
\qquad
(d) Both lamps behave like ohmic conductors through a range of values of potential difference.

Use the figure above to determine the range for these lamps.
Explain your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q2.(a) Figure 1 shows the apparatus used to obtain the data needed to calculate the resistance of a thermistor at different temperatures.

Figure 1

(i) In the box below, draw the circuit symbol for a thermistor.
\square
(ii) Use the data given in Figure 1 to calculate the resistance of the thermistor at $20^{\circ} \mathrm{C}$.
\qquad
\qquad
\qquad
Resistance $=$ \qquad ohms
(iii) Figure 2 shows the axes for a sketch graph.

Complete Figure 2 to show how the resistance of the thermistor will change
as the temperature of the thermistor increases from $20^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$.
Figure 2

(iv) Which one of the following is most likely to include a thermistor? Tick (\checkmark) one box.

An automatic circuit to switch a plant watering system on and off.

An automatic circuit to switch an outside light on when it gets dark.

An automatic circuit to switch a heating system on and off.

(b) The ammeter used in the circuit has a very low resistance.

Why is it important that ammeters have a very low resistance?
\qquad
\qquad
(c) The table below gives the temperature of boiling water using three different
temperature scales.

Temperature	Scale
100	Celsius $\left({ }^{\circ} \mathrm{C}\right)$
212	Fahrenheit $\left({ }^{\circ} \mathrm{F}\right)$
80	Réaumur $\left({ }^{\circ} \mathrm{Re}\right)$

Scientists in different countries use the same temperature scale to measure temperature.

Suggest one advantage of doing this.
\qquad
\qquad
\qquad
(d) A student plans to investigate how the resistance of a light-dependent resistor (LDR) changes with light intensity.

The student starts with the apparatus shown in Figure $\mathbf{2}$ but makes three changes to the apparatus.

One of the changes the student makes is to replace the thermistor with an LDR.
Describe what other changes the student should make to the apparatus.
\qquad
\qquad
\qquad
\qquad

Q3.The picture shows an electric cooker hob. The simplified circuit diagram shows how the four heating elements connect to the mains electricity supply. The heating elements are identical.

When all four heating elements are switched on at full power the hob draws a current of 26 A from the 230 V mains electricity supply.
(a) Calculate the resistance of one heating element when the hob is switched on at full power.

Give your answer to 2 significant figures.
\qquad
\qquad
\qquad

$$
\begin{equation*}
\text { Resistance = } \Omega \tag{3}
\end{equation*}
$$

(b) The table gives the maximum current that can safely pass through copper wires of different cross-sectional area.

Cross-sectional area in mm^{2}	Maximum safe current in amps
1.0	11.5
2.5	20.0

4.0	27.0
6.0	34.0

The power sockets in a home are wired to the mains electricity supply using cables containing $2.5 \mathrm{~mm}^{2}$ copper wires. Most electrical appliances are connected to the mains electricity supply by plugging them into a standard power socket.

It would not be safe to connect the electric cooker hob to the mains electricity supply by plugging it into a standard power socket.

Why?
\qquad
\qquad
\qquad
\qquad
(c) Mains electricity is an alternating current supply. Batteries supply a direct current. What is the difference between an alternating current and a direct current?
\qquad
\qquad
\qquad
\qquad

Q4.The current in a circuit depends on the potential difference (p.d.) provided by the cells and the total resistance of the circuit.
(a) Using the correct circuit symbols, draw a diagram to show how you would connect 1.5 V cells together to give a p.d. of 6 V .
(b) Figure 1 shows a circuit containing an 18 V battery.

Two resistors, \mathbf{X} and \mathbf{Y}, are connected in series.

- $\quad \mathbf{X}$ has a resistance of 3Ω.
- There is a current of 2 A in \mathbf{X}.

Figure 1

(i) Calculate the p.d. across \mathbf{X}.
\qquad
\qquad
P.d. across $\mathbf{X}=$ \qquad V
(ii) Calculate the p.d. across \mathbf{Y}.
\qquad
\qquad
\qquad
P.d. across $\mathbf{Y}=$ V
(iii) Calculate the total resistance of \mathbf{X} and \mathbf{Y}.
\qquad
\qquad
\qquad
Total resistance of \mathbf{X} and $\mathbf{Y}=$... Ω
(c) Figure 2 shows a transformer.

Figure 2

(i) An 18 V battery could not be used as the input of a transformer.

Explain why.
\qquad
\qquad
\qquad
\qquad
(ii) The transformer is 100% efficient.

Calculate the output current for the transformer shown in Figure 2.
\qquad
\qquad
\qquad

Q5.An electrician is replacing an old electric shower with a new one.

The inside of the old shower is shown in Figure 1.
Figure 1

(a) If the electrician touches the live wire he will receive an electric shock.

Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Different electrical wires need to have a cross-sectional area that is suitable for the power output.

Figure 2 shows the recommended maximum power input to wires of different cross-sectional areas.

Figure 2

The new electric shower has a power input of 13.8 kW .
Determine the minimum diameter of wire that should be used for the new shower.
The diameter, d , can be calculated using the equation:

$$
\mathrm{d}=\sqrt{\frac{4 \mathrm{~A}}{\pi}}
$$

A is the cross-sectional area of the wire.
\qquad
\qquad
Minimum diameter $=$ \qquad mm
(c) The charge that flows through the new shower in 300 seconds is 18000 C .

The new electric shower has a power of 13.8 kW .
Calculate the resistance of the heating element in the new shower
Write down any equations you use.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\text { Resistance = ... } \Omega
$$

M1.
(a) any two from:

- nuclear
- oil
- (natural) gas
(b) 4 (hours)
(c) a system of cables and transformers
(d) The power output of wind turbines is unpredictable
(e) $1500 / 0.6$

2500 (wind turbines)
allow 2500 with no working shown for $\mathbf{2}$ marks
(f) Most energy resources have negative environmental effects.

M2. (a) iron
hairdryer
kettle
answers can be in any order
(b) (i) \mathbf{Y}
(ii) bar drawn with any height greater than \mathbf{Y} ignore width of bar
(c) (bigger volume) takes more time (to boil) accept explanation using data from graph
(so) more energy transferred do not accept electricity for energy
(and) this costs more money
ignore reference to cost of water wasting more money because heating more water than needed is insufficient

M3.(a) there is a magnetic field (around the magnet)
(this magnetic field) changes / moves
and cuts through coil
accept links with coil
so a p.d. induced across coil
the coil forms a complete circuit
so a current (is induced)
(b) ammeter reading does not change must be in this order accept ammeter has a small reading / shows a current
zero
greater than before
accept a large(r) reading
same as originally but in the opposite direction accept a small reading in the opposite direction
(c) 0.30
allow 1 mark for correct substitution, ie $0.05=$ Q / 6

C/ coulomb
allow As
[13]

Page 5

M4.(a) (i) any six from:

- switch on
- read both ammeter and voltmeter
allow read the meters
- adjust variable resistor to change the current
- take further readings
- draw graph
- (of) \vee against I
allow take mean
- $\mathrm{R}=\mathrm{V} / \mathrm{I}$
allow take the gradient of the graph
(ii) resistor would get hot if current left on
so its resistance would increase
(iii) $12(\mathrm{~V})$
0.75×16 gains 1 mark
(iv) $15(\Omega)$

16 is nearer to that value than any other
(b) if current is above 5 A / value of fuse
fuse melts
allow blows / breaks
do not accept exploded

M5. (a) he may receive an electric shock
or
he may be electrocuted
if he touches the live wire
(b) $10690=I \times 230$
$I=10690 / 230$
46.478(260) (A)

46
allow 46 (A) with no working shown for 4 marks
(c) cost is higher
more energy is used (per second)

M6.(a) current that is always in the same direction
(b) total resistance $=30(\Omega)$

$$
V=0.4 \times 30
$$

12 (V)
allow $12(\mathrm{~V})$ with no working shown for 3 marks an answer of $8(V)$ or $4(V)$ gains 2 marks only
(c) $P=0.4 \times 12=4.8$

5 (W)
allow 5 (W) with no working shown for 2 marks
allow 4.8 (W) with no working shown for 1 mark

Q1.Energy resources can be renewable or non-renewable.
(a) Coal is a non-renewable energy resource.

Name two other non-renewable energy resources.
1 \qquad
2 \qquad
(b) Wind turbines are used to generate electricity.

The graph below shows how the power output of a wind turbine changes over one day.

A wind turbine does not generate electricity constantly.
For how many hours did the wind turbine generate no electricity?
\qquad
Time $=$ \qquad hours
(c) Electrical power is transferred from power stations to the National Grid. What is the National Grid?

Tick one box.
a system of cables and pylons \square
a system of cables and transformers

a system of cables, transformers and power stations

(d) An island has a large number of wind turbines and a coal-fired power station.

The island needs to use the electricity generated by the coal-fired power station at certain times.

Choose one reason why.

Tick one box.

Wind is a renewable energy resource. \square
Wind turbine power output is constant. \square

The power output of wind turbines is unpredictable. \square

The fuel cost for wind turbines is very high.

(e) A wind turbine has an average power output of 0.60 MW .

Page 3

A coal-fired power station has a continuous power output of 1500 MW .
Calculate how many wind turbines would be needed to generate the same power output as one coal-fired power station.
\qquad
\qquad
Number of wind turbines $=$
(f) It is important that scientists develop new energy resources.

Choose one reason why.
Tick one box.

All energy resources are running out. \square

All energy resources are used to generate electricity.

Most energy resources have negative environmental effects. \square

Q2.The pictures show six different household appliances.

(a) Four of the appliances, including the fan heater, are designed to transform electrical energy into heat.

Name the other three appliances designed to transform electrical energy into heat.
1 \qquad
2 \qquad
3 \qquad
(b) The bar chart shows the power of three electric kettles, \mathbf{X}, \mathbf{Y} and \mathbf{Z}.

(i) In one week, each kettle is used for a total of 30 minutes.

Which kettle costs the most to use?

Put a tick (\checkmark) next to your answer.

X

Y

Y

(ii) A new 'express boil' kettle boils water faster than any other kettle.

Draw a fourth bar on the chart to show the possible power of an 'express boil' kettle.
(c) The graph shows how the time to boil water in an electric kettle depends on the volume of water in the kettle.

A householder always fills the electric kettle to the top, even when only enough
boiling water for one small cup of coffee is wanted.
Explain how the householder is wasting money.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q3.The figure below shows a coil and a magnet. An ammeter is connected to the coil.

The ammeter has a centre zero scale, so that values of current going in either direction through the coil can be measured.
(a) A teacher moves the magnet slowly towards the coil.

Explain why there is a reading on the ammeter.
\qquad
(b) The table below shows some other actions taken by the teacher.

Complete the table to show the effect of each action on the ammeter reading.

Action taken by teacher	What happens to the ammeter reading?
Holds the magnet stationary and moves the coil slowly towards the magnet	
Holds the magnet stationary within the coil	
Moves the magnet quickly towards the coil	
Reverses the magnet and moves it slowly towards the coil	

(c) The magnet moves so that there is a steady reading of 0.05 A on the ammeter for 6 seconds.

Calculate the charge that flows through the coil during the 6 seconds.
Give the unit.
\qquad
\qquad
\qquad
Charge =
\qquad

Q4.(a) A resistor is a component that is used in an electric circuit.

(i) Describe how a student would use the circuit to take the readings necessary to determine the resistance of resistor \mathbf{R}.
\qquad
(ii) Explain why the student should open the switch after each reading.
\qquad
\qquad
\qquad
\qquad
(iii) In an experiment using this circuit, an ammeter reading was 0.75 A . The calculated value of the resistance of resistor \mathbf{R} was 16Ω.

What is the voltmeter reading?
\qquad
\qquad
Voltmeter reading $=$ \qquad V
(iv) The student told his teacher that the resistance of resistor \mathbf{R} was 16Ω.

The teacher explained that the resistors used could only have one of the following values of resistance.
$10 \Omega \quad 12 \Omega \quad 15 \Omega \quad 18 \Omega \quad 22 \Omega$

Suggest which of these resistors the student had used in his experiment. Give a reason for your answer.
\qquad
\qquad
\qquad
\qquad
(b) The diagram shows a fuse.

5A 1)

Describe the action of the fuse in a circuit.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q5.An electrician is replacing an old electric shower with a new one.
The inside of the old shower is shown in the figure below.

© Michael Priest
(a) The electrician should not change the shower unless he switches off the mains electricity supply.

Explain why.
\qquad
\qquad
\qquad
\qquad
(b) The new shower has a power output of 10690 W when it is connected to the 230 V mains electricity supply.

The equation which links current, potential difference and power is:
current $=\frac{\text { power }}{\text { potential difference }}$
Calculate the current passing through the new shower.
Give your answer to two significant figures.
Current = .. A
(c) The new shower has a higher power rating than the old shower.

How does the power of the new shower affect the cost of using the shower? Give a reason for your answer.
\qquad
\qquad
\qquad
\qquad

Q6.An electrical circuit is shown in the figure below.

(a) The current in the circuit is direct current.

What is meant by direct current?
Tick one box.
Current that continuously changes direction.

Current that travels directly to the component.
\square

Current that is always in the same direction.

(b) The equation which links current, potential difference and resistance is:
potential difference $=$ current \times resistance
Calculate the potential difference across the battery in the circuit in the figure above.
\qquad
\qquad
Potential difference $=$ V
(c) The equation which links current, potential difference and power is:
power $=$ current \times potential difference Calculate the power output of the battery in the figure above.

Page 15

Give your answer to one significant figure.
Power = .. W

M1. (a) (i) 150
(ii) transferred to the surroundings by heating reference to sound negates mark
(iii) 0.75

450 / 600 gains 1 mark accept 75\% for 2 marks maximum of 1 mark awarded if a unit is given
(iv) 20 (s)
correct answer with or without working gains 2 marks correct substitution of 600 / 30 gains 1 mark
(b) (i) to avoid bias
(ii) use less power and last longer

1 LED costs $£ 16,40$ filament bulbs cost $£ 80$
or
filament costs (5 times) more in energy consumption
(iii) any one from:

- availability of bulbs
- colour output
- temperature of bulb surface

M2. (a) brown
(b) outside / case is plastic / an insulator accept is double insulated accept non-conductor for plastic do not accept it / hairdryer is plastic
(c) (i) (1) S_{1} and no other
(2) S_{1} and S_{3}
both required, either order
(ii) S_{1} must be ON (for either heater to work)
do not accept reference to 'fan' switch
S_{1} switches the fan on
(d) 1495
allow 1 mark for correct substitution

$$
i e, 6.5 \times 230
$$

an answer of 1.495 kW gains 3 marks
although the unit is an independent mark for full credit the unit and numerical value must be consistent accept joules per second or J/s

M3.
(a) (i) to obtain a range of p.d. values accept increase / decrease current / p.d. / voltage / resistance
accept to change / control the current / p.d. / voltage / resistance
to provide resistance is insufficient a variable resistor is insufficient do not accept electricity for current
(ii) temperature of the bulb increases
accept bulb gets hot(ter)
accept answers correctly
expressed in terms of collisions between (free) electrons and ions / atoms
bulb gets brighter is insufficient
(iii) 36
allow 1 mark for correct substitution, ie 12×3 provided no subsequent step shown
watt(s) / W
accept joules per second / J/s
do not accept w
(b) Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also refer to the information in the Marking guidance, and apply a 'best-fit' approach to the marking.

0 marksNo relevant content.
Level 1 (1-2 marks)There is a basic comparison of either a cost aspect or an energy efficiency aspect.

Level 2 (3-4 marks)There is a clear comparison of either the cost aspect or energy efficiency aspectORa basic comparison of both cost and energy efficiency aspects.

Level 3 (5-6 marks)There is a detailed comparison of both the cost aspect and the energy efficiency aspect.

For full marks the comparisons made should support a conclusion as to which type of bulb is preferable.

Examples of the points made in the response:

cost

- halogen are cheaper to buy
simply giving cost figures is insufficient
- 6 halogen lamps cost the same as one LED
- LEDs last longer
- need to buy 18 / more halogen lamps to last the same time as one LED
- $\quad 18$ halogens cost $£ 35.10$
- costs more to run a halogen than LED
- LED has lower maintenance cost (where many used, eg large departmental store lighting)
energy efficiency
- LED works using a smaller current
- LED wastes less energy
- LEDs are more efficient
- LED is 22% more energy efficient
- LED produces less heat
- LED requires smaller input (power) for same output (power)

M4. (a) (i) live
(ii) react faster
(iii) live and neutral
(b) (i) ammeter
to measure current
accept to measure amps
plus any one from:

- \quad variable resistor (1)
to vary current (1)
accept variable power supply
accept change or control
- \quad switch (1)
to stop apparatus getting hot / protect battery
or to reset equipment (1)
- fuse (1)
to break circuit if current is too big (1)
(ii) any two from:
- use smaller mass(es)
- move mass closer to pivot
- reduce gap between coil and rocker
- more turns (on coil)coil / loop
- iron core in coil

M5. (a) (black) is a good absorber of (infrared) radiation
(b) (i) amount of energy required to change (the state of a substance) from solid to liquid (with no change in temperature)
melt is insufficient
(ii) $5.1 \times 10^{6}(\mathrm{~J})$
accept $5 \times 10^{\circ}$
allow 1 mark for correct substitution ie $E=15 \times 3.4 \times 10^{5}$
(c) (i) mass of ice
allow volume / weight / amount / quantity of ice
(ii) to distribute the salt throughout the ice
to keep all the ice at the same temperature
(iii) melting point decreases as the mass of salt is increased allow concentration for mass accept negative correlation do not accept inversely proportional
(d) $60000(\mathrm{~J})$
accept 60 KJ
allow 2 marks for correct substitution ie $E=500 \times 2.0 \times 60$

Page 9

allow 2 marks for an answer of 1000 or 60
allow 1 mark for correct substitution ie
$E=500 \times 2.0$ or $0.50 \times 2.0 \times 60$
allow 1 mark for an answer of 1
(e) Marks awarded for this answer will be determined by the Quality of Communication (QC) as well as the standard of the scientific response. Examiners should also apply a 'best-fit' approach to the marking.

0 marks

No relevant content

Level 1 (1-2 marks)

There is an attempt at a description of some advantages or disadvantages.

Level 2 (3-4 marks)

There is a basic description of some advantages and / or disadvantages for some of the methods

Level 3 (5-6 marks)

There is a clear description of the advantages and disadvantages of all the methods.
examples of the points made in the response

extra information

energy storage
advantages:

- no fuel costs
- no environmental effects
disadvantages:
- expensive to set up and maintain
- need to dig deep under road
- dependent on (summer) weather
- digging up earth and disrupting habitats
salt spreading
advantages:
- easily available
- cheap
disadvantages:
- can damage trees / plants / drinking water / cars
- needs to be cleaned away

undersoil heating

advantages:

- not dependent on weather
- can be switched on and off
disadvantages:
- costly
- bad for environment

Q1.A student finds some information about energy-saving light bulbs.
(a) A 30W light bulb uses 600J of electrical energy in a certain period of time. In that time, it produces 450 J of light energy. The rest of the energy is wasted.
(i) Calculate the energy wasted by the light bulb in this period of time.
Wasted energy = J
(ii) What happens to the energy wasted by the light bulb?
\qquad
\qquad
(iii) Calculate the efficiency of this light bulb.
\qquad
\qquad
Efficiency =
(iv) Calculate the period of time, in seconds, during which the 600 J is provided to the 30 W light bulb.
\qquad
\qquad
Time $=$ s
(b) A company that makes light bulbs provides information about some of their products.

The table shows some of this information.

Page 2

	Power in watts	Lifetime in hours	Cost of bulb in $£$
Filament bulb	60	1250	2.00
LED bulb	12	50000	16.00

(i) Suggest why it is important to confirm this information independently.
\qquad
(ii) A homeowner is thinking about replacing his filament bulbs with LED bulbs. A 12 W LED bulb gives the same light output as a 60 W filament bulb. Suggest reasons why the homeowner is likely to choose LED bulbs. Use the information given in the table.
\qquad
\qquad
\qquad
\qquad
(iii) State one factor, other than efficiency, that is important when considering the choice of a bulb for lighting in the home.
\qquad
\qquad

Q2.Diagram 1 shows a hairdryer.

Diagram 2 shows how the heaters and fan of the hairdryer are connected to a 3-pin plug. The hairdryer does not have an earth wire.

(a) What colour is the insulation around the wire connected to the live pin inside the plug?
\qquad
(b) Why does the hairdryer not need an earth wire?
\qquad
\qquad
(c) All the switches are shown in the OFF position.
(i) Which switch or switches have to be ON to make:
(1) only the fan work; \qquad
(2) heater 2 work? \qquad
(ii) The heaters can only be switched on when the fan is also switched on. Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
(d) The table shows the current drawn from the 230 volt mains electricity supply when different parts of the hairdryer are switched on.

	Current in amps
Fan only	1.0
Fan and heater 1	4.4
Fan and both heaters	6.5

Calculate the maximum power of the hairdryer.
Show clearly how you work out your answer and give the unit.
\qquad
\qquad
Maximum power $=$

Q3.(a) The diagram shows the circuit used to obtain the data needed to plot the current-potential difference graph for a filament bulb.

(i) Why is the component labelled ' \mathbf{J} ' included in the circuit?
\qquad
\qquad
(ii) The resistance of the bulb increases as the potential difference across the bulb increases. Why?
\qquad
\qquad
(iii) The bulb is at full brightness when the potential difference across the bulb is 12 V .
The current through the bulb is then 3 A .
Calculate the power of the bulb when it is at full brightness and give the unit.
\qquad
\qquad
\qquad
Power = .
\qquad
(b) In this question you will be assessed on using good English, organising information
clearly and using specialist terms where appropriate.
The table gives data about two types of light bulb people may use in their homes.

Type of light bulb	Energy efficiency	Cost of one light bulb	Average lifetime in hours
Halogen	10%	$£ 1.95$	2000
Light Emitting Diode (LED)	32%	$£ 11.70$	36000

Both types of light bulb produce the same amount of light.
Evaluate, in terms of cost and energy efficiency, the use of the two types of light bulb.

To gain full marks you must compare both types of light bulb and conclude which light bulb would be the best to use.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q4.If a fault develops in an electrical circuit, the current may become too great. The circuit needs to be protected by being disconnected.

A fuse or a circuit breaker may be used to protect the circuit.
One type of circuit breaker is a Residual Current Circuit Breaker (RCCB).
(a) (i) Use the correct answer from the box to complete the sentence.

earth	live	neutral

A fuse is connected in the wire.
(ii) Use the correct answer from the box to complete the sentence.

are bigger	are cheaper	react faster

RCCBs are sometimes preferred to fuses because they
(iii) RCCBs operate by detecting a difference in the current between two wires.

Use the correct answer from the box to complete the sentence.

earth and live earth and neutral live and neutral

The two wires are the \qquad wires.
(b) An RCCB contains an iron rocker and a coil.

A student investigated how the force of attraction, between a coil and an iron rocker, varies with the current in the coil.

She supported a coil vertically and connected it in an electrical circuit, part of which is shown in the figure below .

She put a small mass on the end of the rocker and increased the current in the coil until the rocker balanced. She repeated the procedure for different masses.

Some of her results are shown in the table below.

Mass in grams	Current needed for the rocker to balance in amps
5	0.5
10	1.0
15	1.5
20	2.0

(i) State two extra components that must have been included in the circuit in the figure above to allow the data in the above table to be collected.

Give reasons for your answers.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) A teacher said that the values of current were too high to be safe.

Suggest two changes that would allow lower values of current to be used in this investigation.

Change 1 \qquad

Change 2

Q5.(a) A company is developing a system which can heat up and melt ice on roads in the winter. This system is called 'energy storage'.

During the summer, the black surface of the road will heat up in the sunshine.
This energy will be stored in a large amount of soil deep under the road surface. Pipes will run through the soil. In winter, cold water entering the pipes will be warmed and brought to the surface to melt ice.

The system could work well because the road surface is black.
Suggest why.
\qquad
\qquad
(b) (i) What is meant by specific latent heat of fusion?
\qquad
\qquad
\qquad
\qquad
(ii) Calculate the amount of energy required to melt 15 kg of ice at $0^{\circ} \mathrm{C}$.

Specific latent heat of fusion of ice $=3.4 \times 10^{5} \mathrm{~J} / \mathrm{kg}$.
\qquad
\qquad
Energy = \qquad J
(c) Another way to keep roads clear of ice is to spread salt on them. When salt is added to ice, the melting point of the ice changes.

A student investigated how the melting point of ice varies with the mass of salt added.

The figure below shows the equipment that she used.

The student added salt to crushed ice and measured the temperature at which the ice melted.
(i) State one variable that the student should have controlled.
\qquad
\qquad
(ii) During the investigation the student stirred the crushed ice.

Suggest two reasons why.
Tick (\checkmark) two boxes.

	Tick (\checkmark)
To raise the melting point of the ice	
To lower the melting point of the ice	
To distribute the salt throughout the ice	
To keep all the ice at the same temperature	
To reduce energy transfer from the surroundings to the ice	

(iii) The table below shows the data that the student obtained.

Mass of salt added in grams	0	10	20
Melting point of ice in ${ }^{\circ} \mathrm{C}$	0	-6	-16

Describe the pattern shown in the table.
\qquad
\qquad
(d) Undersoil electrical heating systems are used in greenhouses. This system could also be used under a road.

A cable just below the ground carries an electric current. One greenhouse system has a power output of 0.50 kW .

Calculate the energy transferred in 2 minutes.
\qquad
\qquad
\qquad
Energy transferred = J
(e) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

A local council wants to keep a particular section of a road clear of ice in the winter.
Describe the advantages and disadvantages of keeping the road clear of ice using:

- energy storage
- salt
- undersoil electrical heating.
\qquad
Extra space
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

M1. (a) (because the) potential of the live wire is 230 V
(and the) potential of the electrician is 0 V
(so there is a) large potential difference between live wire and electrician
charge / current passes through his body
allow voltage for potential difference
(b) diameter between 3.50 and 3.55 (mm)
allow correct use of value of cross-sectional area of 9.5 to $9.9\left(\mathrm{~mm}^{2}\right)$ with no final answer given for 1 mark
(c) $18000=\mathrm{I} \times 300$

$$
I=18000 / 300=60
$$

$$
13800=\left(60^{2}\right) \times R
$$

$$
R=13800 / 60^{2}
$$

allow $3.83(\Omega)$ with no working shown for 5 marks answer may also be correctly calculated using $P=I V$ and V $=I R$ if 230 V is used.

M2. (a) 35
an answer with more than 2 sig figs that rounds to 35 gains 2 marks
allow 2 marks for correct method, ie $\frac{230}{6.5}$
allow 1 mark for $I=6.5(A)$ or $R=\frac{230}{26}$
an answer 8.8 gains 2 marks
an answer with more than 2 sig figs that rounds to 8.8 gains 1 mark
(b) (maximum) current exceeds maximum safe current for a $2.5 \mathrm{~mm}^{2}$ wire accept power exceeds maximum safe power for a $2.5 \mathrm{~mm}^{2}$ wire
or(maximum) current exceeds 20 (A) (maximum) current $=26(A)$ is insufficient
a $2.5 \mathrm{~mm}^{2}$ wire would overheat / melt accept socket for wire do not accept plug for wire
(c) a.c. is constantly changing direction
accept a.c. flows in two directions
accept a.c. changes direction
a.c. travels in different directions is insufficient
d.c. flows in one direction only

M3. (a) water heated by radiation (from the Sun)
accept IR / energy for radiation
water used to heat buildings / provide hot water allow for 1 mark heat from the Sun heats water if no other marks given
references to photovoltaic cells / electricity scores 0 marks
(b) 2 (minutes)
$1.4 \times 10^{3}=\frac{168 \times 10^{3}}{t}$
gains 1 mark
calculation of time of 120 (seconds) scores 2 marks
(c) (i) $150(\mathrm{kWh})$
(ii) £60(.00) or 6000 (p)
an answer of $£ 6000$ gains 1 mark
allow 1 mark for 150×0.4 (0) 150×40
allow ecf from (c)(i)
(iii) 25 (years)
an answer of $6000 / 240$
or
$6000 /$ their (c)(ii) $\times 4$
gains 2 marks
an answer of 6000 / 60
or
6000 / their (c)(ii) gains 1 mark, ignore any other multiplier of (c)(ii)
(iv) any one from:

- will get $£ 240$ per year
accept value consistent with calculated value in (c)(iii)
- amount of light is constant throughout the year
- price per unit stays the same
- condition of cells does not deteriorate
(d) any one from:
- angle of tilt of cells
- cloud cover
- season / shade by trees
- amount of dirt

M4. (a) attempt to draw four cells in series
correct circuit symbols
circuit symbol should show a long line and a short line, correctly joined together example of correct circuit symbol:

(b) (i) $6(\mathrm{~V})$
allow 1 mark for correct substitution, ie $V=3 \times 2$ scores 1 mark provided no subsequent step
(ii) 12 (V)
ecf from part (b)(i)
18-6
or
18 - their part (b)(i) scores 1 mark
(iii) $9(\Omega)$
ecf from part (b)(ii) correctly calculated 3 + their part (b)(ii) / 2
or
18 / 2 scores 1 mark provided no subsequent step
(c) (i) need a.c.

battery is d.c.

(ii) $3(\mathrm{~A})$
allow 1 mark for correct substitution, ie $18 \times 2=12 \times l_{s}$ scores 1 mark

M5. (a) (i) generator

(ii) alternating current
(iii) voltmeter / CRO / oscilloscope / cathode ray oscilloscope
(b) (i) time
(ii) peaks and troughs in opposite directions
amplitude remains constant
dependent on first marking point
(c) any two from:

- increase speed of coil
- strengthen magnetic field
- increase area of coil
do not accept larger

Q1.An electrician is replacing an old electric shower with a new one.

The inside of the old shower is shown in Figure 1.
Figure 1

(a) If the electrician touches the live wire he will receive an electric shock.

Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Different electrical wires need to have a cross-sectional area that is suitable for the power output.

Figure 2 shows the recommended maximum power input to wires of different cross-sectional areas.

Figure 2

The new electric shower has a power input of 13.8 kW .
Determine the minimum diameter of wire that should be used for the new shower.
The diameter, d , can be calculated using the equation:

$$
\mathrm{d}=\sqrt{\frac{4 \mathrm{~A}}{\pi}}
$$

A is the cross-sectional area of the wire.
\qquad
\qquad
Minimum diameter $=$ \qquad mm
(c) The charge that flows through the new shower in 300 seconds is 18000 C .

The new electric shower has a power of 13.8 kW .
Calculate the resistance of the heating element in the new shower
Write down any equations you use.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\text { Resistance = ... } \Omega
$$

Q2.The picture shows an electric cooker hob. The simplified circuit diagram shows how the four heating elements connect to the mains electricity supply. The heating elements are identical.

When all four heating elements are switched on at full power the hob draws a current of 26 A from the 230 V mains electricity supply.
(a) Calculate the resistance of one heating element when the hob is switched on at full power.

Give your answer to 2 significant figures.
\qquad
\qquad
\qquad
\qquad
(b) The table gives the maximum current that can safely pass through copper wires of different cross-sectional area.

Cross-sectional area in mm^{2}	Maximum safe current in amps
1.0	11.5
2.5	20.0

4.0	27.0
6.0	34.0

The power sockets in a home are wired to the mains electricity supply using cables containing $2.5 \mathrm{~mm}^{2}$ copper wires. Most electrical appliances are connected to the mains electricity supply by plugging them into a standard power socket.

It would not be safe to connect the electric cooker hob to the mains electricity supply by plugging it into a standard power socket.

Why?
\qquad
\qquad
\qquad
\qquad
(c) Mains electricity is an alternating current supply. Batteries supply a direct current. What is the difference between an alternating current and a direct current?
\qquad
\qquad
\qquad
\qquad

Q3.Solar panels are often seen on the roofs of houses.
(a) Describe the action and purpose of a solar panel.
\qquad
\qquad
\qquad
\qquad
(b) Photovoltaic cells transfer light energy to electrical energy.

In the UK, some householders have fitted modules containing photovoltaic cells on the roofs of their houses.

Four modules are shown in the diagram.

The electricity company pays the householder for the energy transferred.
The maximum power available from the photovoltaic cells shown in the diagram is $1.4 \times 10^{3} \mathrm{~W}$.

How long, in minutes, does it take to transfer 168 kJ of energy?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad minutes

Page 7

(c) When the modules are fitted on a roof, the householder gets an extra electricity meter to measure the amount of energy transferred by the photovoltaic cells.
(i) The diagram shows two readings of this electricity meter taken three months apart.
The readings are in kilowatt-hours (kWh).
21 November

0	0	0	4	4

21 February

Calculate the energy transferred by the photovoltaic cells during this time period.
\qquad
Energy transferred = ... kWh
(ii) The electricity company pays 40p for each kWh of energy transferred.

Calculate the money the electricity company would pay the householder.
\qquad
\qquad
Money paid = \qquad
(iii) The cost of the four modules is $£ 6000$.

Calculate the payback time in years for the modules.
\qquad
\qquad
\qquad years
(iv) State an assumption you have made in your calculation in part (iii).
\qquad
\qquad
(d) In the northern hemisphere, the modules should always face south for the maximum transfer of energy.

State one other factor that would affect the amount of energy transferred during daylight hours.
\qquad
\qquad

Q4.The current in a circuit depends on the potential difference (p.d.) provided by the cells and the total resistance of the circuit.
(a) Using the correct circuit symbols, draw a diagram to show how you would connect 1.5 V cells together to give a p.d. of 6 V .
(b) Figure 1 shows a circuit containing an 18 V battery.

Two resistors, \mathbf{X} and \mathbf{Y}, are connected in series.

- $\quad \mathbf{X}$ has a resistance of 3Ω.
- There is a current of 2 A in \mathbf{X}.

Figure 1

(i) Calculate the p.d. across \mathbf{X}.
\qquad
\qquad
P.d. across $\mathbf{X}=$ \qquad V
(ii) Calculate the p.d. across \mathbf{Y}.
\qquad
\qquad
\qquad
P.d. across $\mathbf{Y}=$ V
(iii) Calculate the total resistance of \mathbf{X} and \mathbf{Y}.
\qquad
\qquad
\qquad
Total resistance of \mathbf{X} and $\mathbf{Y}=$ \qquad Ω
(c) Figure 2 shows a transformer.

Figure 2

(i) An 18 V battery could not be used as the input of a transformer.

Explain why.
\qquad
\qquad
\qquad
\qquad
(ii) The transformer is 100% efficient.

Calculate the output current for the transformer shown in Figure 2.
\qquad
\qquad
\qquad

Q5.The diagram shows an a.c. generator.
The coil rotates about the axis shown and cuts through the magnetic field produced by the magnets.

(a) (i) A potential difference is induced between \mathbf{X} and \mathbf{Y}.

Use the correct answer from the box to complete the sentence.

electric	generator	motor	transformer

This effect is called the \qquad effect.
(ii) What do the letters a.c. stand for?
\qquad
(iii) Name an instrument that could be used to measure the potential difference between \mathbf{X} and \mathbf{Y}.
\qquad
(b) Graph 1 shows the output from the a.c. generator.

Graph 1

Potential
difference
(i) One of the axes on Graph 1 has been labelled 'Potential difference'.

What should the other axis be labelled?
\qquad
(ii) The direction of the magnetic field is reversed.

On Graph 1, draw the output from the a.c. generator if everything else remains the same.
(c) The number of turns of wire on the coil is increased. This increases the maximum induced potential difference.

State two other ways in which the maximum induced potential difference could be increased.

1 \qquad
\qquad

2 \qquad
\qquad

M1.
(a) Level 2 (3-4 marks):

A detailed and coherent explanation is provided. The student makes logical links between clearly identified, relevant points.

Level 1 (1-2 marks):

Simple statements are made, but not precisely. The logic is unclear.
0 marks:
No relevant content

Indicative content

- friction (between cloth and rod) causes
- electrons (to) move
- from the acetate rod or to the cloth
- (net) charge on cloth is now negative
- (net) charge on rod is now positive
(b) there is a force of attraction between the acetate rod and the cloth (reason)
unlike charges attract
or
negative charges attract positive charges
(c) increase
(d) 0.000025×60000
1.5 (J)
M2. (a) (i) (bottom or other ends) move apart orrepelaccept they move apart
(ii) have same charge accept both have negative charge (from part (b) do not credit both have positive charge same or like charges repel not just opposite charges attract
(b) positive
electrons
cloth
polythene
accept strips
(c) (i) conductors
accept metals
(ii) insulators
accept non-conductors/poor conductors do not credit non-metals

M3. (a) becomes (electrically) charged or description of electron movement for 1 mark
(b) comb attracts paper for 1 mark
(c) charge/electricity gone to Earth/body for 1 mark eachM4. (a) (i) electronsjumper
(ii) positive accept protons
accept +
(iii) positively charged
accept any clear way of indicating the answer
(b) (i) copper
it is an (electrical) conductor only accept if copper is identified do not accept it conducts heat accept it conducts heat and electricity accept copper is the best conductor accept correct description of conduction
(ii) current
M5. (a) repel1
opposite1attract1correct order only
(b) refuelling an aircraft
reason cannot score if refuelling aircraft is not chosen
a spark may cause an explosion / fire / ignite the fuel accept the static for a spark accept named fuel there must be a consequence of having a spark do not accept answers in terms of people getting a shock or electrocuted

M6. (a) (i) electrons
a positive
(ii) (forces are) equal
accept (forces are)the same forces are balanced is insufficient
(forces act in) opposite directions accept (forces) repel both sides have the same charge is insufficient
(b) aluminium

M7. (a) fleece rubs against shirt it refers to the fleece
or
friction (between fleece and shirt)
(causing) electrons to transfer from one to the other accept a specific direction of transfer do not accept charge for electrons positive electrons negates this mark movement of protons negates this mark
(b) Electrical charges move easily through metals.

An electric current is a flow of electrical charge.
(c) (i) copper
reason only scores if copper chosen
(good electrical) conductor
accept it is a metal
any mention of heat conduction negates this mark
(ii) lower than
(iii) accept any sensible suggestion,eg:

- too many variables (to control)
- lightning strikes / storms are random / unpredictable

Page 9

- do not know which building will be struck
- do not know when a building will be struck
- do not know when lightning will happen
- (very) difficult to create same conditions in a laboratory
- lightning storms are not the same it is not safe is insufficient do not accept lightning does not strike the same place twice

Q1.A student rubs an acetate rod with a cloth.

Figure 1 shows the charges on the acetate rod and cloth before and after rubbing.
Figure 1

(a) Explain how rubbing an acetate rod with a cloth causes the rod and cloth to become charged.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) After charging them, the student moves the acetate rod and the cloth closer together.

Which statement is correct?

Tick one box.

There is no force between the acetate rod and the cloth. \square
There is a force of attraction between the acetate rod and the cloth.

Page 2

There is a force of repulsion between the acetate rod and the cloth.
\square

Give a reason for your answer.
\qquad
\qquad
\qquad
(c) Figure 2 shows a Van de Graaff generator, which is used to generate static electricity.

Figure 2

© Michael Priest
The longer the Van de Graaff generator is switched on, the more charge is stored on the metal dome.

Use an answer from the box to complete the sentence.

decrease | increase |
| :---: |
| same |\quad stay the

The amount of charge on the metal dome is increased, which causes the potential

Page 3

difference between the metal dome and the earthed sphere to
\qquad
(d) When the potential difference between the Van de Graaff generator and the earthed sphere is 60 kV , a spark jumps between the metal dome and the earthed sphere.

The spark transfers 0.000025 coulombs of charge to the earthed sphere.
The equation which links charge, energy and potential difference is:
energy transferred $=$ charge \times potential difference
Calculate the energy transferred by the spark.
\qquad
\qquad
\qquad

Q2. A student did an experiment with two strips of polythene. She held the strips together at one end. She rubbed down one strip with a dry cloth. Then she rubbed down the other strip with the dry cloth. Still holding the top ends together, she held up the strips.

(a) (i) What movement would you expect to see?
\qquad
\qquad
(ii) Why do the strips move in this way?
\qquad
(b) Complete the four spaces in the passage.

Each strip has a negative charge. The cloth is left with a. \qquad
charge. This is because particles called \qquad have been transferred
from the \qquad to the \qquad .. .
(c) The student tried the experiment using two strips of aluminium. The strips did not move.

Complete each of the sentences.
(i) Materials, such as aluminium, which electricity will pass through easily, are called \qquad
(ii) Materials, such as polythene which electricity will not pass through easily, are called \qquad

Q3. You wash and dry your hair, then comb it with a plastic comb. As you move the comb away from your head some hairs are attracted to the comb.
(a) What has happened to the comb to make it attract the hairs?
\qquad
\qquad
(b) If the comb is now held above some small pieces of dry tissue paper what is likely to happen?
\qquad
\qquad
(c) If you rub your hands all over the comb it will no longer attract your hair. Explain why.
\qquad
\qquad

Q4. (a) A student rubs a nylon comb on the sleeve of his jumper.

(i) Use words from the box to complete the following sentence.

electrons	hand	jumper	protons

The comb becomes negatively charged because
move
from the student's \qquad to the comb.
(ii) What type of charge is left on the jumper?
\qquad
(iii) The negatively charged comb is placed close to a charged plastic ruler. The comb and the ruler attract each other.

Complete the following sentence by drawing a ring around the correct line in the box.

The ruler is | negatively charged |
| :--- |
| positively charged |
| uncharged |

(b) Electrostatic charge can damage computer chips. People working with computer chips may wear a special bracelet, with a wire joining the bracelet to earth (the earth wire). Any negative charge on the person will flow through the wire to earth.

(i) Which one of the following materials should the bracelet be made from?

Draw a ring around your answer.

copper plastic rubber

Give a reason for your answer.
\qquad
\qquad
(ii) Which one of the following words is used to describe the rate of flow of charge through a wire?

Draw a ring around your answer.
current resistance voltage

Q5. (a) The diagram shows how static electricity is used to paint a metal car panel.

Use words from the box to complete the following sentences.

attract	opposite	repel	same

All the paint droplets have the same type of charge. This makes the paint droplets
\qquad each other and spread out.

The car panel and the paint droplets have the
type
of
charge. This causes the car panel to \qquad the paint droplets.

The car panel is covered by an even layer of paint.
(b) In which one of the following situations is static electricity dangerous and not useful?

Put a tick (\checkmark) in the box next to your answer.
using a photocopier \square
refuelling an aircraft \square
a smoke precipitator \square

Give a reason for your answer.

Q6.(a) A student uses some everyday items to investigate static electricity.

1 A strip of plastic is cut from a plastic carrier bag

2 The plastic strip is rubbed with a cloth

3 The plastic strip is hung over a wooden rod
(i) Draw a ring around the correct answer in the box to complete each sentence.

Rubbing the plastic strip with a cloth causes the strip to become negatively charged.

This happens because $\begin{aligned} & \text { electrons } \\ & \text { neutrons } \\ & \text { protons }\end{aligned}$ move from the cloth onto the plastic strip. The cloth is left with $\begin{aligned} & \text { a negative } \\ & \text { a positive } \\ & \text { zero }\end{aligned}$ charge.
(ii) When the plastic strip is hung over the wooden rod, the two halves of the strip move equally away from each other.

What two conclusions should the student make about the forces acting on the two halves of the plastic strip?

1 \qquad
\qquad
2 \qquad
(b) Electrical charges move more easily through some materials than through other materials.

Through which one of the following materials would an electrical charge move most easily?

Draw a ring around your answer.
aluminium
glass
rubber

Q7. (a) A student takes off his nylon fleece and feels a small electric shock. He realises that this happens because his fleece becomes charged.

Explain why the fleece becomes charged.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Only two of the following statements are correct.

Put a tick (\checkmark) in the boxes next to the two correct statements.

Positively charged objects repel negatively charged objects.

Electrical charges move easily through metals.

Static electricity is safe; it never causes any danger.

An electric current is a flow of electrical charge. \square
(c) The diagram shows a lightning conductor attached to the side of a tall building.

If the building is struck by lightning, charge flows to earth through the lightning conductor.
(i) Which of the materials in the list is used to make the lightning conductor?

Draw a ring around your answer.
copper
glass
plastic

Give a reason for your answer.
\qquad
\qquad
\qquad
(ii) Complete the sentence by drawing a ring around the correct line in the box.

The resistance of the lightning conductor is

[^0]| the same as |
| :--- |
| lower then resistance of the building. |

(iii) It is almost impossible to test different designs of lightning conductor in controlled experiments during a lightning storm.

Suggest a reason why.
\qquad
\qquad

[^0]: higher than

