M1. (a) radio
(c) ionising
award 1 mark for each correct line
if more than one line is drawn from any em wave then none of those lines gain credit

M2.
(a) all three lines correct

allow 1 mark for each correct line
if more than one line goes from a device then all lines from that device are wrong
(b) (i) skin cancer
do not accept cancer do not accept sunburn correct answer only
(ii) other factors may be involved
accept may have been in the Sun too long
accept (over)-use of sunbeds and (over)- exposure to the Sun (both) give the same symptomsaccept any other sensible factor that could lead to doubt do not accept irrelevant answers eg may be run over by a car
do not accept killed by exposure to the Sun
(iii) can assess risk
answers should be in terms of assessing our own health risk
or
make your own decision
accept so you limit its use / don't use one
do not accept so you don't get skin cancer
do not accept so you don't get sunburn

M3. (a) vibrate / oscillate accept a correct description move is insufficient
(b) 336
allow 1 mark for correct substitution, ie $420 \times 0.8(0)$ provided no subsequent step shown

M4. (a) (i) (visible) light accept visible
(ii) microwaves
(b) J
(c) (i) B
(ii) shorter than
(d) (i) To find out if using a mobile phone is harmful to health
(ii) any two from:

- (X has a) low(er) SAR value
"it" refers to mobile phone accept has a low(er) rate
- (maximum) energy absorbed (by the head) is less accept energy emitted (by phone) is less accept radiation for energy
- (if mobiles are harmful) less likely to cause harm accept will not cause harm accept it is safer

M5.
(a) C
(b) reflection at the mirror of ray from shoe to person's eye may be drawn freehand
angle of incidence $=$ angle of reflection
judged by eye
a ruler must have been used
arrow to show correct direction on either incident or reflected ray only one arrow needed but if more drawn must be no contradiction both incident and reflected ray must be shown

(c) virtual

M6. (a) long
(b) lens A
it is a concave / diverging lens
this mark is only gained if lens A is stated any reference to lens material or mass of lens negates this mark
allow it will focus light onto the retina
(c) The refractive index of the lens material
(d) 4
ignore any signs
allow 1 mark for correct substitution, ie $\frac{1}{0.25}$ provided no
subsequent step
(e) Cauterising open blood vessels
(f) 5

> allow 1 mark for correct substitution, ie $\frac{70}{14}$ provided no subsequent step

M7. (a) transmits
absorbs
(b) light

> allow ultra violet or UV or infrared or IR or gamma
(c) 20
allow 1 mark for correct working, ie ${ }^{\frac{60}{3}}$ provided no subsequent step
(d) Killing cancer cells

M8. (a) refraction
(b) towards the normal
(c) (i) convex
(ii) principal focus
accept focal point
(d) parallel on left
refracted towards the normal at first surface
refraction away from normal at second surface
passes through or heads towards principal focus
(e) refractive index
accept material from which it is made
(radius of) curvature (of the sides)
accept shape / radius
do not accept power of lens
ignore thickness / length

M9. (a) decreases
increases
(b) (i) intensity (of transmitted light) depends on thickness or
to enable a valid comparison
or
it is a control variable
accept absorption depends on thickness it would affect the results is insufficient fair test is insufficient
(ii) transmits the least light or absorbs the most light accept very little light is transmitted do not accept transmits none of the light do not accept absorbs all of the light any reference to heat negates this mark

Q1.The figure below shows an incomplete electromagnetic spectrum.

A	microwaves	B	C	ultraviolet	D	gamma

(a) What name is given to the group of waves at the position labelled \mathbf{A} in the figure above?

Tick one box.
infrared

radio

visible light

X-ray

(b) Electromagnetic waves have many practical uses.

Draw one line from each type of electromagnetic wave to its use.

For communicating with a satellite

Microwaves

(c) Complete the sentence.

Use an answer from the box.
black body ionising nuclear

X-rays can be dangerous to people because X-rays are
\qquad

Q2.(a) The diagram shows the electromagnetic spectrum.
The pictures show four devices that use electromagnetic waves. Each device uses a different type of electromagnetic wave.

Draw a line from each device to the type of electromagnetic wave that it uses. One has been done for you.

Gamma rays	X-rays	Ultraviolet rays	Visible light	Infra red rays	Microwaves	Radio waves

(3)
(b) A headline from a recent newspaper article is shown below.

(i) What serious health problem may be caused by using a sunbed too much?
(ii) The pie chart compares the number of deaths in Britain each year which may have been caused by using sunbeds too much, with those which may have been caused by too much exposure to the Sun.

Key
Deaths caused by too much
exposure to the Sun
\square Deaths due to using a
sunbed too much

It is difficult for a doctor to be certain that a person has died because of using a sunbed too much.

Suggest why.
\qquad
\qquad
(iii) A spokesperson for a leading cancer charity said:
'We want people, especially young people, to know the possible dangers of using a sunbed.'

Why is it important that you know the possible dangers of using a sunbed?
\qquad
\qquad

Q3.A lorry has an air horn. The air horn produces sound waves in the air.
(a) Use one word to complete the following sentence.

Sound waves cause air particles to \qquad
(b) The air horn produces sound waves at a constant frequency of 420 Hz . The wavelength of the sound waves is 0.80 m . Calculate the speed of the sound waves.
\qquad
\qquad
\qquad
Speed = ... m/s

Q4.Diagram 1 shows four of the seven types of wave in the electromagnetic spectrum.
Diagram 1

\mathbf{J}	K	\mathbf{L}	Visible light	Infrared	Microwav es	Radio waves

(a) The four types of electromagnetic wave named in Diagram 1 above are used for communication.

(i) Which type of electromagnetic wave is used when a traffic signal communicates with a car driver?
\qquad
(ii) Which type of electromagnetic wave is used to communicate with a satellite in space?
\qquad
(b) Gamma rays are part of the electromagnetic spectrum.

Which letter, \mathbf{J}, \mathbf{K} or \mathbf{L}, shows the position of gamma rays in the electromagnetic spectrum?

Draw a ring around the correct answer.

J
K
L
(c) Diagram 2 shows an infrared wave.

Diagram 2

(i) Which one of the arrows, labelled \mathbf{A}, \mathbf{B} or \mathbf{C}, shows the wavelength of the wave?

Write the correct answer, A, B or \mathbf{C}, in the box.

(ii) Draw a ring around the correct answer to complete the sentence.

| Thorter than
 The wavelength of infrared waves
 is | the same as the wavelength of radio
 waves.
 longer than |
| :--- | :--- | :--- |

(d) Mobile phone networks send signals using microwaves. Some people think the energy a person's head absorbs when using a mobile phone may be harmful to health.
(i) Scientists have compared the health of people who use mobile phones with the health of people who do not use mobile phones.

Which one of the following statements gives a reason why scientists have done this?

Tick (\checkmark) one box.

To find out if using a mobile phone is harmful to health.

To find out if mobile phones give out radiation.

To find out why some people are healthy.
(ii) The table gives the specific absorption rate (SAR) value for two different mobile phones.

The SAR value is a measure of the maximum energy a person's head absorbs when a mobile phone is used.

Mobile Phone	SAR value in W/kg
\mathbf{X}	0.28
\mathbf{Y}	1.35

A parent buys mobile phone \mathbf{X} for her daughter.
Using the information in the table, suggest why buying mobile phone \mathbf{X} was the best choice.
\qquad
\qquad
\qquad
\qquad

Q5.A person can see an image of himself in a tall plane mirror.

The diagram shows how the person can see his hat.
(a) Which point, \mathbf{A}, \mathbf{B} or \mathbf{C}, shows the position of the image of his hat?

Write the correct answer, A, B or \mathbf{C}, in the box.

(b) On the diagram, use a ruler to draw a light ray to show how the person can see his shoe.
(c) Which one of the words in the box is used to describe the image formed by a plane mirror?

Draw a ring around the correct answer.

imaginary	real	virtual

Q6.(a) Some humans are short-sighted.
Complete the following sentence.
Short sight can be caused by the eyeball being too
(b) Spectacles can be worn to correct short sight.

The table below gives information about three different lenses that can be used in spectacles.

	Lens feature		
	Material	Mass in grams	Type
Lens A	Plastic	5.0	Concave (diverging)
Lens B	Glass	6.0	Convex (converging)
Lens C	Glass	5.5	Convex (converging)

Which lens from Table 2 would be used to correct short sight?
Draw a ring around the correct answer.

Lens A
 Lens B
 Lens C

Give the reason for your answer.
\qquad
\qquad
(c) Every lens has a focal length.

Which factor affects the focal length of a lens?
Tick (\checkmark) one box.
The colour of the lens \square

The refractive index of the lens material \square

The size of the object being viewed \square
(d) A lens has a focal length of 0.25 metres.

Calculate the power of the lens.
\qquad
\qquad
\qquad
Power of lens $=$ \qquad dioptres
(e) Laser eye surgery can correct some types of eye defect.

Which of the following is another medical use for a laser?
Tick (\checkmark) one box.
Cauterising open blood vessels \square

Detecting broken bones

Imaging the lungs

(f) The figure shows a convex lens being used as a magnifying glass.

An object of height 14 mm is viewed through a magnifying glass.
The image height is 70 mm .
Calculate the magnification produced by the lens in the magnifying glass.
\qquad
\qquad
\qquad
Magnification $=$

Q7.The figure below shows an X-ray image of a human skull.

Stockdevil/iStock/Thinkstock
(a) Use the correct answers from the box to complete the sentence.

absorbs	ionises	reflects	transmits

When X-rays enter the human body, soft tissue \qquad
X-rays
and bone X-rays.
(b) Complete the following sentence.

The X-rays affect photographic film in the same way that \qquad does.
(c) The table below shows the total dose of X -rays received by the human body when different parts are X-rayed.

Part of body X-rayed	Dose of X-rays received by human body in arbitrary units
Head	3

Chest	4
Pelvis	60

Calculate the number of head X -rays that are equal in dose to one pelvis X -ray.
\qquad
\qquad
\qquad
Number of head X -rays $=$
(d) Which one of the following is another use of X-rays?

Tick (\checkmark) one box.

Killing cancer cells

Scanning of unborn babies

Q8.Light changes direction as it passes from one medium to another.
(a) Use the correct answer from the box to complete the sentence.

diffraction	reflection	refraction

The change of direction when light passes from one medium to another is called \qquad .
(b) Draw a ring around the correct answer to complete the sentence.

When light passes from air into a glass block, it changes

direction | away from the normal. |
| :--- |
| towards the normal. |
| to always travel along the normal. |

(c) Diagram 1 shows light rays entering and passing through a lens.

Diagram 1

(i) Which type of lens is shown in Diagram 1?

Draw a ring around the correct answer.

> concave convex diverging
(ii) In Diagram 1, what is the point \mathbf{X} called?
\qquad
(d) A lens acts like a number of prisms.

Diagram 2 shows two parallel rays of light entering and passing through prism A and prism \mathbf{C}.

Diagram 2

Draw a third parallel ray entering and passing through prism B.
(e) What two factors determine the focal length of a lens?

1 \qquad

2 \qquad

Q9.(a) The visible light spectrum has a range of frequencies.
Figure 1 shows that the frequency increases from red light to violet light.
Figure 1
Increasing frequency
Red
Green
Violet

Use the correct answers from the box to complete the sentence.

decreases	stays the same	increases

As the frequency of the light waves increases, the wavelength of the light waves and the energy of the light waves \qquad
(b) Bottled beer will spoil if the intensity of the light passing through the glass bottle into the beer is too high.

Figure 3 shows the intensity of the light that is transmitted through three different pieces of glass.

Figure 3

(i) The pieces of glass all had the same thickness.

Suggest why.
\qquad
\qquad
(ii) Bottles made of brown glass are suitable for storing beer.

Suggest why.
\qquad
\qquad

M1. (a) (i) short sight
(ii) diverging
(c) Marks awarded for this answer will be determined by the quality of communication as well as the standard of the scientific response. Examiners should also apply a 'best-fit' approach to the marking.

0 marks
No relevant content
Level 1 (1-2 marks)
There is a basic description of one advantage or disadvantage of using either of the methods

Level 2 (3-4 marks)
There is a description of some advantages and / or disadvantages of using both methods
or
a full, detailed description of the advantages and disadvantages of using either of the methods.

Level 3 (5-6 marks)
There is a clear description of the advantages and disadvantages of using both methods.
examples of the points made in the response
extra information
laser surgery
advantages:

- appearance
- permanent effect
- no glasses which need changing
disadvantages:
- risks associated with surgery
- large cost
- not able to drive etc straightaway
- (still) might need glasses for reading

wearing glasses

advantages:

- able to function straightaway
- any problems easy to sort out
disadvantages:
- easily broken
- easily lost
- need changing
- overall cost might be greater if several changes in vision
- might eventually need two pairs of glasses
(d) move lens
closer to film

M2.(a) (sound waves) which have a frequency higher than the upper limit of hearing for humans or
a (sound) wave (of frequency) above 20000 Hz
sound waves that cannot be heard is insufficient a wave of frequency 20000 Hz is insufficient
(b) 640
an answer of 1280 gains 2 marks
allow 2 marks for the correct substitution
ie 1600×0.40 provided no subsequent step $\frac{1600 \times 0.80}{2}$
allow 2 marks for the substitution 2
provided no subsequent step
allow 1 mark for the substitution 1600×0.80 provided no subsequent step
allow 1 mark for the identification that time (boat to bed) is 0.4
(c) any one from:

- pre-natal scanning / imaging
- imaging of a named organ (that is not surrounded by bone), eg stomach, bladder, testicles
accept heart
do not allow brain or lungs (either of these negates a correct answer)
- Doppler scanning blood flow
(d) advantage
any one from:
- (images are) high quality or detailed or high resolution clearer / better image is sufficient
- (scan) produces a slice through the body
- image can be viewed from any direction
allow images are (always) 3D / 360
- an image can be made of any part (inside the body)
allow whole body can be scanned
- easier to diagnose or see a problem (on the image)
disadvantage
any one from:
- (the X-rays used or scans) are ionising allow a description of what ionising is
- mutate cells or cause mutations or increase chances of mutations
allow for cells:
DNA / genes / chromosomes / nucleus / tissue
- turn cells cancerous or produce abnormal growths or produce rapidly growing cells
- kill cells
damage cells is insufficient
- shielding is needed
can be dangerous (to human health) unqualified, is insufficient

M3. (a) wavelength correctly shown
(b) (i) increased
decreased
(ii) 17-18 inclusive
evidence of measurement divided by 3 or mean of 3 separate measurements
mm
accept cm if consistent with answer
(c) (i) red shift
(ii) moving away
(iii) the furthest galaxies show the biggest red shift
(meaning that) the furthest galaxies are moving fastest
(so the) Universe is expanding
(extrapolating backwards this suggests that) the Universe started from an initial point
(iv) cosmic microwave background radiation allow CMBR

M4.Level 3 (5-6 marks):

A detailed and coherent plan covering all the major steps is provided. The steps in the method are logically ordered. The method would lead to the production of valid results.

A source of inaccuracy is provided.

Level 2 (3-4 marks):

The bulk of a method is described with mostly relevant detail. The method may not be in a completely logical sequence and may be missing some detail.

Level 1 (1-2 marks):

Simple statements are made. The response may lack a logical structure and would not lead to the production of valid results.

0 marks:
No relevant content.

Indicative content

place a glass block on a piece of paper
draw around the glass block and then remove from the paper
draw a line at 90° to one side of the block (the normal)
use a protractor to measure and then draw a line at an angle of 20° to the normal
replace the glass block
using a ray box and slit point the ray of light down the drawn line
mark the ray of light emerging from the block
remove the block and draw in the refracted ray
measure the angle of refraction with a protractor
repeat the procedure for a range of values of the angle of incidence

possible source of inaccuracy

the width of the light ray
which makes it difficult to judge where the centre of the ray is

M5.(a) Level 3 (5-6 marks):

A detailed and coherent plan covering all the major steps is provided. The steps in the method are logically ordered. The method would lead to the production of valid results.

A source of inaccuracy is provided

Level 2 (3-4 marks):

The bulk of a method is described with mostly relevant detail. The method may not be in a completely logical sequence and may be missing some detail.

Level 1 (1-2 marks):

Simple statements are made. The response may lack a logical structure and would not lead to the production of valid results.

0 marks:
No relevant content.
Indicative content
place a glass block on a piece of paper
draw around the glass block and then remove from the paper
draw a line at 90° to one side of the block (the normal)
use a protractor to measure and then draw a line at an angle of 20° to the normal replace the glass block
using a ray box and slit point the ray of light down the drawn line mark the ray of light emerging from the block remove the block and draw in the refracted ray measure the angle of refraction with a protractor repeat the procedure for a range of values of the angle of incidence
possible source of inaccuracy
the width of the light ray
which makes it difficult to judge where the centre of the ray is
(b) velocity / speed of the light decreases allow velocity / speed of the light changes

M6.(a) magnification $=\frac{\text { image height }}{\text { object height }}$
dividing by an object height of 1 cm gives the same (numerical) value
(b) accept anything practical that would work eg:
use a taller object
use a (travelling) microscope
attach a scale to the screen and use a magnifying glass
(c) both points plotted correctly
correct line of best fit drawn
a curve passing through all points (within $1 ⁄ 2$ square), judge by eye
(d) values of 1.4 and 0.6 extracted from the graph
2.33 times bigger
accept any number between 2.3 and 2.5 inclusive
(e) by dividing the distance between the lens and the image by the distance between the lens and the object
at least one correct calculation and comparison eg $100 \div 25=4$ which is the same as the measured magnification

Q1.Lenses can be used to correct visual defects.
Figure 1 shows a child wearing glasses.
Wearing glasses allows a lens to correct a visual defect.
Figure 1

© monkeybusinessimages/iStock/Thinkstock
(a) Figure 2 shows rays of light entering a child's eye and being focused at a point. This point is not on the retina so the child sees a blurred image.

Figure 2

(i) What is the visual defect of this eye?
\qquad
\qquad
(ii) Use the correct answer from the box to complete the sentence.

converging convex diverging

The type of lens used to correct this visual defect is a \qquad lens.
(b) Visual defects may be corrected with eye surgery. A laser may be used in eye surgery.

Use the correct answer from the box to complete the sentence.

light	sound	X-rays

A laser is a concentrated source of \qquad
(c) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Lasers can be used to correct a visual defect by changing the shape of the cornea.
A knife is used to cut a flap in the cornea. The laser vaporises a portion of the cornea and permanently changes its shape. The flap is then replaced.

Most patients are back at work within a week. Driving may be unsafe for one to two weeks. Tinted glasses with ultraviolet protection are needed when out in the sun for the first three months.

Many people in their mid-40s need reading glasses. This is because the eye lens becomes less flexible with age. Laser surgery cannot cure this.

Laser surgery for both eyes costs $£ 1000$. A pair of glasses costs $£ 250$.

Describe the advantages and disadvantages of:

- having laser surgery to correct visual defects
- wearing glasses to correct visual defects.
\qquad
Extra space \qquad
\qquad
\qquad
\qquad
\qquad
(d) Figure 3 shows parallel rays of light, from a point on a distant object, entering a camera.

Figure 3

Describe the adjustment that has to be made to focus the image on the film.
\qquad
\qquad
\qquad
(b) Figure 1 shows how ultrasound is used to measure the depth of water below a ship.

Figure 1

A pulse of ultrasound is sent out from an electronic system on-board the ship.
It takes 0.80 seconds for the emitted ultrasound to be received back at the ship.
Calculate the depth of the water.
Speed of ultrasound in water $=1600 \mathrm{~m} / \mathrm{s}$
\qquad
\qquad
\qquad
\qquad
Depth of water $=$ \qquad metres
(c) Ultrasound can be used in medicine for scanning.

State one medical use of ultrasound scanning.
\qquad
(d) Images of the inside of the human body can be made using a Computerised Tomography (CT) scanner. The CT scanner in Figure 2 uses X-rays to produce these images.

Figure 2

State one advantage and one disadvantage of using a CT scanner, compared with ultrasound scanning, for forming images of the inside of the human body.

Advantage of CT scanning \qquad
\qquad
\qquad
Disadvantage of CT scanning \qquad
\qquad
\qquad

Q3.A teacher demonstrates the production of circular waves in a ripple tank.

Page 7

Diagram 1 shows the waves at an instant in time.

Diagram 1

(a) Show on Diagram 1 the wavelength of the waves.
(b) The teacher moves the source of the waves across the ripple tank.

Diagram 2 shows the waves at an instant in time.
Diagram 2
(Actual size)

(i) Use the correct answer from the box to complete each sentence.

```
decreased increased stayed the same
```

In Diagram 2, the observed wavelength of the waves at \mathbf{X} has \qquad .

In Diagram 2, the frequency of the waves at \mathbf{X}
has \qquad
(ii) Take measurements from Diagram 2 to determine the wavelength of the waves received at \mathbf{X}.

Give the unit.
\qquad
\qquad
Wavelength $=$ \qquad
(c) The teacher uses the waves in the ripple tank to model the changes in the wavelengths of light observed from distant galaxies.

When observed from the Earth, there is an increase in the wavelength of light from distant galaxies.
(i) State the name of this effect.
\qquad
(ii) What does this increase in wavelength tell us about the movement of most galaxies?
\qquad
\qquad
(iii) Explain how this observation supports the Big Bang theory of the formation of the Universe.
\qquad
(iv) State one other piece of evidence that supports the Big Bang theory of the formation of the Universe.
\qquad
\qquad

Q4.The data given in the table below was obtained from an investigation into the refraction of
light at an air to glass boundary.

Angle of incidence	Angle of refraction
20°	13°
30°	19°
40°	25°
50°	30°

Describe an investigation a student could complete in order to obtain similar data to that given in the table above.

Your answer should consider any cause of inaccuracy in the data.
A labelled diagram may be drawn as part of your answer.
\qquad

Q5.The data given in the table below was obtained from an investigation into the refraction of light at an air to glass boundary.

Angle of incidence	Angle of refraction
20°	13°
30°	19°
40°	25°
50°	30°

(a) Describe an investigation a student could complete in order to obtain similar data to that given in the table above.

Your answer should consider any cause of inaccuracy in the data.
A labelled diagram may be drawn as part of your answer.
\qquad
(b) State the reason why light is refracted as it crosses from air into glass.
\qquad
\qquad

Q6.A student investigated how the magnification produced by a convex lens varies with the distance (d) between the object and the lens.

The student used the apparatus shown in Figure 1.
Figure 1

(a) The student measured the magnification produced by the lens by measuring the image height in centimetres.

Explain why the image height in centimetres was the same as the magnification.
\qquad
\qquad
\qquad
\qquad
(b) The data recorded by the student is given in Table 1.

Table 1

Distance between the object and the lens in cm	Magnification
25	4.0
30	2.0
40	1.0
50	0.7
60	0.5

It would be difficult to obtain accurate magnification values for distances greater than 60 cm .

Suggest one change that could be made so that accurate magnification values could be obtained for distances greater than 60 cm .
\qquad
\qquad
(c) The graph in Figure 2 is incomplete.

Figure 2

Complete the graph in Figure 2 by plotting the missing data and then drawing a line of best fit.
(d) How many times bigger is the image when the object is 35 cm from the lens compared to when the object is 55 cm from the lens?
\qquad
\qquad
\qquad
(e) During the investigation the student also measured the distance between the lens and the image.

Table 2 gives both of the distances measured and the magnification.
Table 2

Distance between the lens and the image in cm	Distance between the lens and the object in cm	Magnification
100	25	4.0
60	30	2.0
40	40	1.0
33	50	0.7
30	60	0.5

Consider the data in Table 2.
Give a second way that the student could have determined the magnification of the object.

Justify your answer with a calculation.
\qquad
\qquad
\qquad
\qquad
\qquad

M1. (a) any two from:

- travel (at same speed) through a vacuum / space do not accept air for vacuum
- transverse
- transfer energy
- can be reflected
- can be refracted
- can be diffracted
- can be absorbed
- travel in straight lines
(b) can pass through the ionosphere
accept atmosphere for ionosphere
do not accept air for ionosphere
accept travel in straight lines
accept not refracted / reflected / absorbed by the ionosphere
hertz / Hz
do not accept hz or HZ
accept kHz or MHz
answers 1.2 MHz or 1200 kHz gain all 3 marks
for full credit the unit and numerical value must be consistent

M2. (a) (i) gamma accept correct symbol
(ii) any one from:

- (ultraviolet has a) higher frequency ultraviolet cannot be seen is insufficient
- (ultraviolet has a) greater energy
- (ultraviolet has a) shorter wavelength ignore ultraviolet causes cancer etc
(b) $1.2 \times 10^{7} / 12000000$
allow 1 mark for correct substitution, ie $3 \times 10^{s}=f \times 25$
hertz / Hz / kHz / MHz
do not accept hz or HZ
answers 12000 kHz or 12 MHz gain 3 marks
for full credit the numerical answer and unit must be consistent
(c) (i) away (from each other)
accept away (from the Earth) accept receding
(ii) distance (from the Earth)
accept how far away (it is)

speed galaxy is moving

(iii) (Universe is) expanding

M3. (a) (i) two correct rays drawn
1 mark for each correct ray

- ray parallel to axis from top of object and refracted through focus and traced back beyond object
- ray through centre of lens and traced back beyond object
- ray joining top of object to focus on left of lens taken to the lens refracted parallel to axis and traced back parallel to axis beyond object

an arrow showing the position and correct orientation of the image for their rays
to gain this mark, the arrow must go from the intersection of the traced-back rays to the axis and the image must be on the same side of the lens as the object and above the axis
(ii) $(x) 3.0$
accept 3.0 to 3.5 inclusive
or
their image height
object height
correctly calculated
allow 1 mark for correct substitution into equation using their figures
ignore any units
(b) any two from:
in a camera the image is:
- real not virtual
- inverted and not upright
accept upside down for inverted
- diminished and not magnified
accept smaller and bigger
accept converse answers but it must be clear the direction of the comparison
both parts of each marking point are required

M4. (a) (i) to check rise in temperature (of other thermometers) was due to the (different wavelengths of) light accept as a control / comparison to measure room temperature is insufficient
(ii) any two from three:

- different colours produce different heating effects / (rises in) temperatures
- red light produces the greatest heating effect / (rise in) temperature
or
- violet produces the least heating effect / (rise in) temperature
- all colours produce a greater heating effect than outside the spectrum an answer
the longer the wavelength the greater the (rise in) temperature
or
the lower the frequency the greater the (rise in) temperature gains both marks
(b) move a thermometer into the infrared region / just beyond the red light allow use an infrared camera / infrared sensor
the temperature increases beyond $24\left({ }^{\circ} \mathrm{C}\right)$
accept temperature higher than for the red light
(c) $\quad v=f \times \lambda$
9.4×10^{-6}

$$
\text { accept } 9.375 \times 10^{6} \text { or } 9.38 \times 10^{6}
$$

or
0.0000094

$$
\text { Page } 7
$$

accept 0.000009375
or 0.00000938
allow 1 mark for correct substitution
ie $3 \times 10^{8}=3.2 \times 10^{13} \times 1$
(d) at night the surroundings are cooler accept at night the air is colder there is no heat from the Sun is insufficient

or

at night there is a greater temperature difference between people and surroundings
(so surroundings) emit less infrared (than in daytime)
accept camera detects a greater contrast
or
gives larger difference in infrared emitted (between people and surroundings)

M5.(a) (i) frequency
wavelength
(ii) 10^{-15} to 10^{4}
(b) 2.0×10^{5}
correct substitution of $3.0 \times 10^{8} / 1500$ gains 1 mark

Hz
(c) (i) (skin) burns
(ii) skin cancer / blindness
(d) (i) any one from:

- (detecting) bone fractures
- (detecting) dental problems
- treating cancer
(ii) any one from:
- affect photographic film
- absorbed by bone
- transmitted by soft tissue
- kill (cancer) cells
answer must link to answer given in (d)(i)
(iii) $9 / 36=0.25$
$0.5 / 2=0.25$
$4 / 16=0.25$
accept:
$36 / 9=4$
$2 / 0.5=4$
$16 / 4=4$
conclusion based on calculation
two calculations correct with a valid conclusion scores 2 marks
one correct calculation of k scores 1 mark

M6.
(a) C or 0.18 mm
(b) $\quad 0.6(\mathrm{~m})$
allow 1 mark for correct substitution and/or transformation or 1 mark for changing frequency to Hz answer 600 gains 1 mark
(c) creates an alternating current
accept 'ac' for alternating currentaccept alternating voltage
with the same frequency as the radio wave
accept signal for radio wave
accept it gets hotter for 1 mark provided no other marks scored
(d) X-rays cannot penetrate the atmosphere
accept atmosphere stops X-rays do not accept atmosphere in the way
or
X-rays are absorbed (by the atmosphere) before reaching Earth ignore explanations

M7.(for both fibres) increasing the wavelength of light decreases and then increases the percentage / amount of light transmitted
accept for 1 mark:
(for both fibres) increasing the wavelength (of light) to 5 (x 10^{7} metres), decreases the (percentage) transmission
(for both fibres) the minimum transmission happens at 5 ($\times 10^{-7}$ metres)
or
maximum transmission occurs at 6.5 ($\times 10^{-7}$ metres)
accept for a further 1 mark:
Page 11
(for both fibres) increasing the wavelength of the light from 5 ($\times 10^{-7}$ metres) increases the amount of light transmitted increasing wavelength (of light), decreases the percentage transmitted is insufficient on its own
the shorter fibre transmits a greater percentage of light (at the same wavelength)
accept for 1 mark:
Any statement that correctly processes data to compare the fibres

M8. (a) 10^{-15} metres to 10^{4} metres
(b) (i) any one from:

- (TV / video / DVD) remote controls mobile phones is insufficient
- (short range) data transmission accept specific example, eg linking computer peripherals
- optical fibre (signals) do not accept Bluetooth
(ii) 0.17
an answer 17 cm gains 3 marks
an answer given to more than 2 significant figures that rounds to
0.17 gains 2 marks
allow 1 mark for correct substitution, ie $3 \times 10^{8}=1.8 \times 10^{9} \times \lambda$
(c) (maybe) other factors involved
accept a named 'sensible' factor, eg higher stress /
sedentary lifestyle / overweight / smoking more / diet / hot office / age
not testing enough people is insufficient
unreliable data is insufficient

Q1. Radio waves and microwaves are two types of electromagnetic wave.
Both waves:

- can be used for communications
- travel at the same speed through air.
(a) Give two more properties that are the same for both radio waves and microwaves.

1 \qquad
\qquad

2 \qquad
\qquad
(b) Some satellites are used to transmit television programmes. Signals are sent to, and transmitted from, the satellites using microwaves.

What is the property of microwaves that allows them to be used for satellite communications?
\qquad
\qquad
(c) Electromagnetic waves travel at a speed of $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

A radio station transmits waves with a wavelength of $2.5 \times 10^{2} \mathrm{~m}$.
Calculate the frequency of the radio waves.
Show clearly how you work out your answer and give the unit.
\qquad
\qquad
\qquad
Frequency = \qquad

Page 2

Q2.Galaxies emit all types of electromagnetic wave.
(a) (i) Which type of electromagnetic wave has the shortest wavelength?
\qquad
(ii) State one difference between an ultraviolet wave and a visible light wave.
\qquad
\qquad
(b) Electromagnetic waves travel through space at a speed of $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

The radio waves emitted from a distant galaxy have a wavelength of 25 metres.
Calculate the frequency of the radio waves emitted from the galaxy and give the unit.
\qquad
\qquad
\qquad
Frequency = \qquad
(c) Scientists use a radio telescope to measure the wavelength of the radio waves emitted from the galaxy in part (b) as the waves reach the Earth. The scientists measure the wavelength as 25.2 metres. The effect causing this observed increase in wavelength is called red-shift.
(i) The waves emitted from most galaxies show red-shift.

What does red-shift tell scientists about the direction most galaxies are moving?
\qquad
\qquad
(ii) The size of the red-shift is not the same for all galaxies.

What information can scientists find out about a galaxy when they measure the size of the red-shift the galaxy produces?
\qquad
\qquad
\qquad
\qquad
(iii) What does the observation of red-shift suggest is happening to the Universe?
\qquad
\qquad

Q3. (a) The diagram shows a converging lens being used as a magnifying glass.
(i) On the diagram, use a ruler to draw two rays from the top of the object which show how and where the image is formed. Represent the image by an arrow drawn at the correct position.

(ii) Use the equation in the box to calculate the magnification produced by the lens.

```
magnification = image height
```

Show clearly how you work out your answer.
\qquad
\qquad
Magnification =
\qquad
(b) A camera also uses a converging lens to form an image.

Describe how the image formed by the lens in a camera is different from the image formed by a lens used as a magnifying glass.
\qquad
\qquad
\qquad
\qquad

Q4.The diagram shows the apparatus that a student used to investigate the heating effect of different wavelengths of light.

(a) (i) The student put thermometer \mathbf{D} outside of the light spectrum.

Suggest why.
\qquad
\qquad
(ii) The table gives the position and reading of each thermometer 10 minutes after the investigation started.

Thermometer	Position of thermometer	Temperature in ${ }^{\circ} \mathbf{C}$
A	in violet light	21
B	in green light	22
C	in red light	24
D	outside the spectrum	20

What should the student conclude from the data in the table?
\qquad
\qquad
(b) A similar investigation completed in 1800 by the scientist Sir William Herschel led to the discovery of infrared radiation.

Suggest how the student could show that the spectrum produced by the glass prism has an infrared region.
\qquad
\qquad
\qquad
\qquad
(c) A person emits infrared radiation at a frequency of $3.2 \times 10^{13} \mathrm{~Hz}$.

Calculate the wavelength of the infrared radiation that a person emits.
Take the speed of infrared radiation to be $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
Show clearly how you work out your answer.
\qquad
\qquad
\qquad
\qquad

$$
\text { Wavelength = .. } m
$$

(d) A thermal imaging camera detects infrared radiation. Electronic circuits inside the camera produce a visible image of the object emitting the infrared radiation.

At night, police officers use thermal imaging cameras to track criminals running away from crime scenes.

Thermal imaging cameras work better at night than during the day.

Page 8

Explain why.
\qquad
\qquad
\qquad
\qquad

Q5.Different parts of the electromagnetic spectrum have different uses.
(a) The diagram shows the electromagnetic spectrum.

Radio waves	Microwaves	Infrared	Visible light	Ultraviolet	X-rays	Gamma rays

(i) Use the correct answers from the box to complete the sentence.

amplitude	frequency	speed	wavelength

The arrow in the diagram is in the direction of increasing \qquad and decreasing \qquad
(ii) Draw a ring around the correct answer to complete the sentence.

The range of wavelengths for waves in the electromagnetic

spectrum is approximately	10^{-15} to 10^{4}
10^{4} to 10^{4}	
10^{4} to 10^{15}	metres.

(b) The wavelength of a radio wave is 1500 m .

The speed of radio waves is $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
Calculate the frequency of the radio wave.
Give the unit.
\qquad
\qquad
\qquad

> Frequency =
(c) (i) State one hazard of exposure to infrared radiation.
\qquad
(ii) State one hazard of exposure to ultraviolet radiation.
\qquad
(d) X-rays are used in hospitals for computed tomography (CT) scans.
(i) State one other medical use for X-rays.
\qquad
\qquad
(ii) State a property of X -rays that makes them suitable for your answer in part (d)(i).
\qquad
\qquad
(iii) The scientific unit of measurement used to measure the dose received from radiations, such as X-rays or background radiation, is the millisievert (mSv).

The table shows the X-ray dose resulting from CT scans of various parts of the body.

The table also shows the time it would take to get the same dose from background radiation.

Part of the body	X-ray dose in $\mathbf{~ m S v}$	Time it would take to get the same dose from background radiation
Abdomen	9.0	3 years
Sinuses	0.5	2 months
Spine	4.0	16 months

A student suggests that the X-ray dose and the time it would take to get the same dose from background radiation are directly proportional.

Use calculations to test this suggestion and state your conclusion.
\qquad

Q6.(a) The wavelengths of four different types of electromagnetic wave, including visible light waves, are given in the table.

Type of wave	Wavelength
Visible light	0.0005 mm
A	1.1 km
B	100 mm
C	0.18 mm

Which of the waves, A, B, or \mathbf{C}, is an infra red wave?
\qquad
(b) A TV station broadcasts at 500000 kHz . The waves travel through the air at $300000000 \mathrm{~m} / \mathrm{s}$.

Calculate the wavelength of the waves broadcast by this station.
Show clearly how you work out your answer.
\qquad
\qquad
Wavelength $=$ \qquad m
(c) What happens when a metal aerial absorbs radio waves?
\qquad
\qquad
\qquad
\qquad
(d) Stars emit all types of electromagnetic waves. Telescopes that monitor X-rays are
mounted on satellites in space.
Why would an X-ray telescope based on Earth not be able to detect X-rays emitted from distant stars?
\qquad
\qquad

Q7.Different wavelengths of light can be used to transmit information along optical fibres.
The graph below shows how the percentage of incident light transmitted through a fibre varies with the wavelength of light and the length of the fibre.

Compare the percentages of incident light transmitted through the two different fibres over the range of wavelengths shown.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q8.(a) Electromagnetic waves form a continuous spectrum with a range of wavelengths.
What is the approximate range of wavelengths of electromagnetic waves?
Tick (\checkmark) one box.
10^{-15} metres to 10^{4} metres
10^{-4} metres to 10^{15} metres
10^{-6} metres to 10^{6} metres

(b) Infrared waves and microwaves are used for communications.
(i) Give one example of infrared waves being used for communication.
\qquad
\qquad
(ii) A mobile phone network uses microwaves to transmit signals through the air. The microwaves have a frequency of $1.8 \times 10^{9} \mathrm{~Hz}$ and travel at a speed of 3.0 $\times 10^{8} \mathrm{~m} / \mathrm{s}$.

Calculate the wavelength of the microwaves.
Give your answer to two significant figures.
\qquad
\qquad
\qquad
Wavelength = .. m
(c) Some scientists suggest there is a possible link between using a mobile phone and male fertility.

The results of their study are given in the table.

Mobile phone use in hours per day	Sperm count in millions of sperm cells per $\mathbf{c m}^{\mathbf{3}}$ of semen
0	86
less than 2	69
$2-4$	59
more than 4	50

The results show a negative correlation: the more hours a mobile phone is used each day, the lower the sperm count. However, the results do not necessarily mean using a mobile phone causes the reduced sperm count.

Suggest one reason why.
\qquad
\qquad

M1. (a) iron
accept any unambiguous correct indication
(b) (i) step-down (transformer)
do not accept down step or a description
(ii) less than
accept any unambiguous correct indication
(c) (i) 2000
(ii) There is no pattern.

1

M2. (a) (i) iron
(ii) step-down (transformer)
(b) any one from:

- after the power station
- after the generator
- before the power lines
- before the pylons
(c) each correct (1) in its correct place
current
coil
field
core
ends

M3. (a) there is a magnetic field (around the magnet)
(this magnetic field) changes / moves
and cuts through coil
accept links with coil
so a p.d. induced across coil
the coil forms a complete circuit
so a current (is induced)
(b) ammeter reading does not change
must be in this order
accept ammeter has a small reading / shows a current
zero
greater than before
accept a large(r) reading
same as originally but in the opposite direction
accept a small reading in the opposite direction
(c) 0.30

$$
\text { allow } 1 \text { mark for correct substitution, ie } 0.05=Q / 6
$$

C / coulomb
allow A s

M4. (a) step-down (transformer)
(b) alternating current accept minor misspellings but
do not credit 'alternative current'
(c) (i)(ii) magnet
attracts
upwards
correct order essential
accept 'up'

M5.
(a) iron
correct positions only
primary
secondary
(b) (it) decreases the p.d.
accept it would increase current accept voltage for p.d. the voltage goes from 230(V) to 20(V) is insufficient do not accept decreases current / energy / power do not accept decreases p.d. / voltage and current
(c) an environmental

Q1. The diagram shows part of the system used to supply a farm with electricity.
1200 volts from

(a) The core of the transformer is made of metal.

Complete the following sentence by drawing a ring around the correct word in the box.

The metal used for the core of the transformer is | copper. |
| :--- |
| ron. |
| steel. |

(b) (i) What sort of transformer is shown in the diagram?
\qquad
(ii) Complete the following sentence by drawing a ring around the correct line in the box.

In this transformer, the number of turns on the secondary coil is
less than
the same as the number of turns on the primary coil.
greater than
(c) Transformers and other electrical equipment can be dangerous.

The following bar chart shows the numbers of children, aged 14 or under, killed or injured in electrical accidents in the UK in 2000, 2001 and 2002.

(i) In which of these years were most children killed or injured in electrical accidents?
\qquad
(ii) A newspaper claims that the number of children killed or injured by electrical accidents will increase in 2011.

Which of the following gives a reason why the information given in the graph does not support this claim.

Put a tick (\checkmark) in the box next to your answer.

The pattern shows an upward trend.

The pattern shows a downward trend.

There is no pattern.

Q2. A teacher demonstrates a small transformer.

(a) (i) What is the core made of?

Draw a ring around the correct word in the box.

aluminium	copper	iron

(ii) The potential difference (p.d.) across the secondary coil is less than the p.d. across the primary coil.

What sort of transformer is it?
\qquad
(b) Where is a step-up transformer used as part of the National Grid?
\qquad
(c) The teacher writes a note about the transformer but leaves five spaces.

Use the correct words from the box to complete the spaces.

coil	core	current	ends	field	wire

A transformer works because an alternating in the primary \qquad produces a changing magnetic
\qquad in the \qquad and then in the secondary coil.

This induces an alternating potential difference across the \qquad of the secondary coil.

Q3.The figure below shows a coil and a magnet. An ammeter is connected to the coil.

Magnet

The ammeter has a centre zero scale, so that values of current going in either direction through the coil can be measured.
(a) A teacher moves the magnet slowly towards the coil.

Explain why there is a reading on the ammeter.
\qquad
(b) The table below shows some other actions taken by the teacher.

Complete the table to show the effect of each action on the ammeter reading.

Action taken by teacher	What happens to the ammeter reading?
Holds the magnet stationary and moves the coil slowly towards the magnet	
Holds the magnet stationary within the coil	
Moves the magnet quickly towards the coil	
Reverses the magnet and moves it slowly towards the coil	

(c) The magnet moves so that there is a steady reading of 0.05 A on the ammeter for 6 seconds.

Calculate the charge that flows through the coil during the 6 seconds.
Give the unit.
\qquad
\qquad
\qquad
Charge =

Q4. The diagram shows the design for a remotely controlled door bolt.
When the correct numbers are entered into the keypad the transformer switches on. Then the door can be opened.

(a) What kind of transformer is shown in the diagram?
\qquad
(b) What does the abbreviation a.c. stand for?
\qquad
(c) Complete the sentences using the correct words from the box.

(i) When a current flows in the coil, the coil becomes a
(ii) The coil the iron bolt which moves

Q5.(a) The diagram shows the structure of a traditional transformer.
Use words from the box to label the diagram.

aluminium	brass	iron	large	primary	secondary

(3)
(b) Batteries inside laptop computers are charged using laptop chargers. The laptop charger contains a traditional transformer.

The laptop charger contains a step-down transformer.
What does a step-down transformer do?
(c) Laptop batteries and mobile phone batteries can only be recharged a limited number of times. When a battery cannot be recharged, it is better to recycle the battery than to throw it away.

Draw a ring around the correct answer to complete the sentence.

M1. (a) (i) secondary(coil) / output (coil) do not accept just coil
(ii) core do not accept for either mark it is made out of iron ore
(laminated soft) iron allow 1 mark for 'it is made out of iron core'
(iii) magnetic field
accept magnetism / magnetic force
(which is) changing / alternating
direction (of field) changes / strength (of field) varies scoring second mark is dependent on first mark
(b) ...step-up step-down ... both in the correct order
(c) Do not build new houses

Build new power lines away
deduct 1 mark for any other(s) to a minimum total of (0)

M2. (a) (it is) magnetic
or will carry (an alternating) magnetic field or magnetises and demagnetises (easily) reference to conduction negates the mark
(b) so the current / electricity does not flow through the iron / core accept 'so the current / electricity / wires do not short (circuit)' responses in terms of heat insulation negate the mark ignore references to safety
(c) 5.75 or 5.8 or $6(.0)$
allow for 1 mark either

$$
\begin{aligned}
& \frac{230}{\text { p.d. }}=\frac{20000}{500} \\
& \text { or } \\
& \text { p.d. }=230 \div 40
\end{aligned}
$$

V / volt(s)

M3. (i) iron
for 1 mark
(ii) 20
gains 2 marks
else working
gains 1 mark
(iii) reverse input/output for 1 mark or increase secondary turns

M4. (a) (i) (quickly) becomes magnetized or (quickly) loses its magnetism or 'it's (a) magnetic (material)' any reference to conduction of electricity/heat nullifies the mark
(ii) any four from:

- insulation prevents electricity/current flowing through the iron/core or 'insulation so electricity/current only flows in the wires/turns/coils'
- alternating current/a.c. in the primary (coil)
- produces a changing magnetic field (in the iron/core)
- (and hence magnetic) field in the secondary (coil)
- induces/generates/produces an alternating potential difference/p.d./voltage across the secondary (coil)
- (and hence) alternating current/a.c. in the secondary (coil)
(b) 80 (turns)
or credit (1) for any equation which if correctly evaluated would give 80 example
example
$\frac{230}{5.75}=\frac{3200}{\text { numberof turns }}$

M5.(a) step-down
(b) (i) 1.6 correct order only
12.8
(ii) values of p.d. are smaller than 230 V
(c) (i) a.c. is constantly changing direction
accept a.c. flows in two / both directions
accept a.c. changes direction(s)
a.c. travels in different directions is insufficient
d.c. flows in one direction only
(ii) an alternating current / p.d. in the primary creates a changing / alternating magnetic field
(magnetic field) in the (iron) core current in the core negates this mark accept voltage for p.d.
(and so) an alternating p.d.

Page 6

(p.d.) is induced across secondary coil

M6. (a) 10
allow 1 mark for correct substitution ie $\frac{230}{V_{s}}=\frac{4600}{200}$
(b) any one from:

- to prevent short circuiting
- to ensure that the current flows / goes round the coil
- to prevent the current entering the core do not accept electrocution do not accept electricity for current answers including heat / energy loss negate mark
(c) (i) (soft) iron
do not accept 'steel'
(ii) can be magnetised because it is magnetic
answers including it's a conductor negate mark

M7. (a) aluminium cannot be magnetised accept aluminium is not magnetic "it" refers to aluminium do not accept aluminium is not easily magnetised reference to conduction and aluminium negates mark iron can be magnetised is insufficient
(b) (i) 10 to 50 either order
(ii) (data is) anomalous
accept does not fit the pattern
it is an error is insufficient
(iii) 21
accept 22
do not accept any fraction of a turn ie 20.1
secondary p.d. (just) larger than primary p.d. accept output (just) larger than input/2V
orthere must be more turns on the secondary coil than primary coil do not accept coil for turns
(c) to reduce/step-down the (input) p.d./voltage mains p.d. is too high is insufficient step-down transformer is insufficient answers in terms of changing/ stepping-up current or fuse blowing or not working with 230 volts are insufficient any mention of step-up negates mark stepping down both voltage/p.d. and current negates mark

M8. (a) (i) live
(ii) react faster
(iii) live and neutral
(b) (i) ammeter
to measure current
accept to measure amps
plus any one from:

- \quad variable resistor (1)
to vary current (1)
accept variable power supply
accept change or control
- \quad switch (1)
to stop apparatus getting hot / protect battery
or
to reset equipment (1)
- fuse (1)
to break circuit if current is too big (1)
(ii) any two from:
- use smaller mass(es)
- move mass closer to pivot
- reduce gap between coil and rocker
- more turns (on coil)coil / loop
- iron core in coil
accept use smaller weight(s)

Q1. (a) The diagram shows a transformer.

(i) What is part \mathbf{A} ?
\qquad
(ii) What is part B and what is it made of?
\qquad
\qquad
(iii) When there is an alternating current in the primary coil, what is produced in part B?
\qquad
\qquad
(b) Transformers are used in the National Grid. The diagram shows part of the National Grid.

Complete the two spaces in the sentence.
Transformer \mathbf{C} is a \qquad transformer and transformer \mathbf{D} is
a \qquad transformer.
(c) This is an item from a newspaper.
$\left\{\begin{array}{l}\text { Health at risk from power lines? } \\ \text { Are high voltage power lines a health risk to people who live near them? } \\ \text { Some scientists think that scientific evidence shows that they are. } \\ \text { Other scientists do not think that the scientific evidence supports this } \\ \text { conclusion. }\end{array}\right.$
Which two suggestions would reduce the possible risk to people's health? Put a tick (v^{\prime}) in the box next to your answers.

Do not build new houses near to existing power lines. \square

Move the power lines so that they take the shortest routes. \square

Move each power station to the centre of the nearest city. \square

Build new power lines away from where people live.

Use more transformers in the National Grid. \square

Q2. The diagram shows a USB power adapter which plugs into a 230 V a.c. mains socket.

The adapter contains a small step-down transformer.
(a) The core of the transformer is made of laminated soft iron.

Why is iron used?
\qquad
\qquad
(b) The coils of the transformers are made of insulated copper wire.

Why is the wire insulated?
\qquad
\qquad
(c) There are 500 turns on one coil of the transformer and 20000 turns on the other coil.

Use the equation in the box to calculate the p.d. across the secondary coil.

$$
\frac{\text { p.d. across primary }}{\text { p.d. across secondary }}=\frac{\text { number of turns on primary }}{\text { number of turns on secondary }}
$$

Show clearly how you work out your answer and give the unit.
\qquad
\qquad

> p.d. across the secondary =

Q3. The diagram below shows a transformer.

(i) Name the material used to make the core of the transformer.
\qquad
(ii) The primary coil has 48000 turns and the secondary coil 4000 turns.

If the input voltage is 240 V a.c., calculate the output voltage.
\qquad
\qquad
Answer ... V
(iii) Explain how the use of such a transformer could be adapted to transform a low voltage into a higher voltage.
\qquad
\qquad

Q4. (a) The basic structure of a transformer is a primary coil of insulated wire, an iron core and a secondary coil of insulated wire.

(i) Why is the core made of iron?
\qquad
\qquad
(ii) Explain how a transformer works.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) A small step-down transformer is used in the charger for an electric screwdriver.

The input to the transformer is 230 V a.c. mains supply and the output is 5.75 V a.c. There are 3200 turns on the primary coil.

Use the equation in the box to calculate the number of turns on the transformer's

Page 7

secondary coil.
$\frac{\text { p.d. acrossprimary }}{\text { p.d. acrosssecondary }}=\frac{\text { number of turns on primary }}{\text { number of turns on secondary }}$

Show clearly how you work out your answer.

Number of turns $=$

Q5.The diagram shows a transformer with a 50 Hz (a.c.) supply connected to 10 turns of insulated wire wrapped around one side of the iron core.
A voltmeter is connected to 5 turns wrapped around the other side of the iron core.

(a) What type of transformer is shown in the diagram?

Draw a ring around the correct answer.

> step-down
step-up
switch mode
(b) The table shows values for the potential difference (p.d.) of the supply and the voltmeter reading.

p.d. of the supply in volts	Voltmeter reading in volts
6.4	3.2
3.2	
	6.4

(i) Complete the table.
(ii) Transformers are used as part of the National Grid.

How are the values of p.d. in the table different to the values produced by the National Grid?
\qquad
\qquad
(c) Transformers will work with an alternating current (a.c.) supply but will not work with a direct current (d.c.) supply.
(i) Describe the difference between a.c. and d.c.
\qquad
\qquad
\qquad
\qquad
(ii) Explain how a transformer works.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q6. (a) The drawing shows the plug for operating a radio from the mains.

This plug contains a transformer. There are 4600 turns on its primary coil and 200 turns on its secondary coil. The plug is used on the mains supply and has a potential difference (p.d.) of 230 V across its primary coil.

Use the equation in the box to calculate the p.d. across the secondary coil of the transformer.
$\frac{\text { p.d. across primary }}{\text { p.d. across secondary }}=\frac{\text { number of turns on primary }}{\text { number of turns on secondary }}$

Show clearly how you work out your answer.
\qquad
\qquad
\qquad
\qquad
p.d. across secondary $=$................................... V
(b) The coils of the transformer are made of insulated wire.

Why is the wire insulated?
\qquad
\qquad
(c) (i) What material is the core of a transformer made from?
\qquad
(ii) Why is the core made from this material?

Q7.The diagram shows the apparatus used by a student to investigate a transformer.

(a) The transformer made by the student would not have worked if the core had been made from aluminium and not iron.

Why?
\qquad
\qquad
(b) The student made changes to the number of turns used to make the secondary coil. He then measured the potential difference across the secondary coil after each change.
The graph shows the student's results.

(i) What range of values was used for the number of turns on the secondary coil?

From \qquad to \qquad
(ii) When he drew the line of best fit, the student ignored one of the data points. Why?
\qquad
\qquad
(iii) What is the minimum number of turns needed on the secondary coil for the transformer to act as a step-up transformer?
\qquad
Give a reason for your answer.
\qquad
\qquad
(c) A radio can be used with a 9 V battery or it can be plugged into the 230 V mains electricity supply using an adapter. The mains adapter contains a transformer.

Why must the mains adapter contain a transformer?
\qquad
\qquad

Q8.If a fault develops in an electrical circuit, the current may become too great. The circuit needs to be protected by being disconnected.

A fuse or a circuit breaker may be used to protect the circuit. One type of circuit breaker is a Residual Current Circuit Breaker (RCCB).
(a) (i) Use the correct answer from the box to complete the sentence.

earth	live	neutral

A fuse is connected in the \qquad wire.
(ii) Use the correct answer from the box to complete the sentence.

are bigger	are cheaper	react faster

RCCBs are sometimes preferred to fuses because they .. .
(iii) RCCBs operate by detecting a difference in the current between two wires.

Use the correct answer from the box to complete the sentence.
earth and live earth and neutral live and neutral

The two wires are the \qquad wires.
(b) An RCCB contains an iron rocker and a coil.

A student investigated how the force of attraction, between a coil and an iron rocker, varies with the current in the coil.

She supported a coil vertically and connected it in an electrical circuit, part of which is shown in the figure below .

She put a small mass on the end of the rocker and increased the current in the coil until the rocker balanced. She repeated the procedure for different masses.

Some of her results are shown in the table below.

Mass in grams	Current needed for the rocker to balance in amps
5	0.5
10	1.0
15	1.5
20	2.0

(i) State two extra components that must have been included in the circuit in the figure above to allow the data in the above table to be collected.

Give reasons for your answers.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) A teacher said that the values of current were too high to be safe.

Suggest two changes that would allow lower values of current to be used in this investigation.

Change 1 \qquad
\qquad
Change 2 \qquad
\qquad

M1. (a) (i) step-up
both parts required more turns on the secondary / output (coil) do not accept coils for turns 'secondary output is greater than primary input' is insufficient
(ii) (easily) magnetised (and demagnetised) accept (it's) magnetic it's a conductor negates answer
(b) 60
allow 1 mark for correct substitution, ie $\frac{230}{15}=\frac{720}{N_{s}}$

M2. (a) 400000
allow 1 mark for correct substitution ie
Page 2

$$
\begin{aligned}
& \frac{25000}{?}=\frac{800}{12800} \\
& \text { or } \\
& \frac{25}{?}=\frac{800}{12800}
\end{aligned}
$$

volt(s) / V
an answer 400 gains 2 marks
an answer 400 kilovolts / kV gains 3 marks
although the unit mark is independent to gain 3 marks it must be consistent with the numerical value
(b) any one from:
do not accept any response in terms of heat insulation, safety or electric shock

- (so that there is) no short circuit
- (so that the) current goes round the coil
do not accept electricity for current
- (so that the) current does not enter the core
(c) (the alternating p.d. in the primary causes) an (alternating) current in the primary
reference to the current in the core negates this mark
(causes an) alternating / changing (magnetic) field in the (iron) core
induces (alternating) p.d. across the secondary (coil) accept in / through or similar for across accept current for p.d. accept output (coil) for secondary (coil) to gain $\mathbf{3}$ marks the sequence must be correct

Page 3

M3.
(a) which causes the magnet to turn / spin / rotate
(magnetic) field / lines of force / flux rotate(s) / move(s) / through / in / cut(s) the coil do not credit the idea that movement 'creates' the magnetic field
potential difference / p.d. / voltage induced across the coil do not credit just 'current induced'
(b) any one from:

- more powerful / stronger / lighter magnet do not credit 'a bigger magnet'
- larger / more / bigger / lighter cups / with a bigger surface area
- longer arms
- lubricate the spindle
- add more turns to the coil

M4.
(a) It is easily magnetised.
(b) p.d. across the secondary coil is smaller (than p.d. across the primary coil)
(c) ratio $\underline{V_{\underline{p}}}=\underline{6}$
$V_{s} 12$
accept any other correct ratio taken from the graph

$$
\underline{6}=\underline{50}
$$

$12 N_{p}$
use of the correct turns ratio and substitution or correct transformation and substitution

$$
N_{p}=100
$$

allow 100 with no working shown for $\mathbf{3}$ marks

M5. (a) (i) generator
(ii) alternating current
(iii) voltmeter / CRO / oscilloscope / cathode ray oscilloscope
(b) (i) time
(ii) peaks and troughs in opposite directions
amplitude remains constant dependent on first marking point
(c) any two from:

- increase speed of coil
- strengthen magnetic field
- increase area of coil
do not accept larger
(a) (the alternating current creates) a changing / alternating magnetic field
(magnetic field) in the (iron) core
accept that links with the secondary coil current in the core negates this mark
(c) any one from:
- fewer (waste) batteries have to be sent to / buried in land-fill
- the soil is polluted less by batteries in land-fill
- fewer (waste) batteries have to be recycled
- fewer batteries have to be made
- less raw materials are used in making batteries
- customers have to replace their batteries less often
longer lifetime is insufficient
- customers have to buy fewer (replacement) batteries it costs less is insufficient

M7.Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also apply a
'best-fit' approach to the marking.

0 marks

No relevant / correct content.

Level 1 (1-2 marks)

Either there is an attempt at a description of the construction of a transformer
or
a correct statement of the effect of one type of transformer on the input p.d.

Level 2 (3-4 marks)

There is a description of the construction of a transformer and
a correct statement of the effect of one type of transformer on the input p.d.

Level 3 (5-6 marks)

There is a clear description of the construction of a transformer and
there is a correct description of how transformers affect the input p.d.
details of construction:
extra information
a (laminated) core
core is made from a magnetic material / iron
2 coils
the coils are made from an electrical conductor / copper
the coils are covered in plastic / insulation
the coils are (usually) on opposite sides
step-up transformer has more turns on secondary coil than (its) primary (or vice versa)
step-down transformer has fewer turns on secondary coil than (its) primary (or vice versa)
effect on input p.d. :
step-up transformer, the output p.d. is greater (than the input p.d.) accept voltage for p.d.
step-down transformer, the output p.d. is lower (than the input p.d.)

M8.(a) attempt to draw four cells in series
correct circuit symbols
circuit symbol should show a long line and a short line, correctly joined together
example of correct circuit symbol:

(b) (i) $6(V)$
allow 1 mark for correct substitution, ie $V=3 \times 2$ scores 1 mark provided no subsequent step
(ii) 12 (V)
ecf from part (b)(i)
18-6
or
18 - their part (b)(i) scores 1 mark
(iii) $9(\Omega)$
ecf from part (b)(ii) correctly calculated 3 + their part (b)(ii) / 2
or 18/2 scores 1 mark provided no subsequent step
(c) (i) need a.c.
battery is d.c.
(ii) 3 (A)
allow 1 mark for correct substitution, ie $18 \times 2=12 \times l_{s}$ scores 1 mark

Q1.The diagram shows a transformer.

(a) (i) Is the transformer in the diagram being used as a step-up transformer or as a step-down transformer?

Put a tick (\checkmark) in the box next to your answer.
a step-up transformer

a step-down transformer

Give a reason for your answer.
\qquad
\qquad
(ii) Why is the core made of iron?
\qquad
\qquad
(b) The power supply to a laptop computer contains a transformer designed to change the 230 V mains input to a 15 V output. The transformer has 920 turns on its primary coil.

Use the equation in the box to calculate the number of turns on the secondary coil.

Page 2

$$
\frac{\text { p.d. across primary }}{\text { p.d. across secondary }}=\frac{\text { number of turns on primary }}{\text { number of turns on secondary }}
$$

Show clearly how you work out your answer.
\qquad
\qquad

Number of turns on the secondary coil $=$

Q2. (a) In the National Grid, very large step-up transformers link power stations to the transmission cables.

A transformer used for this purpose has 800 turns on its primary coil and 12800 turns on its secondary coil. The p.d. (potential difference) across its primary coil is 25 kV .

Use the equation in the box to calculate the p.d. across its secondary coil.

$$
\frac{\text { p.d. across primary }}{\text { p.d. across secondary }}=\frac{\text { number of turns on primary }}{\text { number of turns on secondary }}
$$

Show clearly how you work out your answer and give the unit.
\qquad
\qquad
p.d. across secondary coil =
\qquad
(b) The primary and secondary coils of a transformer are made of insulated wire. Why is this insulation necessary?
\qquad
\qquad
(c) Describe what happens when an alternating potential difference is applied across the primary coil of a transformer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q3.The diagram shows a student's design for a simple wind speed gauge.

(a) Explain why the wind causes the a.c. voltmeter to give a reading. The explanation has been started for you.

The wind causes the plastic cups to turn.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The gauge is not sensitive enough to measure light winds.

Suggest one way that the design can be modified to make the gauge more sensitive.

Q4.Figure 1 shows the construction of a simple transformer.
Figure 1

(a) Why is iron a suitable material for the core of a transformer?

Tick one box.

It is a metal.

It will not get hot.

It is easily magnetised.

It is an electrical conductor.

(b) A student makes three simple transformers, \mathbf{J}, \mathbf{K} and \mathbf{L}.

Figure 2 shows how the potential difference across the secondary coil of each transformer varies as the potential difference across the primary coil of each transformer is changed.

Figure 2

How can you tell that transformer \mathbf{J} is a step-down transformer?
\qquad
\qquad
(c) Each of the transformers has 50 turns on the primary coil.

Calculate the number of turns on the secondary coil of transformer \mathbf{L}.
Use the correct equation from the Physics Equations Sheet.
\qquad
\qquad
\qquad
Number of turns on the secondary coil $=$ \qquad

Q5.The diagram shows an a.c. generator.
The coil rotates about the axis shown and cuts through the magnetic field produced by the magnets.

(a) (i) A potential difference is induced between \mathbf{X} and \mathbf{Y}.

Use the correct answer from the box to complete the sentence.

electric	generator	motor	transformer

This effect is called the \qquad effect.
(ii) What do the letters a.c. stand for?
\qquad
(iii) Name an instrument that could be used to measure the potential difference between \mathbf{X} and \mathbf{Y}.
\qquad
(b) Graph 1 shows the output from the a.c. generator.

Graph 1

(i) One of the axes on Graph 1 has been labelled 'Potential difference'.

What should the other axis be labelled?
\qquad
(ii) The direction of the magnetic field is reversed.

On Graph 1, draw the output from the a.c. generator if everything else remains the same.
(c) The number of turns of wire on the coil is increased. This increases the maximum induced potential difference.

State two other ways in which the maximum induced potential difference could be increased.

1 \qquad
\qquad
2 \qquad
\qquad

Q6.Batteries inside laptop computers are charged using laptop chargers. The laptop charger contains a traditional transformer.

(a) The alternating current flowing through the primary coil of the transformer creates an alternating current in the secondary coil.

Explain how.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) (i) Use information from the diagram to calculate the potential difference the charger supplies to the laptop.

Potential difference $=$
V
(ii) Calculate the current in the primary coil of the transformer when the laptop is being charged.

Assume the transformer is 100% efficient.
\qquad
\qquad
\qquad
\qquad
\qquad A
(c) Laptop batteries and mobile phone batteries can only be recharged a limited number of times. After this, the batteries cannot store enough charge to be useful. Scientists are developing new batteries that can be recharged many more times than existing batteries.

Suggest one other advantage of developing these new batteries.
\qquad
\qquad
\qquad

Q7.In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

There are two types of traditional transformer; step-up and step-down.
Describe the similarities and differences between a step-up transformer and a step-down transformer.

You should include details of:

- construction, including materials used
- the effect the transformer has on the input potential difference (p.d.).

You should not draw a diagram.
\qquad
Extra space \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q8. The current in a circuit depends on the potential difference (p.d.) provided by the cells and the total resistance of the circuit.
(a) Using the correct circuit symbols, draw a diagram to show how you would connect 1.5 V cells together to give a p.d. of 6 V .
(b) Figure 1 shows a circuit containing an 18 V battery.

Two resistors, \mathbf{X} and \mathbf{Y}, are connected in series.

- $\quad X$ has a resistance of 3Ω.
- There is a current of 2 A in \mathbf{X}.

Figure 1

(i) Calculate the p.d. across \mathbf{X}.
\qquad
\qquad
\qquad V
(ii) Calculate the p.d. across \mathbf{Y}.
\qquad
\qquad
\qquad
P.d. across Y = ... V
(iii) Calculate the total resistance of \mathbf{X} and \mathbf{Y}.

$$
\text { Total resistance of } \mathbf{X} \text { and } \mathbf{Y}=\text {.. } \Omega
$$

(c) Figure 2 shows a transformer.

Figure 2

(i) An 18 V battery could not be used as the input of a transformer.

Explain why.
\qquad
\qquad
\qquad
\qquad
(ii) The transformer is 100% efficient.

Calculate the output current for the transformer shown in Figure 2.
\qquad
\qquad
\qquad

M1.(a) move a (magnetic / plotting) compass around the wire
the changing direction of the compass needle shows a magnetic field has been produced

OR

sprinkle iron filings onto the card (1)
tapping the card will move the filings to show the magnetic field (pattern) (1)
(b) Level 2 (3-4 marks):

A detailed and coherent explanation is provided. The response makes logical links between clearly identified, relevant points that explain how the ignition circuit works.

Level 1 (1-2 marks):
Simple statements are made. The response may fail to make logical links between the points raised.

0 marks:
No relevant content.

Indicative content

- closing the (ignition) switch causes a current to pass through the electromagnet
- the iron core (of the electromagnet) becomes magnetised
- the electromagnet / iron core attracts the (short side of the) iron arm
- the iron arm pushes the (starter motor) contacts (inside the electromagnetic switch) together
- the starter motor circuit is complete
- a current flows through the starter motor (which then turns)

M2. (a) (i) it moves or experiences a force horizontally to the right for 1 mark
(ii) $\mathrm{A}-$ moves in opposite direction or force reversed e.c.f. B - faster movement or larger force (not move further)
for 1 mark each
(b) turns clockwise
oscillates/reverses
comes to rest facing field/at 90° to field/vertically for 1 mark each
(c) number of turns or linear number density of turns current core for 1 mark each

M3. (a) increase the current (1)
credit increase the p.d./voltage credit reduce the resistance credit have thicker wiring credit add extra / more cells
increase the magnetic field (strength) (1) credit 'have stronger magnet(s) do not credit 'bigger magnets' either order
(b) either reverse polarity
or connect the battery the other way round
either reverse direction of the magnetic field
or put the magnet the other way round / reverse the magnet
do not give any credit to a response in which both are done at the same time
either order

M4. (a) electric drill, electric fan, electric food mixer and electric screwdriver all four ticked and no others (2) either all four of these ticked and only one other (1) or any three of these ticked and none/one/two of the others (1)
(b) (i) reverse (the direction of the) current (1)
or reverse the connections (to the battery)
reverse (the direction of the) magnetic field (1)
or reverse the (magnetic) poles /ends
do not credit 'swap the magnets (around)'
(ii) any two from:

- increase the strength of the magnet(s)/(magnetic) field
do not credit 'use a bigger magnet'
- increase the current
allow 'increase the voltage/p.d.'
allow add cells/batteries
allow increase the (electrical) energy
allow increase the power supply
allow 'decrease the resistance'
allow 'increase charge'
allow 'increase the electricity'
do not credit 'use a bigger battery'
- reduce the gap (between coil/armature and poles/magnets)
allow increase the (number of) coils
- increase the turns (on the coil/armature)
do not credit 'use a bigger coil'

M5.(a) move a (magnetic / plotting) compass around the wire
the changing direction of the compass needle shows a magnetic field has been produced

OR
sprinkle iron filings onto the card (1)
tapping the card will move the filings to show the magnetic field (pattern) (1)
(b) Level 2 (3-4 marks):

A detailed and coherent explanation is provided. The response makes logical links between clearly identified, relevant points that explain how the ignition circuit works.

Level 1 (1-2 marks):
Simple statements are made. The response may fail to make logical links between the points raised.

0 marks:

No relevant content

Indicative content

- closing the (ignition) switch causes a current to pass through the electromagnet
- the iron core (of the electromagnet) becomes magnetised
- the electromagnet / iron core attracts the (short side of the) iron arm
- the iron arm pushes the contacts (inside the electromagnetic switch) together
- the starter motor circuit is complete
- a current flows through the starter motor (which then turns)

M6. (a) centre of the \mathbf{X} midway between the poles
intention correct as judged by eyeexample

(b) move the poles further apart
accept turn for move
accept ends / magnets for poles
accept use weaker magnets
do not accept use smaller magnets
(c) (i) add more cells (to the battery)
do not accept 'use a bigger battery'
accept increase the potential difference / voltage accept increase the current orreduce the resistance (of the variable resistor)
do not accept any changes to the magnets, to the wire or to their relative positions

M7. (a) (i) an electrical conductor
(ii) increase current
accept increase p.d. / voltage oruse stronger magnets
accept move magnets closer do not accept use larger magnets
(iii) reverse the poles / ends (of the magnet) either order
(b) (i) environmental
(ii) ethical
allow political (instability) allow economic (migration)

M8. (a) (i) an electric motor
(ii) force
(b) any two from:

- more powerful magnet do not allow 'bigger magnet'
- reduce the gap (between magnet and coil)
- increase the area of the coil
- more powerful cell
do not allow 'bigger cell 7
accept battery for cell
accept add a cell
accept increase current / potential difference
- more turns (on the coil)
allow 'more coils on the coil 7
do not allow 'bigger coil 7
(c) reverse the (polarity) of the cell
allow 'tum the cell the other way round' accept battery for cell
reverse the (polarity) of the magnet
allow 'turn the magnet the other way up'
1

Q1.Figure 1 shows a straight wire passing through a piece of card.

A current (I) is passing down through the wire.
Figure 1

(a) Describe how you could show that a magnetic field has been produced around the wire.
\qquad
\qquad
\qquad
\qquad
(b) Figure 2 shows the ignition circuit used to switch the starter motor in a car on. The circuit includes an electromagnetic switch.

Figure 2

Explain how the ignition circuit works.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q2. The diagram shows apparatus used to demonstrate the motor effect. \mathbf{X} is a short length of bare copper wire resting on two other wires.

(a) (i) Describe what happens to wire \mathbf{X} when the current is switched on.
\qquad
\qquad
\qquad
(ii) What difference do you notice if the following changes are made?

A The magnetic field is reversed.
\qquad
\qquad
B The current is increased.
\qquad
\qquad
(b) The diagram shows a coil placed between the poles of a magnet. The arrows on the sides of the coil itself show the direction of the conventional current.

The arrows labelled \mathbf{F} show the direction of the forces acting on the sides of the coil. Describe the motion of the coil until it comes to rest.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Most electric motors use electromagnets instead of permanent magnets. State three of the features of an electromagnet which control the strength of the magnetic field obtained.

1 \qquad
2 \qquad

3 \qquad

Q3. When a conductor carrying an electric current is placed in a magnetic field a force may act on it.

(a) State two ways in which this force can be increased.

1 \qquad
2 \qquad
(b) State two ways in which this force can be made to act in the opposite direction. 1 \qquad
2 \qquad
(c) In what circumstance will no force act on a conductor carrying an electric current and in a magnetic field?
\qquad
\qquad

Show clearly how you work out your answer.

> Kinetic energy = .. J

Q4. Many electrical appliances use the circular motion produced by their electric motor.
(a) Put ticks (\checkmark^{\prime}) in the boxes next to all the appliances in the list which have an electric motor.
electric drill \square
electric fan \square
electric food mixer \square
electric iron

electric kettle

electric screwdriver

(b) One simple design of an electric motor is shown in the diagram. It has a coil which spins between the ends of a magnet.

(i) Give two ways of reversing the direction of the forces on the coil in the electric motor.

1
\qquad
2
\qquad
(ii) Give two ways of increasing the forces on the coil in the electric motor. 1
\qquad
2 \qquad

Q5.Figure 1 shows a straight wire passing through a piece of card.
A current (I) is passing down through the wire.
Figure 1

(a) Describe how you could show that a magnetic field has been produced around the wire.
\qquad
\qquad
\qquad
\qquad
(b) Figure 2 shows the ignition circuit used to switch the starter motor in a car on. The circuit includes an electromagnetic switch.

Figure 2

Explain how the ignition circuit works.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q6. A student investigates the electromagnetic force acting on a wire which carries an electric current. The wire is in a magnetic field.

The diagram shows the circuit which the student uses.
(a) Draw an \mathbf{X} on the diagram, with the centre of the \mathbf{X} in the most strongest part of the magnetic field.

(b) Give one change that she can make to the magnets to decrease the electromagnetic force on the wire.
\qquad
\qquad
(c) The student wants to change the electromagnetic force on the wire without changing the magnets or moving their position.
(i) Give one way in which she can increase the electromagnetic force.
\qquad
\qquad
(ii) Give one way in which she can reverse the direction of the electromagnetic force.
\qquad
\qquad

Q7. (a) A science technician sets up the apparatus shown below to demonstrate the motor effect. He uses a powerful permanent magnet.

The copper roller is placed across the metal rails. When the switch is closed, the copper roller moves to the right.
(i) Complete the sentence by drawing a ring around the correct line in the box.

	$\begin{array}{l}\text { an electrical conductor. } \\ \text { This happens because copper is } \\ \text { an electrical insulator. } \\ \text { a magnetic material. }\end{array}$

(ii) Suggest one change that the technician can make which will cause the copper roller to move faster.
\qquad
\qquad
(iii) Suggest two changes which the technician can make, each of which will separately cause the copper roller to move to the left.

1 \qquad
\qquad
\qquad
\qquad
(b) Many electrical appliances, such as vacuum cleaners, drills and CD players, contain electric motors. As more electrical appliances are developed, more electricity needs to be generated. Generating electricity often produces pollutant gases.
(i) Complete the sentence by drawing a ring around the correct line in the box.

Generating more electricity to power the increasing number of electrical appliances used

(ii) The number of electrical appliances used in the world's richest countries is increasing yet many people in the world's poorest countries have no access to electricity.

What type of issue does this inequality between people in different countries raise?

Q8. (a) Complete the description of the device shown below by drawing a ring around the correct line in each box.

(i) The device is being used as

(ii) The coil needs a flick to get started. Then one side of the coil is pushed by the cell
coil and the other side is pulled, so that the coil spins.
force
(b) Suggest two changes to the device, each one of which would make the coil spin faster.

1 \qquad
\qquad
\qquad
\qquad
(c) Suggest two changes to the device, each one of which would make the coil spin in the opposite direction.

1
\qquad
2
\qquad

M1. (a) north (pole)
accept N
north (pole)
both needed for mark
(b) reverses
accept changes direction
(c) (i) $\begin{aligned} & \text { first finger: } \\ & \text { (direction of) (magnetic) field }\end{aligned}$
second finger:
(direction of) (conventional) current
(ii) into (plane of the) paper
(iii) less current in wire
accept less current / voltage / more resistance / thinner wire
weaker field
allow weaker magnets / magnets further apart do not accept smaller magnets
rotation of magnets (so) field is no longer perpendicular to wire
(d) (i) reverse one of the magnets do not accept there are no numbers on the scale
(ii) systematic or zero error
accept all current values will be too big accept it does not return to zero accept it does not start at zero
(b) (i) wire kicks further (forward)
accept moves for kicks
accept moves more
accept 'force (on the wire) increased'
(ii) wire kicks back(wards) / into (the space in) the (horseshoe) magnet accept moves for kicks
accept 'direction of force reversed'

M3. (a) (i) current produces a magnetic field (around $X Y$)
accept current (in $X Y$) is perpendicular to the (permanent)
Page 4
(creating) a force (acting) on XY / wire / upwards reference to Fleming's left hand rule is insufficient
(ii) motor (effect)
(iii) vibrate / move up and down

```
5 times a second
only scores if first mark point scores
allow for 1 mark only an answer 'changes direction 5 times a second'
```

(b) 0.005
allow 1 mark for calculating moment of the weight as 0.04 (Ncm)andallow 1 mark for correctly stating principle of momentsorallow 2 marks for correct substitution ie $F \times 8=2 \times 0.02$ or $F \times 8=0.04$
(b) increase the strength of the magnet
or
increase the current
(c) $4.8 \times 10^{-4}=\mathrm{F} \times 8 \times 10^{-2}$
$\mathrm{F}=6 \times 10^{-3}(\mathrm{~N})$
$6 \times 10^{-3}=B \times 1.5 \times 5 \times 10^{-2}$
$B=\frac{6 \times 10^{-3}}{7.5 \times 10^{-2}}$
$B=8 \times 10^{-2}$ or 0.08
allow 8×10^{-2} or 0.08 with no working shown for 5 marks a correct method with correct calculation using an incorrect value of F gains 3 marks

Tesla
accept T
do not accept t

M5. (a) hydraulic (system)
(b) 15.40×10^{2}
or
1540
allow 1 mark for correct substitution, ie
$8.75 \times 10^{4}=\frac{F}{1.76 \times 10^{-2}}$
or
$87500=\frac{F}{0.0176}$
or
$F=8.75 \times 10^{4} \times 1.76 \times 10^{-2}$
or
$F=87500 \times 0.0176$
(c) any one environmental advantage:
stating a converse statement is insufficient, or a disadvantage of the usual oil, ie the usual oil is non-renewable
plant oil is renewable
using plant oil will conserve (limited) supplies or extend lifetime of the usual / crude oil.
plant oil releases less carbon dioxide (when it is being produced / processed)
plant oil will add less carbon dioxide to the atmosphere (when it is being produced / processed, than the usual oil)
plant oil removes carbon dioxide from or adds oxygen to the air when it is growing stating that plant oil is carbon neutral is insufficient
(d) (the current flowing through the coil) creates a magnetic field (around the coil)
(this magnetic field) interacts with the permanent magnetic field or current carrying conductor is in a (permanent) magnetic field it must be clear which magnetic field is which
this produces a (resultant) force (and coil / cone moves)
when the direction of the current changes, the direction of the force changes to the opposite direction
accept for $\mathbf{2}$ marks the magnetic field of the coil interacts with the permanent magnetic field

Q1.(a) Some people wear magnetic bracelets to relieve pain.
Figure 1 shows a magnetic bracelet.
There are magnetic poles at both \mathbf{A} and \mathbf{B}.
Part of the magnetic field pattern between \mathbf{A} and \mathbf{B} is shown.
Figure 1

What is the pole at \mathbf{A} ? \qquad
What is the pole at \mathbf{B} ? \qquad
(b) Figure 2 shows two of the lines of the magnetic field pattern of a current-carrying wire.

Figure 2

The direction of the current is reversed.
What happens to the direction of the lines in the magnetic field pattern?
\qquad
(c) Fleming's left-hand rule can be used to identify the direction of a force acting on a
current-carrying wire in a magnetic field.
(i) Complete the labels in Figure 3.

Figure 3

(ii) Figure 4 shows:

- the direction of the magnetic field between a pair of magnets
- the direction of the current in a wire in the magnetic field.

Figure 4

In which direction does the force on the wire act?
\qquad
(iii) Suggest three changes that would decrease the force acting on the wire.

1
2
3 \qquad
(d) Figure 5 shows part of a moving-coil ammeter as drawn by a student.

The ammeter consists of a coil placed in a uniform magnetic field.
When there is a current in the coil, the force acting on the coil causes the coil to rotate and the pointer moves across the scale.

Figure 5

(i) The equipment has not been set up correctly.

What change would make it work?
\qquad
\qquad
(ii) Figure 6 shows the pointer in an ammeter when there is no current.

Figure 6

What type of error does the ammeter have?

Q2. (a) A laboratory technician sets up a demonstration.

A flexible wire is suspended between the ends of a horseshoe magnet. The flexible wire hangs from a cotton thread. When the switch is closed, the wire kicks forward.

Identify the effect which is being demonstrated.
\qquad
(b) A teacher makes some changes to the set-up of the demonstration. What effect, if any, will each of the following changes have?
(i) more powerful horseshoe magnet is used.
\qquad
\qquad
(ii) The connections to the power supply are reversed.
\qquad
\qquad

Q3.The diagram shows a device called a current balance.

(a) (i) When the switch is closed, the part of the wire labelled XY moves upwards.

Explain why.
\qquad
\qquad
\qquad
\qquad
(ii) What is the name of the effect that causes the wire $\mathbf{X Y}$ to move?
\qquad
(iii) An alternating current (a.c.) is a current which reverses direction. How many times the current reverses direction in one second depends on the frequency of the alternating supply.

Describe the effect on the wire XY if the battery is replaced by an a.c. supply having a frequency of 5 hertz.
\qquad
\qquad
\qquad
\qquad
(b) The diagram shows how a small weight can be used to make the wire XY balance horizontally.

Side view

Use the data in the diagram and the equation in the box to calculate the force, \mathbf{F}, acting on the wire $\mathbf{X Y}$.

$$
\text { moment }=\text { force } \times \begin{gathered}
\text { perpendicular distance from the line of } \\
\text { action of the force to the axis of rotation }
\end{gathered}
$$

Show clearly how you work out your answer.
\qquad
\qquad
\qquad
\qquad
Force = .. N

Q4.Figure 1 shows a piece of apparatus called a current balance.

Figure 1

When the switch is closed, the part of the wire labelled \mathbf{X} experiences a force and moves downwards.
(a) What is the name of the effect that causes the wire \mathbf{X} to move downwards?
\qquad
(b) Suggest one change you could make to the apparatus in Figure 1 that would increase the size of the force that wire \mathbf{X} experiences.
\qquad
(c) Figure 2 shows how a small weight placed on the insulating bar makes the wire \mathbf{X} go back and balance in its original position.

Figure 2

The wire \mathbf{X} is 5 cm long and carries a current of 1.5 A .
The small weight causes a clockwise moment of $4.8 \times 10^{-4} \mathrm{Nm}$.

Calculate the magnetic flux density where the wire \mathbf{X} is positioned Give the unit.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Magnetic flux density $=$ \qquad

Q5.Musicians sometimes perform on a moving platform.

Figure 1 shows the parts of the lifting machine used to move the platform up and down.
Figure 1

(a) What type of system uses a liquid to transmit a force?
\qquad
(b) The pump creates a pressure in the liquid of $8.75 \times 10^{4} \mathrm{~Pa}$ to move the platform upwards.

Calculate the force that the liquid applies to the piston.
\qquad
\qquad
\qquad
Force $=$ \qquad N
(c) The liquid usually used in the machine is made by processing oil from underground wells. A new development is to use plant oil as the liquid.

Extracting plant oil requires less energy than extracting oil from underground wells.

Suggest an environmental advantage of using plant oil.
\qquad
\qquad
\qquad
(d) Musicians often use loudspeakers.

Figure 2 shows how a loudspeaker is constructed.
Figure 2

The loudspeaker cone vibrates when an alternating current flows through the coil.
Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

M1. (a) induced
(b) bar 2
(the same end) of bar 1 attracts both ends of bar 2
or
only two magnets can repel so cannot be bar 1 or bar 3
(c) so the results for each magnet can be compared or so there is only one independent variable fair test is insufficient allow different thickness of paper would affect number of sheets each magnet could hold accept it is a control variable
(d) because the magnet with the biggest area was not the strongest accept any correct reason that confirms the hypothesis is wrong eg smallest magnet holds more sheets than the largest

M2. (a) (i) field pattern shows: some straight lines in the gap
direction N to S

(ii) north poles repel
(so) box will not close
(b) (i) as paper increases (rapid) decrease in force needed
force levels off (after 50 sheets)
(ii) the newtonmeter will show the weight of the top magnet
(iii) (top) magnet and newtonmeter separate before magnets separate accept reverse argument
(because) force between magnets is greater than force between magnet and hook of newtonmeter
(iv) any three from:

- means of reading value of force at instant the magnets are pulled apart
- increase the pulling force gently or use a mechanical device to apply the pulling force
- clamp the bottom magnet
- use smaller sheets of paper
- fewer sheets of papers between readings (smaller intervals)
- ensure magnets remain vertical
- ensure ends of magnet completely overlap
- repeat the procedure several times for each number of sheets and take a mean
- make sure all sheets of paper are the same thickness
(v) 3 (mm)
30×0.1 ecf gains 2 marks
2.1 N corresponds to 30 sheets gains 1 mark

M3. (a) (i) increase
(ii) A and B
and
B and C
both required for the mark either order
(iii) any two from:

- size of nail
or
nail material
allow (same) nail
- current
allow (same) cell
allow p.d.
same amount of electricity is insufficient
- (size of) paper clip
- length of wire
accept type / thickness of wire
(b) 4

B picks up the same number as C, so this electromagnet would pick up the same number as A
or
direction of current does not affect the strength of the electromagnet allow it has got the same number of turns as A
(c) 2
allow 1 or 3

Q1.Figure 1 shows two iron nails hanging from a bar magnet.
The iron nails which were unmagnetised are now magnetised.
Figure 1

(a) Complete the sentence.

Use a word from the box.
forced induced permanent

The iron nails have become \qquad magnets.
(b) Each of the three metal bars in Figure $\mathbf{2}$ is either a bar magnet or a piece of unmagnetised iron.

The forces that act between the bars when different ends are placed close together are shown by the arrows.

Figure 2

Which one of the metal bars is a piece of unmagnetised iron?

Page 2

Tick one box.

Bar 1 \square

Bar 2

Bar 3

Give the reason for your answer.
\qquad
\qquad
(c) A student investigated the strength of different fridge magnets by putting small sheets of paper between each magnet and the fridge door.

The student measured the maximum number of sheets of paper that each magnet was able to hold in place.

Why was it important that each small sheet of paper had the same thickness?
\qquad
\qquad
\qquad
(d) Before starting the investigation the student wrote the following hypothesis:
'The bigger the area of a fridge magnet the stronger the magnet will be.'
The student's results are given in the table below.

Fridge magnet	Area of magnet in mm 2	Number of sheets of paper held
A	40	20
B	110	16

Page 3

C	250	6
D	340	8
E	1350	4

Give one reason why the results from the investigation do not support the student's hypothesis.
\qquad
\qquad

Q2.(a) Diagram 1 shows a magnetic closure box when open and shut. It is a box that stays shut, when it is closed, due to the force between two small magnets.

These boxes are often used for jewellery.

Diagram 1

Diagram 2 shows the two magnets. The poles of the magnets are on the longer faces.

Diagram 2

(i) Draw, on Diagram 2, the magnetic field pattern between the two facing poles.
(ii) The magnets in the magnetic closure box must not have two North poles facing each other.

Explain why.
\qquad
\qquad
\qquad
(b) A student is investigating how the force of attraction between two bar magnets depends on their separation.

She uses the apparatus shown in Diagram 3.

Diagram 3

She uses the following procedure:

- ensures that the newtonmeter does not have a zero error
- holds one of the magnets
- puts sheets of paper on top of the magnet
- places the other magnet, with the newtonmeter magnetically attached, close to the first magnet
- pulls the magnets apart
- notes the reading on the newtonmeter as the magnets separate
- repeats with different numbers of sheets of paper between the magnets.

The results are shown in the table.

Number of sheets of paper between the magnets	10	20	30	40	50	60	70	80	120
Newtonmeter reading as the magnets separate	3.1	2.6	2.1	1.5	1.1	1.1	1.1	1.1	1.1

(i) Describe the pattern of her results.
\qquad
\qquad
\qquad
\qquad
(ii) No matter how many sheets of paper the student puts between the magnets, the force shown on the newtonmeter never reaches zero.

Why?
\qquad
\qquad
(iii) The student is unable to experiment with fewer than 10 sheets of paper without glueing the magnet to the newtonmeter.

Suggest why.
\qquad
\qquad
\qquad
\qquad
(iv) Suggest three improvements to the procedure that would allow the student to gain more accurate results.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(v) The thickness of one sheet of paper is 0.1 mm .

What is the separation of the magnets when the force required to separate them is 2.1 N ?
\qquad
\qquad
\qquad
Separation of magnets $=$ mm

Q3.A student is investigating the strength of electromagnets.

Figure 1 shows three electromagnets.
The student hung a line of paper clips from each electromagnet.
Figure 1

No more paper clips can be hung from the bottom of each line of paper clips.
(a) (i) Complete the conclusion that the student should make from this investigation. Increasing the number of turns of wire wrapped around the nail will the strength of the electromagnet.
(ii) Which two pairs of electromagnets should be compared to make this conclusion?

Pair 1: Electromagnets \qquad and \qquad
Pair 2: Electromagnets \qquad and \qquad
(iii) Suggest two variables that the student should control in this investigation.

1 \qquad
(b) The cell in electromagnet \mathbf{A} is swapped around to make the current flow in the opposite direction. This is shown in Figure 2.

Figure 2

What is the maximum number of paper clips that can now be hung in a line from this electromagnet?

Draw a ring around the correct answer.
fewer than $4 \quad 4 \quad$ more than 4
Give one reason for your answer.
\qquad
\qquad
\qquad
(c) Electromagnet \mathbf{A} is changed to have only 10 turns of wire wrapped around the nail.

Suggest the maximum number of paper clips that could be hung in a line from the end of this electromagnet.

Maximum number of paper clips = \qquad

M1. (a) plastic or rubber
accept any named plastic do not accept wood

> it is a (good) insulator or it is a poor conductor ignore mention of heat if in conjunction with electricity
(b) The answer to this question requires ideas in good English in a sensible order with correct use of scientific terms. Quality of written communication should be considered in crediting points in the mark scheme. Maximum of 2 marks if ideas not well expressed.
pulls iron bolt down or attracts the iron bolt or moves bolt out of plunger answers in terms of charges attracting or repelling gain no credit
plunger pushed / moved to the right (by spring) or plunger released
push switch opens / goes to off / goes to right
accept circuit is broken
for maximum credit the points must follow a logical sequence 3 correct points but incorrect sequence scores 2 marks only ignore reset action

1

M2. Quality of written communication: One mark for correct sequencing. bolt out \rightarrow plunger up \rightarrow switch off / circuit broken
any five from

- high current flows
- electromagnet is stronger
- the iron bolt is pulled out
- the plastic plunger moves up
- the switch is lifted / open / off
accept circuit is broken
- no current flowing
- to re-set the plunger must be pushed down

M3. electromagnet becomes stronger (not becomes magnetic) iron moves left - implied OK plunger goes up push switch goes to off or circuit broken unless plunger moves down for 1 mark each

M4. (i) relay

accept solenoid do not accept magnetic switch
(ii) a current flows through the coil (of the electromagnet) or a current flows through the electromagnet or a (magnetic) field is produced
accept 'electricity' for 'current'
accept the electromagnet is activated or magnetised or turned on
do not accept answer in terms of magnetic charge
the (iron) arm is attracted to the electromagnet
accept the arm pivots or moves towards the electromagnet
the contacts are pushed together
do not accept contacts attract

M5. (a) current flows
coil / core magnetised / electromagnet activated / energised / turned on attracts iron bar causing bolt to be pulled out each for 1 mark
(b) more turns
bigger current / e.m.f
softer iron core
any two for 1 mark each
(c) to relock door / return iron bar / to lock door for 1 mark
(d) iron bar would still be attracted / coil still magnetised so still works for 1 mark each
yes + wrong answer
0 marks
yes + current still flows
1 mark
yes + still magnetised / iron bar still attracted 2 marks

Q1. (a) Name a material that could be used to make the outside case of the plug.

Give a reason for your choice.
\qquad
\qquad
(b) To gain full marks in this question you should write your ideas in good English. Put them into a sensible order and use the correct scientific words.

Some electrical circuits are protected by a circuit breaker. These switch the circuit off if a fault causes a larger than normal current to flow. The diagram shows one type of circuit breaker. A normal current (15 A) is flowing.

Source: adapted from V. PRUDEN and K. HIRST, AQA GCSE Sceince Reproduced by permission of Hodder and Soughton Educational Ltd

Explain what happens when a current larger than 15A flows. The answer has been started for you.

When the current goes above 15 A , the electromagnet becomes stronger and

Page 2

\qquad
\qquad
\qquad
\qquad

Q2. Circuit breakers help to make the electricity supply in homes safer.

Page 3

A circuit breaker is an automatic safety switch. It cuts off the current if it gets too big.

Describe, in as much detail as you can, how this circuit breaker works.
To gain full marks in this question you should write your ideas in good English. Put them into a sensible order and use the correct scientific words.
\qquad

Q3. A fault in an electrical circuit can cause too great a current to flow. Some circuits are switched off by a circuit breaker.

One type of circuit breaker is shown above. A normal current is flowing. Explain, in full detail, what happens when a current which is bigger than normal flows.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q4. The diagram shows a switch that is operated by an electromagnet.

(i) What is this type of switch called?
\qquad
(ii) The switch is used in a car starter motor circuit.

Explain how turning the ignition key makes a current flow in the starter motor. The explanation has been started for you.

When the ignition key is turned \qquad
\qquad
\qquad
\qquad

Q5. The diagram below shows a door lock which can be opened from a flat inside a building.

(a) Explain how the door is unlocked when the switch is closed.
\qquad
\qquad
\qquad
\qquad
(b) State two changes which would increase the strength of the electromagnet. 1 \qquad
2 \qquad
(c) Why is the spring needed in the lock?
\qquad
\qquad
(d) The connections to the coil were accidentally reversed. Would the lock still work?

Explain your answer.
\qquad
\qquad

