M1.
(a) snail
or
shrew
additional incorrect answer negates correct answer
(b) shrew
additional incorrect answer negates correct answer
(c) fewer shrews to eat them
(d) population
(e) \mathbf{C}
(f) $(11000 \times 0.1=)$ 1100 (kJ)
(g) the snails do not eat the roots of the lettuces
(h) any one from:

- light (intensity)
- temperature
- moisture (levels)
- soil pH
- mineral / ion content (of soil)

Page 2

- wind intensity / speed
ignore wind direction
- carbon dioxide (levels)
- oxygen (levels)

M2. (a) large area
allow thin / large / big / flat / light allow adaptations that cannot be seen eg internal air spaces
(b) (shape means that) snow falls off
(c) protect / stop it being eaten
(d) stores/ absorbs water (from other parts of the plant)
ignore absorbs water from soil / air ignore nutrients

M3.
(a) answer to be marked as a whole
has thorns / prickles / points accept sharp points
(these) hurt animal
allow frighten animal
only accept prevent animal eating leaves if qualified by 'hurting' or 'frightening'
(b) answer to be marked as a whole
camouflaged / looks like twig / disguised allow blends in ignore too small to see
(animal) cannot see / detect / recognise it allow animal does not eat twigs only accept prevents animal eating it if qualified by 'seeing' or 'wrong food'
(c) answer to be marked as a whole
red / colour
warns that insect might be poisonous / dangerous
allow inedible / tastes bad

M4. any three from:

ignore references to carbon cycle
accept digested / decomposed / broken down / rotted for decay throughout
ignore eating

- dead leaves / flowers / bluebells are decayed
- idea that microorganisms do the decaying accept microbes / bacteria / fungi / mould / decomposers for microorganisms
- minerals / ions / nutrients / named released (by decay / microorganisms)
not mineral ions unqualified
- (released) into soil or minerals / ions / nutrients taken up / in by (bluebell) roots (next year)
look for idea that minerals / ions / nutrients are in soil (eg released into soil or taken up from soil)

M5. (a) brown (colour)
(b) (long) ears
(c) (long) horns
(d) (white) ring

M6. (a) C
(b) B
(c) E
(d) D
(e) F

M7.(a) looks like a leaf
so predator less likely to / won't see it
allow 'camouflage' as alternative to either point
(b) (i) thorns (of acacia tree) hurt (predators)
allow idea that fewer animals / predators live in trees or ground living animals can't reach them (in the trees)
(ii) (giraffe) avoids being bitten by ants allow ants are poisonous / have unpleasant taste
(c) looks like / mimics a wasp or has warning colouration
so predators think it has a sting

(b) escape (predators)
accept faster than swimming allow chase prey allow it stops them from drowning
allow in slops inem irom arowning
(c) food
territory
deduct one mark for each tick in excess of two

M9. (a) (i) any two from:
ignore oxygen / food / sun / carbon dioxide

- light
- water
- space
- nutrients / ions / minerals / named
accept two named minerals / ions for $\mathbf{2}$ marks
(ii) less competition for water
ignore space / light / food
or
more water / nutrients / minerals available
(b) camouflage / same shape as leaf / looks like a leaf allow 'blends in' ignore colour

M10.(a) an extremophile species
(b) (i) smaller ice area
allow smaller amount of ice allow less ice
(so) less habitat
allow fewer places to live / nest
(ii) either increase as more sea to live in
or
as less competition for food
or decrease
as less space (ice) to lay eggs
or
predators more likely to eat them
there is no mark for increase / decrease alone. The mark is for an appropriate reason linked to increase / decrease if increase / decrease not ringed the mark may be awarded if it is clear in the explanation which is intended
(c) Living organisms show long-term changes.

M11.(a) any three from:

- place $30-\mathrm{m}$ tape measure across field / from one wood to the other
- place quadrat(s) next to the tape
- count / record the number / amount of dandelions / plants in the quadrat ignore 'record the results'
ignore measures / estimates dandelions
- repeat every 2 metres
allow every metre / at regular intervals
(b) (i) low light / it is shady
allow no light
ignore sun / rays
or
not enough water / ions / nutrients
accept correct named ion
ignore no water / ions / nutrients
or
wrong pH of soil
accept competition with trees for light / water / ions
ignore competition for space and competition unqualified
accept soil too acidic / too alkaline
ignore temperature
(ii) sensible suggestion for a small area, eg chance variation / anomaly / poisoned by animal waste / wrong pH of soil / eaten (by animals) / cut down / footpath
(c) repeat (transect) / compare with the results of other groups
allow 'do it in two different locations' for 2 marks
at different / random location(s) / elsewhere (across the field)
do not allow 'in other fields'

Q1.The diagram below shows a food chain in a garden.

Lettuce

Snail

Shrew
Lettuce © destillat/iStock/Thinkstock; Snail ©Valengilda/iStock/Thinkstock; Shrew © GlobalT/iStock/Thinkstock
(a) Name one consumer shown in the diagram above.
\qquad
(b) Name one carnivore shown in the diagram above.
\qquad
(c) A disease kills most of the shrews in the garden.

Suggest why the number of snails in the garden may then increase.
\qquad
\qquad
(d) What is the name given to all the snails in the garden shown in the diagram above?

Tick one box.
Community \square
Ecosystem \square

Population

(e) Which pyramid of biomass is correct for the food chain shown in the diagram above?

Tick one box.

B \square
A
\square

$c \square$
(f) Some snails ate some lettuces.

The lettuces contained 11000 kJ of energy.
Only 10% of this energy was transferred to the snails.
Calculate the energy transferred to the snails from the lettuces.
\qquad
Energy = ... kJ
(g) Give one reason why only 10% of the energy in the lettuces is transferred to the snails.

Tick one box.
The lettuces carry out photosynthesis

The snails do not eat the roots of the lettuces

Not all parts of a snail can be eaten

(h) Abiotic factors can affect the food chain.

Wind direction is one abiotic factor.
Name one other abiotic factor.
\qquad

Q2. Plants are adapted for survival in many different ways.
Use information from the drawings to answer each question.
(a) This plant lives in ponds. The leaves of the plant float on the surface of the water.

The leaf of this plant is adapted for floating on water.
Suggest how.
\qquad
\qquad
(b) This plant lives in areas where a lot of snow falls.

The triangular shape helps the tree to survive in snowy conditions. Suggest how.
\qquad
\qquad
(c) This plant has sharp thorns on the stem.

Thorns help this plant survive.
Suggest how.
\qquad
\qquad
(d) This plant lives in very dry areas.

The swollen leaves help this plant to survive in very dry places.
Suggest how.
\qquad
\qquad

Q3. Many animals and plants are adapted to stop other organisms eating them.

Page 6

(a) The photograph shows part of a plant stem.

By Forest \& Kim Starr [CC BY 3.0], via W kimedia Commons
Suggest how this plant is adapted to stop animals eating it.
Adaptation
\qquad
Describe how the adaptation helps to stop animals eating the plant.
\qquad
\qquad
(b) The photograph shows an insect on a plant twig.

By Fir0002 [CC BY-SA 3.0], via Wikimedia Commons
Suggest how this insect is adapted to stop animals eating it.
Adaptation
\qquad
Describe how the adaptation helps to stop animals eating the insect.
\qquad
\qquad
(c) The photograph shows some insects.

These insects are bright red.

By Greg Hume (Greg5030) [CC BY 3.0], via W kimedia Commons
Suggest how these insects are adapted to stop animals eating them. Adaptation

Describe how the adaptation helps to stop animals eating the insect.
\qquad
\qquad

Q4. In a woodland, bluebells grow well every year.
Bluebells growing well in woodland

Mick Garratt [CC-BY-SA-2.0], via Wikimedia Commons
Each year the dead flowers and leaves of the bluebells and leaves from the trees fall onto the ground.
The bluebells do not run out of mineral ions.
Explain why the bluebells do not run out of mineral ions.
The words in the box may help you.

roots	dead leaves microorganisms	mineral ions decay

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q5. The photograph shows some features of a waterbuck.
Waterbuck live in areas of tall, brown grass.

By Nevit Dilmen (Own work) [CC-BY-SA-3.0], via W kimedia Commons
Choose labels from the photograph to answer these questions. You should choose a label once only.
(a) Which feature helps to camouflage the waterbuck in the grass?
\qquad
(b) Which feature helps the waterbuck to detect predators?
\qquad
(c) Which feature helps the waterbuck to fight predators?
\qquad
(d) Which feature helps a baby waterbuck to follow a parent through the long grass?

Q6.The drawing shows a jerboa. Jerboas live in sandy deserts.

Jerboas sleep in underground holes during the hot day and come out during the cold night.

The jerboa's main food is small insects which run across the surface of the sand.

For each question write the correct letter in the box.
Which structure, A, B, C, D, E or F:
(a) helps to insulate the jerboa
(b) helps the jerboa to detect insects on a dark night
(c) helps the jerboa to hop quickly to catch an insect
(d) helps the jerboa to keep its balance when hopping

(e) helps the jerboa to know the width of its underground hole in the dark?

Q7.Many organisms are adapted to avoid being eaten.

(a) The photograph shows a gecko on a leafy branch.

The gecko is adapted to avoid being eaten by predators.
Explain how.
\qquad
\qquad
\qquad
\qquad
(b) Ants can give a painful bite.

The photograph shows a type of ant living on acacia trees.
Acacia trees have thorns on their branches.
Branch of acacia tree.

By Ryan Somma, cropped by Fama Clamosa,20 January 2010 (UTC) [CC-BY-SA-2.0], via W kimedia Commons
(i) Predators are less likely to eat ants living on acacia trees than ants living on the ground.

Suggest why.
\qquad
\qquad
(ii) Giraffes eat the leaves of acacia trees.

Giraffes do not eat the leaves of acacia trees that have ants living on them.
Suggest why.
\qquad
\qquad
(c) The photographs show a wasp and a hoverfly.

The wasp and the hoverfly both have black and yellow stripes.

WaspHoverfly

© Alexandr Pakhnyushchyy/iStock@ Richard Majlinder/iStock
Wasps have stings, but hoverflies do not.
The stripes on the hoverfly help the hoverfly to avoid being eaten by predators.
Explain why.
\qquad
\qquad
\qquad
\qquad

Q8.The picture shows a basilisk lizard. Some of the adaptations of the lizard are labelled.

Basilisk lizards are often found resting on branches of trees that grow next to water. Basilisk lizards can run across the surface of the water.
(a) Draw one line from each adaptation of the lizard to the advantage of the adaptation.

(3)
(b) Suggest one advantage to the basilisk lizard of being able to run across the surface of the water.
\qquad
\qquad
(c) Animals, such as lizards, compete with each other.

Give two factors that animals compete for.
Tick (\checkmark) two boxes.

Oxygen

Food

Territory

Light

Q9.Animals and plants are adapted in different ways in order to survive.
(a) Plants may have to compete with other plants.
(i) Name two things for which plants compete.

1 \qquad
2 \qquad
(ii) The drawing shows a creosote bush.

This bush lives in a desert.
The creosote bush produces a poison that kills the roots of other plants.
How does this poison help the creosote bush to survive in the desert?
\qquad
\qquad
(b) The photograph shows an insect called a katydid.

By Ltshears (Own work) [Public domain], via Wikimedia Commons
The katydid is preyed on by birds.
How does the appearance of the katydid help it to survive?
\qquad
\qquad
\qquad
\qquad

Q10.(a) Which term describes organisms that can tolerate very hot or very cold places?
Draw a ring around the correct answer.

an environmental species

an extremophile species
an indicator species
(b) Figure 1 shows photographs of an Adelie penguin and a chinstrap penguin. Adelie penguins and chinstrap penguins live in the Antarctic at temperatures below $0^{\circ} \mathrm{C}$.

Figure 1

Adelie penguins spend most of their time on the ice around the Antarctic. Chinstrap penguins live mainly in the sea around the ice.
Since 1965 the number of Adelie penguins has decreased by 6 million.
Figure 2 shows changes to the ice around the Antarctic over the past 50 years.

Figure 2

2015

(i) Use information from Figure 2 to explain why the number of Adelie penguins has decreased since 1965.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Suggest what has happened to the number of chinstrap penguins since 1965.

Draw a ring around your answer. increase / decrease
Give a reason for your answer.
\qquad
\qquad
(c) The number of penguins can be used to monitor changes in temperature of the environment.

Temperature readings could also be taken using a thermometer.
What is the advantage of using penguins, instead of a thermometer, to monitor changes in temperature of the environment?

Tick (\checkmark) one box.

Living organisms show long-term changes.

Thermometers cannot measure temperatures below $0^{\circ} \mathrm{C}$.

Thermometers do not give accurate readings.

Q11.Some students investigated the distribution of dandelion plants in a grassy field. The grassy field was between two areas of woodland.

Figure 1 shows two students recording how many dandelion plants there are in a 1 metre x 1 metre quadrat.

Figure 1

Figure 2 shows a section across the area studied and Figure 3 shows a bar chart of the students' results.

Figure 2

Figure 3

Number of dandelion plants

Distance in m
(a) How did the students use the quadrat and the 30-metre tape measure to get the results in Figure 3?

Use information from Figure 1.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) (i) Suggest one reason why the students found no dandelion plants under the trees.
\qquad
\qquad
(ii) Suggest one reason why the students found no dandelion plants at 16 metres.
\qquad
\qquad
(c) The teacher suggested that it was not possible to make a valid conclusion from these results.

Describe how the students could improve the investigation so that they could make a valid conclusion.
\qquad
\qquad
\qquad
\qquad

M1. (a) (i) counts / 12

$$
\begin{aligned}
& \times 120 \times 80 / \times 9600 \\
& \text { or } \times \text { area of field }
\end{aligned}
$$

(ii) (more) quadrats / repeats
placed randomly
ignore method of achieving randomness
(b) (i) any three from:

- temperature / warmth / heat
- water / rain
- minerals / ions / salts (in soil)
allow nutrients / fertiliser / soil fertility
ignore food
- pH (of soil)
- trampling
- herbivores
ignore predators
- competition (with other species)
- pollution qualified e.g. SO_{2} / herbicide
- wind (related to seed dispersal).
ignore space / oxygen / CO_{2} / soil unqualified
(ii) light needed for photosynthesis
for making food / sugar / etc.
effect on buttercup distribution eg more plants in sunny areas / fewer plants in shady areas
(c) (i) fertiliser / ions / salts cause growth of algae / plants
(algae / plants) block light
(low light) causes algae / plants to die
microorganisms / bacteria feed on / break down / cause decay of organic matter / of dead plants
do not allow germs / viruses
(aerobic) respiration (by microbes) uses O_{2} do not allow anaerobic
(ii) sewage / toxic chemicals / correct named example eg metals / bleach / disinfectant / detergent etc
allow suitable named examples eg metals such as Pb / Zn / $\mathrm{Cr} /$ oil / SO_{2} / acid rain / pesticides / litter
ignore chemicals unqualified
ignore waste unqualified
ignore human waste / domestic waste / industrial waste unqualified
(d) (i) 2
(ii) more food
allow other sensible suggestion eg more species colonise from tributary streams after forest
(iii) number of stonefly species decreases (from \mathbf{A} to \mathbf{B} / \mathbf{B} to \mathbf{C} / \mathbf{A} to \mathbf{C}) as more pollution enters river / less oxygen
allow fewer species in more polluted water ignore none are found at site C

M2. (a) (i) chloroplast
(ii) cell wall
(b) (i) osmosis
accept diffusion
(ii) cell wall (prevents bursting)
(c) (i) carbon dioxide \quad allow correct formula
glucose
allow sugar / starch
(ii) any two from:

- light sensitive spot detects light
- tells flagellum to move towards light
- more light $=$ more photosynthesis
(d) (cell has) larger SA:volume ratio
short (diffusion) distance
(diffusion) via cell membrane is sufficient / good enough or
flow of water maintains concentration gradient

M3. (a) (i) 10
(b) SO_{2} decreases with distance from centre
accept converse
Ignore pollution
high SO_{2} reduces survival or kills lichen accept converse
(c) (i) any three from:

- (line) transect
- quadrat / reference to specific area
- count number of lichens or coverage on trees
- at regular intervals / set distances
(ii) (more) Xanthoria nearest road allow 'nitrogen-loving' for Xanthoria
(more) Usnea further from the road allow 'nitrogen-sensitive’ for Usnea
because most nitrogen oxide from vehicles (near road)
or
because nitrogen oxide levels will be falling / less further away (from road) accept converse

M4. (a) gets more light (near surface)
allow warmer (near surface)
allow bladders contain (more) carbon dioxide

M5. (a) any three from:

- parts of organisms have not decayed accept in amber/resin allow bones are preserved
- conditions needed for decay are absent accept appropriate examples, eg acidic in bogs / lack of oxygen
- parts of the organism are replaced by other materials as they decay accept mineralised
- or other preserved traces of organisms, eg footprints, burrows and rootlet traces
allow imprint or marking of organism
(b) (i) teeth for biting (prey)
must give structure + explanation
claws to grip (prey)
accept sensible uses
wing / tail for flight to find (prey)
(ii) any two from:
- new predators
- new diseases
- better competitors
- catastrophe eg volcanic eruption, meteor
- changes to environment over geological time accept climate change
allow change in weather
- prey dies out or lack of food
allow hunted to extinction

Q1.A grassy field on a farm measured 120 metres by 80 metres.
A student wanted to estimate the number of buttercup plants growing in the field.
The student found an area where buttercup plants were growing and placed a $1 \mathrm{~m} \times 1 \mathrm{~m}$ quadrat in one position in that area.

Figure 1 shows the buttercup plants in the quadrat.
Figure 1

The student said, 'This result shows that there are 115200 buttercup plants in the field.'
(a) (i) How did the student calculate that there were 115200 buttercup plants in the field?
\qquad
\qquad
\qquad
\qquad
(ii) The student's estimate of the number of buttercup plants in the field is probably not accurate. This is because the buttercup plants are not distributed evenly.

How would you improve the student's method to give a more accurate estimate?
\qquad
\qquad
\qquad
(b) Sunlight is one environmental factor that might affect the distribution of the buttercup plants.
(i) Give three other environmental factors that might affect the distribution of the buttercup plants.

1. \qquad
2.
3. \qquad
(ii) Explain how the amount of sunlight could affect the distribution of the buttercup plants.
(c) Figure 2 is a map showing the position of the farm and a river which flows through it.

Figure 2

Every year, the farmer puts fertiliser containing mineral ions on some of his fields. When there is a lot of rain, some of the fertiliser is washed into the river.
(i) When fertiliser goes into the river, the concentration of oxygen dissolved in the water decreases.

Explain why the concentration of oxygen decreases.
\qquad
(ii) There is a city 4 km downstream from the farm.

Apart from fertiliser, give one other form of pollution that might go into the river as it flows through the city.
(d) Three sites, A, B and C, are shown in Figure 2.

Scientists took many samples of river water from these sites.
The scientists found larvae of three types of insect in the water: mayfly, stonefly and caddisfly. For each type of insect the scientists found several different species.

The scientists counted the number of different species of the larvae of each of the three types of insect.

Figure 3 shows the scientists' results.

Figure 3

(i) How many more species of mayfly were there at Site \mathbf{B} than at Site \mathbf{A} ?
(ii) Suggest what caused this increase in the number of species of mayfly.
\qquad
\qquad
(iii) The scientists stated that the number of species of stonefly was the best indicator of the amount of oxygen dissolved in the water.

Use information from Figure 3 to suggest why.

Q2.The diagram below shows a single-celled alga which lives in fresh water.

(a) Which part of the cell labelled above:
(i) traps light for photosynthesis
\qquad
(ii) is made of cellulose?
\qquad
(b) In the freshwater environment water enters the algal cell.
(i) What is the name of the process by which water moves into cells?
\qquad
(ii) Give the reason why the algal cell does not burst.
\qquad
\qquad
(c) (i) The alga can photosynthesise.

Complete the word equation for photosynthesis.

```
Light energy
```


(ii) The flagellum helps the cell to move through water. Scientists think that the flagellum and the light-sensitive spot work together to increase photosynthesis.

Suggest how this might happen.
\qquad
\qquad
\qquad
\qquad
(d) Multicellular organisms often have complex structures, such as lungs, for gas exchange.

Explain why single-celled organisms, like algae, do not need complex structures for gas exchange.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q3.Lichens can be used as air pollution indicators.
The graph below shows the number of lichen species found growing on walls and trees at increasing distances from a city centre.

(a) (i) How many species of lichen are found on walls 2 km from the city centre?
\qquad
(ii) Describe the patterns in the data.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The table below shows the concentration of sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ in the air at different distances from the same city centre.

Distance from city centre in $\mathbf{k m}$	$\mathbf{S O}_{\mathbf{2}}$ concentration in \mathbf{g} per $\mathbf{m}^{\mathbf{3}}$
0	200
3	160
8	110
13	85
18	65

Suggest how the data in the table could explain the patterns in the graph above.
\qquad
\qquad
\qquad
\qquad
(c) Nitrogen oxides are also air pollutants.

The main source of nitrogen oxide pollution comes from road vehicles.
Different lichen species vary in their tolerance of the levels of nitrogen oxides in the air.

Some lichens can only grow in very clean air where there are low levels of nitrogen oxides. They are nitrogen-sensitive.

Some lichens grow very well in high levels of nitrogen oxides. They are

Page 9

nitrogen-loving.
The table below shows one lichen species which is nitrogen-sensitive and one lichen species which is nitrogen-loving.

Usnea © epantha/iStock/Thinkstock; Xanthoria By Zakwitnij!pl Ejdzej + Iric (CC BY-SA.2.0) via wikicommons
(i) Describe how you would investigate the distribution of the two lichens at different distances into a wood from a main road.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Predict the results from the experiment you described in your answer to part (c)(i). Explain why you made this prediction.
\qquad
\qquad
\qquad
\qquad
\qquad

Q4.Organisms compete with each other.
(a) Figure 1 shows two types of seaweed which live in similar seashore habitats.

Figure 1

Most of the time the two seaweeds are covered with water.
Bladder wrack has bladders filled with air.
Bladder wrack grows more quickly than saw wrack.
Suggest an explanation why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Figure 2 shows an angler fish.

Figure 2

Angler fish live at depths of over 1000 m .
In clear water, sunlight does not usually reach more than 100 m deep. Many angler fish have a transparent 'lure' containing a high concentration of bioluminescent bacteria.
Bioluminescent bacteria produce light.
Suggest an advantage to the angler fish of having a lure containing bioluminescent bacteria.
\qquad
\qquad
\qquad
\qquad
\qquad

Q5.The photograph shows a fossil of a prehistoric bird called Archaeopteryx.

By Ghedoghedo (own work) [CC-BY-SA-3.0 (http://creativecommons.org/licenses/BY-SA-3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], via W kimedia Commons; By Steenbergs from Ripon, United Kingdom (Small Fishing Boat In North Sea) [CC-BY-2.0 (http://creativecommons.org/licenses/by/2.0)], via Wikimedia Commons.
(a) Describe three ways fossils can be made.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The drawing shows what an Archaeopteryx might have looked like when it was alive.

Scientists think that Archaeopteryx was a predator.

(i) Look at the drawing.

Write down three adaptations that might have helped Archaeopteryx to catch prey.

How would each adaptation have helped Archaeopteryx to catch prey?
Adaptation 1
How it helps \qquad

Adaptation 2 \qquad
How it helps \qquad
\qquad
Adaptation 3 \qquad
How it helps \qquad
\qquad
(ii) Archaeopteryx is now extinct.

Give two reasons why animals may become extinct.
1 \qquad
\qquad
\qquad

M1.
(a) $(140+240+380+450=) 1210$
(b) the local people decided to farm cattle
a company starts growing plants for biofuels
(c) carbon dioxide in this order only
photosynthesis
(d) animals and birds migrate because there is less food
more habitats are destroyed
(e) any one from:

- breeding programmes (for endangered species)
- regeneration (programmes)
- reintroduction of field margins / hedgerows
- awareness raising with politicians / public
- recycling

M2. (a) fuel / houses / paper

 allow any object made from woodfarming / agriculture / replanting allow roads / homes / factories

carbon dioxide / greenhouse gas / pollution or relative named pollutant
warming / temperature increase
(b) (i) none of species left / died out
(ii) may have products useful to humans / examples allow preserve for future generations or 'still there to look at' allow affect food chains / cycles or extinction of other species
allow non human reasons eg loss of habitat ignore environmental effects

M3.
 (a) (i) 40

accept -40 or +40
(ii) Step 192

Step 218

Step 374

correct subtraction of answer in step 2 from answer in step 1 gains 1 mark
correct answer 74 with no working gains 3 marks ignore sign
(b) (i) both animals and plants
(ii) microorganisms
(iii) carbon dioxide

> M4. (a) warmer / dryer allow greenhouse effect / global warming ignore wind
(b) (i) genes / alleles / chromosomes / DNA / genetic material / genetics allow inheritance allow nutrition / food / metabolism / growth rate ignore environment
(ii) natural selection / evolution allow survival of the fittest

M5. (a) (i) carbon dioxide
(ii) sulfur dioxide
(b) (i) reduces land available for animals and plants
(ii) metals
(c) (i) pesticide
(ii) kill other animals

M6. (a) any one from:

- increased pollution
- dumping waste
allow described consequence e.g. vermin accept (increased) landfill accept (increased) fly tipping.
(b) (i) (mass of SO_{2}) decreases
and then levels off / plateaus
(ii) 2008
clear evidence of calculating $700(000)=1$ mark
(iii) any one from:
- acid rain
- erosion of statues / buildings
- destruction of habitats
- reduction in biodiversity
- damage to lichen
- breathing problems
ignore reference to ozone layer allow damage to plants.
(c) Carbon dioxide being absorbed in oceans and lakes

Photosynthesis by trees

M7. (a) 60
correct answer gains 2 marks
if answer incorrect evidence of using 40 gains 1 mark
(b) any two from
ignore temperature rise / global warming

- climate change / described e.g. hotter summers / drought / seasons change
- rise in sea levels / flooding
allow other environmental effects
- glacier melting / ice caps melting
- forest fires
- habitat destruction
- effect on organisms
- eg extinction / migration

1 mark for each correct line extra line from box in left hand column cancels mark
(b) any two from:

- climate change
ignore 'Earth warmer'
- more extreme weather / changes to weather (patterns) / described
- rise in sea level
- melting of ice caps
- reduced biodiversity
- changes to migration patterns
- changes in distribution of species
accept faster plant growth / tropical species can be grown in UK
accept tropical diseases / example spread to temperate regions

M9. (a) genes
chromosomes
(b) (i) higher yield
less use of pesticides
(ii) any two from:

- uncertain about effects on health
- fewer bees
- might breed with wild plant
- seeds only from one manufacturer

Q1.The graph below shows the area of forest lost in Madagascar from 2009 to 2012.

(a) The area of forest lost each year in Madagascar increased between 2009 and 2012.

Determine the total area of forest lost from the start of 2009 to the end of 2012.
\qquad
\qquad
Total area of forest lost $=$ \qquad thousand hectares
(b) What are the possible reasons for the change in the area of forest lost per year between 2009 and 2012?

Tick two boxes.
The local people stop growing rice

Fewer new houses are needed for the population \square

The local people decided to farm cattle

More trees have been planted

A company starts growing plants for biofuels
(c) More forest was lost in 2012 than in 2009.

Use words from the box to complete the sentences.

carbon dioxide	excretion	nitrogen
oxygen	photosynthesis	respiration

The increase in the area of forest lost has caused an increase in the gas

The increase of this gas has been caused because less of the gas is being absorbed by plants for the process of \qquad
(d) Deforestation can have negative effects on our ecosystems.

What are the negative effects of deforestation?
Tick two boxes.
Animals and birds migrate because there is less food

More habitats are destroyed

There is less acid rain

There is more biodiversity

The global temperature decreases

(e) Scientists try to reduce the negative effects of human activity on our ecosystems. One way is to protect rare habitats.

Give one other way of reducing the negative effects of human activity on our ecosystems.
\qquad
\qquad

Q2. The photograph shows an area where a tropical forest is being cleared.

(a) Complete the sentences.

People could use timber from the forest for

The cleared land can be used for

Clearing forests increases the concentration of in the atmosphere.

This increase causes global
(b) Clearing forests causes some species to become extinct.
(i) What is meant by extinct?
\qquad
\qquad
(ii) It is important to prevent species from becoming extinct.

Give one reason why.
\qquad
\qquad

Q3. In many parts of the world, forests are being chopped down (deforestation) so that the land can be used to grow food crops. In other parts, trees are planted to produce new forests.

The graph shows how the area of forest in each of the continents is changing each year.

Change in area of forest in thousands of km^{2} per year
(a) (i) What area of forest is being lost in Africa each year?

Area $=$ \qquad thousand km ${ }^{2}$
(ii) Use Steps 1, 2 and $\mathbf{3}$ to calculate the total change to the area of forest each year.

Step 1 Calculate the total area of trees chopped down.
\qquad
Total area chopped down $=$ \qquad thousand km ${ }^{2}$

Step 2 Calculate the total area of trees planted.
\qquad
Total area planted $=$ \qquad thousand km²

Step 3 Use your answers from Steps 1 and 2 to calculate the total change in the area of forest.
(b) Draw a ring around the correct answer to complete each sentence.

(i) Large scale deforestation reduces the number of species of \quad| plants only. |
| :--- |
| animals only. |
| both animals and plants. |

(ii) The remains of the trees are broken down into carbon dioxide by
lichens.
microorganisms
plants.

Q4. Soay sheep live wild on an island off the north coast of Scotland. No people live on the island.

By Owen Jones $=$ Jonesor [CC-BY-SA-2.5], via Wikimedia Commons
Over the last 25 years, the average height and mass of the wild Soay sheep have decreased.

The scientists think that climate change might have affected the size of the sheep.
(a) More Soay sheep are now able to survive winter than 25 years ago.

What change in the climate may have helped more Soay sheep to survive winters?
\qquad
\qquad
(b) Complete the sentences.
(i) Soay sheep show variation in size because of differences in their
\qquad
(ii) The change in the size of the Soay sheep over 25 years can be explained by Darwin's
theory of \qquad

Q5. The photographs show some ways in which humans affect the environment.
(a) Coal-burning power stations give off smoke. The smoke contains many different gases.

By Norbert Kaiser (English: own work.) [CC-BY-SA-3.0], via W kimedia Commons
Draw a ring around the correct answer to complete each sentence.
(i) The gas which causes global warming is

carbon dioxide.
oxygen.
sulfur dioxide.

(ii) The gas which causes acid rain is

methane.
oxygen.

sulfur dioxide.
(1)
(b) The photograph shows a quarry.

By Thomas Bjørkan (Own work) [CC-BY-SA-3.0], via W kimedia Commons
Draw a ring around the correct answer to complete each sentence.

(i) Quarrying | releases methane into the atmosphere. |
| :--- |
| ncreases biodiversity. |
| reduces land available for animals and plants. |

(c) The photograph shows a farmer spraying fruit trees.

Photograph supplied by Hemera/Thinkstock
Chemicals in the spray kill insects on the trees.
Draw a ring around the correct answer to complete each sentence.
(i) The spray contains

fertiliser.
herbicide.
pesticide.

Q6.The human population is increasing and more household waste is being produced.
(a) Give one way in which an increase in household waste affects our environment.
\qquad
\qquad
(b) The release of sulfur dioxide affects our environment.

The graph shows how the mass of sulfur dioxide released in the UK has changed from 2001 to 2011.

(i) Describe the pattern shown in the graph.
\qquad
\qquad
\qquad
\qquad
(ii) In 2001, 1400 thousand tonnes of sulfur dioxide were released.

By which year had the amount of sulfur dioxide released reduced to half of this amount?
\qquad
\qquad
\qquad
Year =
\qquad
(iii) Give one problem caused when sulfur dioxide gas is in the air.
\qquad
\qquad
(c) Carbon dioxide is another gas that affects the environment.

Which two of the following help to reduce the levels of carbon dioxide in the atmosphere by storing carbon dioxide?

Tick (\checkmark) two boxes.

Q7. Large-scale deforestation is taking place in Brazil.

The pie chart shows the causes of deforestation in Brazil.

Key
Large-scale agriculture
Logging
\square Other causes
Z Small-scale agriculture
\square Cattle ranches

(a) Calculate the percentage of forest that has been destroyed for cattle ranches. Show clearly how you work out your answer.
\qquad
\qquad
Percentage =
\qquad
(b) Cattle give off large amounts of methane into the atmosphere.

The methane causes the Earth's temperature to increase.
Give two effects of the temperature increase on the environment.
1 \qquad
\qquad
2 \qquad
\qquad

Q8.Human activities affect the environment.
(a) List A gives four human activities.

List B gives the effect of the activities on the environment.
Draw one line from each human activity in List \mathbf{A} to its effect on the environment in List B.

List A Human activity	List B Effect on the environment
Digging a new quarry	Adds methane to the atmosphere Spraying pesticides on crops Growing rice Priving cars that release sulfur hedges around fields dioxide
Reduces the land available for wild animals	
Produces lots of litter	

(b) Human activities are increasing global warming.

Give two effects of global warming on the environment.
1.
\qquad
2. \qquad
\qquad

Q9.Scientists have produced many different types of GM (genetically modified) food crops.
(a) Use words from the box to complete the sentence about genetic engineering.

clones	chromosomes	embryos	genes

GM crops are produced by cutting ... out of the
\qquad of one plant and inserting them into the cells of a crop plant.
(b) Read the information about GM food crops.

- Herbicide-resistant GM crops produce higher yields.
- Scientists are uncertain about how eating GM food affects our health.
- Insect-resistant GM crops reduce the total use of pesticides.
- GM crops might breed naturally with wild plants.
- Seeds for a GM crop can only be bought from one manufacturer.
- The numbers of bees will fall in areas where GM crops are grown.

Use this information to answer these questions.
(i) Give two reasons why some farmers are in favour of growing GM crops.

1 \qquad
\qquad
2 \qquad
\qquad
(ii) Give two reasons why many people are against the growing of GM crops. 1 \qquad
\qquad
2 \qquad

M1. (a) methane is produced
ignore bad smell
which is a greenhouse gas / causes global warming
(b) $\quad(9.80 / 0.20=49$ therefore $) 49: 1$
(c) horse (manure)
allow ecf from 11.2
closest to 25:1 (ratio)
(d) Level 3 (5-6 marks):

A detailed and coherent explanation is given, which logically links how carbon is released from dead leaves and how carbon is taken up by a plant then used in growth.

Level 2 (3-4 marks):

A description of how carbon is released from dead leaves and how carbon is taken up
by a plant, with attempts at relevant explanation, but linking is not clear.

Level 1 (1-2 marks):

Simple statements are made, but no attempt to link to explanations.
0 marks:
No relevant content.
Indicative content
statements:

- (carbon compounds in) dead leaves are broken down by microorganisms / decomposers / bacteria / fungi
- photosynthesis uses carbon dioxide
explanations:
- (microorganisms) respire
- (and) release the carbon from the leaves as carbon dioxide
- plants take in the carbon dioxide released to use in photosynthesis to produce glucose
use of carbon in growth:
- glucose produced in photosynthesis is used to make amino acids / proteins / cellulose
- (which are) required for the growth of new leaves

M2. (a) (i) counts / 12

$$
\begin{aligned}
& \times 120 \times 80 / \times 9600 \\
& \text { or } \\
& \times \text { area of field }
\end{aligned}
$$

(ii) (more) quadrats / repeats
placed randomly
ignore method of achieving randomness
(b) (i) any three from:

- temperature / warmth / heat
- water / rain
- minerals / ions / salts (in soil)
allow nutrients / fertiliser / soil fertility
ignore food
- $\quad \mathrm{pH}$ (of soil)
- trampling
- herbivores ignore predators
- competition (with other species)
- pollution qualified e.g. SO_{2} / herbicide
- wind (related to seed dispersal).
ignore space / oxygen / CO_{2} / soil unqualified
(ii) light needed for photosynthesis
for making food / sugar / etc.
effect on buttercup distribution eg more plants in sunny areas / fewer plants in shady areas
(c) (i) fertiliser / ions / salts cause growth of algae / plants
(algae / plants) block light
(low light) causes algae / plants to die

$$
\text { Page } 4
$$

microorganisms / bacteria feed on / break down / cause decay of organic matter / of dead plants
do not allow germs / viruses
(aerobic) respiration (by microbes) uses O_{2} do not allow anaerobic
(ii) sewage / toxic chemicals / correct named example eg metals / bleach / disinfectant / detergent etc
allow suitable named examples eg metals such as $\mathrm{Pb} / \mathrm{Zn}$ /
Cr / oil / SO_{2} / acid rain / pesticides / litter
ignore chemicals unqualified
ignore waste unqualified
ignore human waste / domestic waste / industrial waste unqualified
(d) (i) 2
(ii) more food
allow other sensible suggestion eg more species colonise from tributary streams after forest
(iii) number of stonefly species decreases (from \mathbf{A} to \mathbf{B} / \mathbf{B} to \mathbf{C} / \mathbf{A} to \mathbf{C}) as more pollution enters river / less oxygen
allow fewer species in more polluted water ignore none are found at site C

M3. (a) (rapid) growth in population (size)
increase in the standard of living
accept description of increased standard of living, eg more packaging, more food thrown away or overbuying resources
(b) (i) 41.5
allow 1 mark for $9733 \div 23454$
or
allow 1 mark for 0.415
or
allow 1 mark for 41.49 or 41 or 41.4
(ii) any four from
arguments for:

- there has been a reduction in total waste
- there has been an increase in (total mass of) recycling
- there has been an increase in the percentage of waste recycled
- it (may) not be possible to achieve zero waste.
arguments against:
- there is still a lot of waste (not recycled)
- there has only been a small reduction in total waste
- there was one year (2006) where total waste went up
- the rate of increase of percentage recycled is slowing down
- no information on materials reused
- no information on waste from factories / industry
max 3 marks for a one sided argument
allow as reason against if clear
allow still more than half or 56.8% of waste (not recycled).
(c) (i) any two from:
- reduce biodiversity or extinction
- change in migration patterns
- change in species distribution
- change in climate
ignore rise in sea levels
ignore temperature change
accept correct examples of climate change e.g. storms,
flooding, drought
references to weather changing is insufficient allow ice caps melting or habitat destruction.
(ii) any one from:
- absorbed by oceans / ponds / lakes
- peat bogs
allow used for skeletons / shells of sea creatures allow in fossil fuels / limestone.

M4.
(a) any two from:

- (volume of) peat compost has been steady and then declined or volume of peat compost has declined since 2005
allow 2007 instead of 2005
- (volume of) peat-free compost has increased (since 1999)
- (volume of) peat is higher than peat-free until 2005, then peat-free compost is higher (than peat)
allow 2007
- total volume of peat and peat-free compost has increased.
(b) increases carbon dioxide (in the atmosphere)
ignore methane
(c) any one from:
- reduces biodiversity
- destruction of habitats
- disruption of food chains.

Q1.A gardener wants to add compost to the soil to increase his yield of strawberries.
The gardener wants to make his own compost.
(a) An airtight compost heap causes anaerobic decay.

Explain why the gardener might be against producing compost using this method.
\qquad
\qquad
\qquad
\qquad
(b) The gardener finds this research on the Internet:
'A carbon to nitrogen ratio of $\mathbf{2 5 : 1}$ will produce fertile compost.'
Look at the table below.

Type of material to compost	Mass of carbon in sample in g	Mass of nitrogen in sample in g	Carbon:nitrogen ratio
Chicken manure	8.75	1.25	$7: 1$
Horse manure	10.00	0.50	$20: 1$
Peat moss	9.80	0.20	\mathbf{X}

Determine the ratio \mathbf{X} in the table above.
\qquad
Ratio
(c) Which type of material in the table above would be best for the gardener to use to make his compost?

Justify your answer.
\qquad
\qquad
(d) Some of the leaves from the gardener's strawberry plant die. The dead leaves fall off the strawberry plant onto the ground. The carbon in the dead leaves is recycled through the carbon cycle. Explain how the carbon is recycled into the growth of new leaves.
\qquad
(e) The diagram below shows two strawberries.

- Both strawberries were picked from the same strawberry plant.
- Both strawberries were picked 3 days ago.
- The strawberries were stored in different conditions.

Strawberry A
Strawberry B

A © sarahdoow/iStock/Thinkstock, B © Mariusz Vlack/iStock/Thinkstock
Give three possible reasons that may have caused strawberry A to decay.
1
\qquad
2 \qquad
\qquad
3 \qquad
\qquad

Q2.A grassy field on a farm measured 120 metres by 80 metres.
A student wanted to estimate the number of buttercup plants growing in the field.
The student found an area where buttercup plants were growing and placed a $1 \mathrm{~m} \times 1 \mathrm{~m}$ quadrat in one position in that area.

Figure 1 shows the buttercup plants in the quadrat.
Figure 1

The student said, 'This result shows that there are 115200 buttercup plants in the field.'
(a) (i) How did the student calculate that there were 115200 buttercup plants in the field?
\qquad
\qquad
\qquad
\qquad
(ii) The student's estimate of the number of buttercup plants in the field is probably not accurate. This is because the buttercup plants are not distributed evenly.

How would you improve the student's method to give a more accurate estimate?
\qquad
\qquad
\qquad
(b) Sunlight is one environmental factor that might affect the distribution of the buttercup plants.
(i) Give three other environmental factors that might affect the distribution of the buttercup plants.

1. \qquad
2.
3. \qquad
(ii) Explain how the amount of sunlight could affect the distribution of the buttercup plants.
(c) Figure 2 is a map showing the position of the farm and a river which flows through it.

Figure 2

Every year, the farmer puts fertiliser containing mineral ions on some of his fields. When there is a lot of rain, some of the fertiliser is washed into the river.
(i) When fertiliser goes into the river, the concentration of oxygen dissolved in the water decreases.

Explain why the concentration of oxygen decreases.
\qquad
(ii) There is a city 4 km downstream from the farm.

Apart from fertiliser, give one other form of pollution that might go into the river as it flows through the city.
(d) Three sites, A, B and C, are shown in Figure 2.

Scientists took many samples of river water from these sites.
The scientists found larvae of three types of insect in the water: mayfly, stonefly and caddisfly. For each type of insect the scientists found several different species.

The scientists counted the number of different species of the larvae of each of the three types of insect.

Figure 3 shows the scientists' results.

Figure 3

(i) How many more species of mayfly were there at Site \mathbf{B} than at Site \mathbf{A} ?
(ii) Suggest what caused this increase in the number of species of mayfly.
\qquad
\qquad
(iii) The scientists stated that the number of species of stonefly was the best indicator of the amount of oxygen dissolved in the water.

Use information from Figure 3 to suggest why.

Q3.In many areas of the world the mass of household waste produced each year is increasing.
(a) Give two reasons why the mass of household waste is increasing each year.

1. \qquad
\qquad
2. \qquad
\qquad
(b) The table below shows how the mass of household waste in the UK has changed from 2004 to 2012.

Year	Total mass of household waste in thousands of tonnes (including total household recycling)	Total mass of household recycling in thousands of tonnes	Percentage of household waste recycled
2004	25658	5785	22.5
2006	25775	7976	30.9
2008	24334	9398	38.6
2010	23454	9733	
2012	22643	9782	43.2

(i) Calculate the percentage of household waste recycled in 2010.
\qquad
\qquad
\qquad
\qquad
\%
(ii) The UK government has been encouraging a 'zero waste economy'.

In a 'zero waste economy', we reduce, reuse and recycle as much waste as possible.

A newspaper concluded that: 'The government's 'zero waste economy' has been successful.'

Use information from the table to describe the reasons for and against the newspaper's conclusion.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) (i) Some waste releases carbon dioxide and methane into the atmosphere. An increase in carbon dioxide and methane contributes to global warming.

Global warming can cause sea levels to rise.
Describe two other possible effects of global warming on our environment.
1.
\qquad
2. \qquad
\qquad
(ii) Storing the carbon dioxide helps to prevent more global warming. Carbon dioxide can be stored (sequestered) in trees when they photosynthesise.

Give one different way in which carbon dioxide is sequestered in our environment.

Q4.Human activities have many effects on our ecosystem.
The graph shows the volume of peat compost and peat-free compost used in gardening from 1999 to 2009.

(a) Describe the trends shown in the graph.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) What effect does the destruction of peat bogs have on the gases in the atmosphere?
\qquad
\qquad
(c) Deforestation is also damaging ecosystems.

Describe one effect of deforestation on ecosystems.

M1. (a) circulating / mixing / described or temperature maintenance
supply oxygen
or for aerobic conditions
or for faster respiration
do not allow oxygen for anaerobic respiration
(b) energy supply / fuel / use in respiration
do not allow just food / growth
ignore reference to aerobic / anaerobic
or material for growth / to make mycoprotein
(d) (i) any one from:

- compete (with Fusarium) for food / oxygen or reduce yield of Fusarium
- make toxic waste products or they might cause disease /
pathogenic or harmful to people / to Fusarium
do not allow harmful unqualified
(c) respiration
allow exothermic reaction
allow catabolism
ignore metabolism
ignore aerobic / anaerobic
(ii) steam / heat treat / sterilise fermenter (before use)
not just clean
or
steam / heat treat / steriliseglucose / minerals / nutrients / water (before
use)
or
filter / sterilise air intake
or
check there are no leaks
allow sterilisation unqualified not just use pure glucose
(e) any three from:
- beef is best or beef is better than mycoprotein
- mycoprotein mainly better than wheat
- more phenylalanine in wheat than in mycoprotein allow equivalent numerical statements
- but no information given on other amino acids / costs / foods

M2. (a) e.g.
timber agriculture roads / urban development / buildings any two for 1 mark each
(b) ideas that (accept reverse arguments) increased carbon dioxide content since less during photosynthesis and locked-up as wood burning increases carbon dioxide content increased activity of microbes increases carbon dioxide content oxygen content reduced water vapour content reduced any five for 1 mark each
against introduction of caterpillarmaximum of 4 pros e.g.
fewer chemicals used therefore less expense
less chemical damage to other plants
consequent benefits to food chains
fewer farm animals poisoned therefore more economic
countryside more varied therefore more attractive to tourists
tourists bring economic advantages
greater variety of habitats therefore greater variety of species
any 4 for 1 mark each
cons e.g.
danger to livelihoods if crops destroyed by caterpillarrelatively low chance of success since only one third of schemeseffective world-wideunlikely to be natural predators therefore ecological balance affectedany 2 for 1 mark each
cogently argued case gains up to 2 marks

M4. (a) increased human population increased standard of living
each for 1 mark
(b) nutrients absorbed by plants not replaced each for 1 mark
(c) increased release of carbon dioxide into atmosphere when trees are burned reduced rate of carbon dioxide removal from atmosphere increased carbon dioxide absorbs more of energy radiated by Earth global rise in temperature

$$
\text { each for } 1 \text { mark }
$$

M5. (a) any one from:

- increase / give light
- increase temperature / make warmer
award marks if the method by which these could be done is given eg leave lights on all night or use a heater
- increase / give CO_{2}
- add fertiliser / nutrients / minerals / named
allow nitrogen
ignore 'food'
(b) (i) any two from:
- cheaper
allow grow faster / more grown
- better quality / flavour
ignore size
- available all year
accept converse if clear that answer refers to use of British tomatoes
allow 'Fair Trade'
(ii) any two from:
- greater distance or more food miles or more transport
idea of more needed only once
- transport needs (more) energy / fuel
- reference to eg greenhouse effect / global warming / pollution / CO_{2} release / carbon footprint ignore ozone

M6. (a) 860
correct answer gains 2 marks
if answer incorrect evidence of (6100-1800) $\div 5$
or $4300 \div 5$
or $(900+600+1000+700+1100) \div 5$ gains 1 mark
allow ecf from 1 incorrect graph reading
(b) ignore references to oxygen / sulfur dioxide / nitrogen oxides / acid rain ignore global warming

Effects of deforestation
deforestation increases the amount of carbon dioxide in the atmosphere award this point only if linked to deforestation
any two from:

- due to less photosynthesis or less carbon dioxide taken in or carbon dioxide not locked up in (forest) trees
- due to burning of forest / from machinery
- due to activity of microorganisms / decay

Effects of growing palm for fuel

carbon dioxide released when palm oil used as fuel
(eventually) CO_{2} intake and output might balance out or burning palm oil carbon neutral
accept less carbon dioxide than from burning fossil fuels

M7. (a) (i) kills / gets rid of / reduces methane bacteria allow kills / gets rid of / reduces bad bacteria ignore acts like antibiotic
(ii) less food converted to methane
allow can keep more cattle without further environmental damage ignore energy

> more growth / meat / muscle / milk produced / more profit / fatter animals ignore references to bacteria and disease
(b) absorbs energy / heat radiated by Earth allow absorbs / traps energy / heat / from Earth do not allow absorbs energy / heat from Sun
some energy / heat reradiated
ignore reflected
do not allow reradiates energy / heat from Sun
leading to global warming / enhanced greenhouse effect accept effects of global warming eg melting ice caps accept methane is a greenhouse gas ignore references to ozone

M8. (a) any two from:

- fewer trees to take in carbon dioxide for photosynthesis
- decomposers / microorganisms respire (as they decay debris) releasing carbon dioxide
- burning of wood releases carbon dioxide allow carbon dioxide released by burning fossil fuels in vehicles / factories
(b) Marks awarded for this answer will be determined by the Quality of Communication (QC) as well as the standard of the scientific response.
Examiners should also refer to the information on page 5, and apply a 'best fit' approach to the marking.

0 marks

No relevant content.
Level 1 (1-2 marks)
There is a brief description of some steps in the process but the order is not clear with little biological vocabulary used.

Level 2 (3-4 marks)
There is a reasonably clear description of the process involving many of the steps and using some biological vocabulary.

Level 3 (5-6 marks)

There is a clear, logical and detailed scientific description of the process using appropriate biological vocabulary.

examples of biology points made in the response:

- this contains mineral ions (and organic matter)
- this increases growth of algae / water plants
- the plants / algae (underneath) die
- due to lack of light / photosynthesis / space
- decomposers / microorganisms feed on decaying matter or multiply rapidly
- the respiration of decomposers uses up all the oxygen
- so invertebrates die due to lack of oxygen
- this is called eutrophication

Q1.The diagram shows a fermenter. This fermenter is used for growing the fungus Fusarium.

Fusarium is used to make mycoprotein.

(a) Bubbles of air enter the fermenter at \mathbf{A}.

Give two functions of the air bubbles.

1. \qquad
\qquad
2. \qquad
\qquad
(b) Why is glucose added to the fermenter?
(c) The fermenter is prevented from overheating by the cold water flowing in through the heat exchanger coils at \mathbf{C}.

Name the process that causes the fermenter to heat up.
\qquad
(d) It is important to prevent microorganisms other than Fusarium growing in the fermenter.
(i) Why is this important?
\qquad
\qquad
(ii) Suggest one way in which contamination of the fermenter by microorganisms could be prevented.
\qquad
\qquad
(e) Human cells cannot make some of the amino acids which we need. We must obtain these amino acids from our diet.

The table shows the amounts of four of these amino acids present in mycoprotein, in beef and in wheat.

Name of amino acid	Amount of amino acid per 100 g			Daily amount in mg
	Mycoprotein	Beef	Wheat	

Lysine	910	1600	300	840
Methionine	230	500	220	910
Phenylalanine	540	760	680	980
Threonine	610	840	370	490

A diet book states that mycoprotein is the best source of amino acids for the human diet.

Evaluate this statement.

Remember to include a conclusion in your evaluation.
\qquad

Q2. In tropical areas of the world, forests are being cut down at the rate of 150 hectares every minute of every day.
(a) Give two reasons why forests in tropical areas are being cut down at a high rate. 1
\qquad
2 \qquad
\qquad
(b) Explain how this deforestation is affecting the composition of the atmosphere.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q3.Professor John Lawton researches into the problem of controlling the spread of bracken.
Bracken is a fern which threatens upland farms, partly because it poses a health risk to people and animals.

Professor Lawton is waiting for government permission to release the Conservular caterpillar which feeds on the bracken.

The Secretary of State has to decide whether the Conservular caterpillar can be released.

The article printed below describes some of the problems faced by the Secretary of State.

David the caterpillar to bracken's Goliath
Yorkshire farmer Maurice Cottrill has just forked out $£ 500$ to have a helicopter
hover over his land and spew out gallons of chemicals aimed at destroying one
of the most pervasive and dangerous weeds known to man - bracken. In a little
box in a laboratory near Ascot, Berkshire, lies a tiny caterpillar which could
have done the job for nothing.
Whether or not that caterpillar and thousand of its chums will ever be let loose
on the massive carpet of bracken that is sweeping over Britain at the rate of 53
square kilometres a year has to be decided by the Secretary of State for the
Environment.
Weed control through the release of imported insects has never been tried in
Britain before. If the Secretary of State permits the experiment, the caterpillar is
in for the feast of its life, because five years of painstaking research have
proved that bracken is its only food. However, is that the full story? Will the
beast stop there, or will it go on, wreaking unforeseen devastation. Can
scientists predict what will happen when imported insects are released into the
wild?
Bracken is poisonous - more than 20000 sheep and 1000 cattle suffer
poisoning each year. Its spores are carcinogenic, posing a threat to hill walkers.
Bracken costs a depressing $£ 4 m$ a year to control while rendering useless
grazing land valued at $£ 5 m$ annually. "Bracken is one factor which is leading to
hill farming becoming uneconomic", says the director of the Ramblers
Association. "We are worried about that because, the more uneconomic hill
farms become, the more prospect there is of the forestry industry taking over."
The National Farmers Union are concerned about the consequences of the
caterpillar getting out of control. What if it started consuming garden ferns?
What if it loved potatoes? On the other hand, the caterpillar might help to
preserve important uplands where wildlife flourishes when bracken is kept at
bay. However, the experiment takes the scientists into unknown territory.
World-wide, 94 species of weeds have been controlled by biological releases

Page 6

> involving 215 types of animal in 50 countries. Professor Lawson says that approximately one-third have achieved effective control and the remainder have failed.

Upland farms are artificial ecosystems, created and maintained mainly for the rearing of sheep and cattle. These farms are being threatened by the spread of bracken. Up to now the only treatment for bracken has been to use herbicides.

Use the article to explain, as fully as you can, what advice you would give the Secretary of State.

Explain the arguments for and against that lead to your decision.
You will not receive marks for simply copying extracts from the article.
(Total 8 marks)

Q4. Large areas of rain forest are being cleared and burnt in many parts of the world. The cleared land will often produce crops for only a few years.
(a) Explain why rain forests are being burnt to provide land for crops in many parts of the world.
\qquad
\qquad
\qquad
\qquad
(b) Explain why such cleared land will often produce crops for only a few years.
\qquad
\qquad
\qquad
\qquad
(c) Explain the effects that large-scale burning of forests may have on the Earth's atmosphere in the short and in the long term.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q5. In this country most tomatoes are grown in greenhouses.

(a) Suggest one way in which a grower could increase the yield of tomatoes from plants growing in his greenhouse.
\qquad
\qquad
(b) Large supermarkets often import tomatoes from overseas.
(i) Suggest two reasons why a supermarket might decide to import tomatoes rather than buy them from British growers.

1 \qquad
\qquad
2 \qquad
\qquad
(ii) Importing tomatoes may be more damaging to the environment than selling tomatoes grown in this country.

Explain why.

Q6. In South Asia, forests are being cleared to grow palm oil trees. The palm oil is mainly used to produce fuel for motor vehicles.

The graph shows the production of palm oil in one South Asian country.

(a) Calculate the mean increase in palm oil production per year for the five year period 2000 to 2005.

Show clearly how you work out your answer.
\qquad
\qquad
Mean increase $=$ \qquad millions of tonnes per year
(b) Clearing forests and replacing the forests with palm oil trees to produce fuel for motor vehicles will affect the composition of the atmosphere.

Explain how.
\qquad
\qquad

Q7.
Scientists have discovered that curry spices affect sheep and cattle. Curry spices can reduce the amount of methane that grazing animals give off.
'Bad' bacteria in the animal's stomach produce methane. About 12\% of the animal's food is changed into methane.

The curry spice coriander works like an antibiotic. Adding coriander to animal food reduces methane production by about 40%.
(a) (i) Why does adding coriander to an animal's food reduce methane production?
\qquad
\qquad
(ii) Explain one advantage to a farmer of adding coriander to the animal's food.
\qquad
\qquad
\qquad
\qquad
(b) Farm animals give off large amounts of methane.

Explain the effects of adding large amounts of methane to the atmosphere.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q8.Human activities affect the environment.
(a) Deforestation results in an increase in carbon dioxide levels in the atmosphere.

Give two reasons why.
\qquad
\qquad
\qquad
\qquad
(b) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

A dairy farmer washes out his cow shed each day. The waste water contains urine and faeces. The waste water overflows into a stream by mistake.

The waste water will have an effect on the plants and invertebrates living in the stream.

Explain why.
\qquad

M1. (a) (i) tick in box of FIRST pyramid
(ii) any one from:

- less energy / biomass lost / wasted
- greatest biomass / energy for humans ignore human box is bigger ignore .food. for humans
- \quad shortest food chain or less stages or least number of different organisms or only one predator or only 2 boxes tall or least boxes
allow only one stage
(b) (i) any two from:
- quicker / more growth or grow fatter
- less* urine or less faeces
- less* heat (lost)
- less* movement
assume for pigs indoors allow converse if clear for pigs outdoors
(*) do not allow no for less ignore less space
(ii) any one from:
- less cruelty or more ethical or better animal welfare ignore more natural ignore ideas referring to against God's will
- better flavour / quality (of meat) ignore pig health or free range / organic
- less pollution / etc / less fossil fuel used for heating ignore quality of life
assume for pigs outdoors allow converse if clear for pigs indoors

M2. (a) 30
award both marks for correct answer, irrespective of working 100-(33+27+10) or equivalent for 1 mark
(b) 2 or 1.98
award both marks for correct answer, irrespective of working $(33 / 100) \times 6$ or equivalent for 1 mark
(c) respiration
(d) (i) less / no heat loss / movement
do not accept 'energy' / warmth unqualified
(ii) any reference to cruelty eg stress to calf / cramped conditions ignore references to disease / hygiene

M3. (a) idea that

- so they don't get too hot / cold for high temperatures
- don't lose condition / weight or don't become ill
- don't lose too much water / become dehydrated (allow don't sweat too much) for low temperatures
- reduce heat loss from pigs
- less energy wasted in maintaining body temperature for 1 mark each
(b)
- reduce energy loss by movement
- so more is available for growth*
(*credit this point if given in (a) but only credit once)
- don't use body mass to provide energy
- easier to handle / monitor for 1 mark each
(c) idea that
- less humane / not natural / cruel / no room to exercise / stressful
- more intensive labour
- increased risk of disease / (often) in contact with faeces
- antibiotic residues in meat
any two for 1 mark each

M4. (a) (i) bacteria
(ii) 8
(iii) 4 tonnes
(b) (i) mycoprotein contains less fat
or
less circulatory problems
mycoprotein contains (more) fibre
or
reduces colon cancer
it = mycoprotein fat must be comparative
(ii) beef contains more protein it $=$ beef must be comparative
or
better for growth / making cells /
enzymes / antibodies

M5. (a) (i) cholesterol
fat
in this order
(ii) mycoprotein has (approx) half amount of protein / has $11.8(\mathrm{~g})$ protein while chicken has $22.0(\mathrm{~g})$
accept has less protein
ignore less fat
(b) (i) increased
(\pm) constant rate or (from 0) to 9.2 / by $9.2(\mathrm{~cm})$ or about 1 cm a day or increase slower at the beginning and / or at the end
(ii) species \mathbf{A} grows faster / more than species \mathbf{B} or species \mathbf{A} has larger diameter or is bigger or the growth of species \mathbf{B} slows down after 6 weeks accept use of approximate figures 1
(c) any two from:

- $\quad \mathrm{pH} /$ acidity / alkalinity
ignore references to carbon dioxide / waste products
- (speed of) stirring
ignore time in the fermenter
- oxygen (concentration) / aeration
ignore initial amount of Fusarium
- ion concentration / named eg $-\mathrm{NH}_{4}^{+}$
allow ammonia
- pressure

M6.
(a) C
(b) otherwise species may disappear altogether allow to avoid extinction
(c) any two from:

- regulate net size
if mesh size specified, must be larger
- impose fishing quotas
- limit fishing during breeding seasons
- bans on discarding of fish
- bans on fishing in certain areas

M7. (a) 3 (.0)
correct answer, irrespective of working gains $\mathbf{2}$ marks. if the answer is incorrect or there is no answer, award 1 mark for use of correct figures (0.5 and 3.5) [and no other figures]
(b) as faeces
if more than two boxes ticked deduct 1 mark for each additional tick
as carbon dioxide from respiration
(c) (i) pigs kept inside are kept in small pens if more than two boxes ticked deduct 1 mark for each additional tick
pigs kept inside are kept warm in the winter
(ii) any one from:

- faster growth
ignore bigger / less flavour / fatty
- need less food
ignore references to movement / energy
- ready for market sooner
ignore ethical arguments

M8. (a) (i) any two from:

- more milk
(about) 50 litres milk compared to (up to) 20 litres / 30 litres more
ignore costs / profit
- electricity produced
- farmers can keep more cows in the space answers must refer to number of cows and space
(ii) any two from:
- less stress for cow or not cruel to cow or cows have freedom to move around ignore references to ethical / unnatural without qualification
- crops fertilised
- less disease or disease not as easily spread
(b) more

Q1. (a) The diagrams show three pyramids of biomass.
(i) Which pyramid would be the most efficient in providing food for humans?

Tick (\checkmark^{\prime}) one box.

(ii) Give one reason for your choice.
\qquad
\qquad
(b) Pigs may be kept indoors or outdoors.

Pigs kept indoors
Pigs kept outdoors

The pie charts show what happens to the energy in the food eaten by pigs kept indoors and pigs kept outdoors.

Pigs kept indoors
Pigs kept outdoors

Key
\square Urine and faeces
\square Growth
\square Heat
\square Movement

(i) Farmers make more profit from keeping pigs indoors than from keeping pigs outdoors.

Use information from the pie charts to explain why.
\qquad
\qquad
\qquad
\qquad
(ii) Meat from pigs kept outdoors may cost more than meat from pigs kept indoors.

Some people prefer to buy meat from animals that have been kept outdoors.
Suggest one reason why.
\qquad

Q2. The diagram shows what happens to the energy in the food that a calf eats.

(a) Calculate the \% energy lost as urine and faeces (\mathbf{X}). Show clearly how you work out your answer.
\qquad
\qquad
Energy lost as urine and faeces \%
(b) The energy in the food eaten by the calf in one day is 6 megajoules.

Calculate the amount of this energy that would be used for growth. Show clearly how you work out your answer.
\qquad
\qquad
Energy used for growth \qquad megajoules.
(c) Which process in the body transforms energy in food into heat?
\qquad
(d) The pictures show two methods of raising calves indoors.

Method $\mathbf{2}$ is now banned.

(i) Calves raised indoors grow faster than calves raised outdoors.

Suggest one reason why.
\qquad
\qquad
(ii) Method 2 was banned after public campaigns.

Suggest one reason why people campaigned against this method of rearing calves.
\qquad
\qquad

Q3. To produce cheap meat, animals must be grown (reared) efficiently. When pigs are reared intensively they are kept indoors. Their surroundings are closely monitored to make sure they have even ventilation and the correct temperature. The risk of infection is high but is reduced by feeding them antibiotics and removing their faeces. The pigs live in cages and cannot move around much.

(a) Explain why farmers control the temperature.
\qquad
\qquad
\qquad
(b) Explain why farmers want to stop the pigs moving about.
\qquad
\qquad
\qquad
(c) Give two arguments against rearing pigs indoors instead of rearing them outdoors.

Q4. The table gives information about the growth of different types of organism. The figures were obtained during the period of fastest growth for each organism.

Organism	Time taken to double in mass
Bacteria	40 minutes
Yeasts	2 hours
Fusarium	4 hours
Algae	5 hours
Soybeans	1 week
Cattle	8 weeks

(a) (i) Which type of organism grows the fastest?
(ii) How many times faster than cattle do soybeans double in mass?
\qquad
(iii) Fusarium grows at its fastest rate in a fermenter.

Some scientists put one tonne of Fusarium into a fermenter.
Use data from the table to calculate how much Fusarium there would be in the fermenter after 8 hours.

Draw a ring around one answer.
2 tonnes 4 tonnes 8 tonnes
(b) Fusarium is used to make mycoprotein.

Read the information about substances found in mycoprotein.

- Protein - can be used for making cells, enzymes and antibodies.
- Fats - are rich in energy but large amounts in the diet can cause circulatory problems.
- Dietary fibre - helps to reduce the risk of colon cancer.

The table compares the composition of mycoprotein and beef.

Substance	Percentage of dry mass	
	Mycoprotein	Beef
Protein	47.2	68.3
Fat	13.5	30.1
Dietary fibre	19.2	0.0

Use the information above to answer the questions.
(i) Give two reasons why it would be better to eat mycoprotein instead of beef.

1 \qquad
\qquad
2 \qquad
\qquad
(ii) Give one reason why it would be better to eat beef instead of mycoprotein.
\qquad
\qquad

Q5. Mycoprotein is produced from the fungus Fusarium. Mycoprotein is sometimes used instead of meat in foods for vegetarians.
(a) The table shows the amounts of some substances in mycoprotein and in chicken.

Substance	Mass in grams per 100 grams	
	Mycoprotein	Chicken
Protein	11.8	22.0
Dietary fibre	4.8	0.0
Fat	3.5	6.2
Carbohydrate	2.0	0.0
Cholesterol	0.0	0.1

(i) Draw a ring around the correct answers to complete the sentence.

Eating mycoprotein instead of chicken helps to lower the risk of heart disease because
mycoprotein contains no $\left.\begin{array}{l|l|}\hline \text { fat } \\ \text { carbohydrat } \\ e \\ \text { and } \\ \text { cholesterol }\end{array}\right]$

mycoprotein contains less	dietary fibre.
fat.	
carbohydrate.	

(ii) A body-builder ate 4 kilograms of chicken each week to help him build up his muscles.

If he ate mycoprotein instead of chicken, he would need to eat about twice as much to have the same effect.

Use information from the table to give one reason why.
\qquad
\qquad
(b) Scientists investigated the growth of two species, \mathbf{A} and \mathbf{B}, of the fungus Fusarium. The scientists grew the fungus on agar jelly in Petri dishes.
They measured the diameter of a colony of each fungus every day for 8 days.
The graph shows the results.

(i) Describe how the diameter of the colony of species \mathbf{A} changed between day 0 and day 8 .
\qquad
\qquad
\qquad
\qquad
(ii) Give one difference between the results for species \mathbf{A} and the results for species B.
\qquad
\qquad
(c) Both Petri dishes contained the same nutrients.

Both Petri dishes were kept at $25^{\circ} \mathrm{C}$.
When Fusarium is grown in an industrial fermenter, other factors also need to be controlled.

Give two of these other factors.
1 \qquad

2 \qquad

Q6.The map shows pie charts, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}, that give information about fisheries in some of the seas around Europe.

(a) Which pie chart, A, B, C or D, shows the fishery with the largest amount of overfishing?

(b) It is important to maintain fish stocks high enough for breeding to continue.

Give the reason why.
\qquad
\qquad
(c) Give two ways fish stocks can be conserved.
\qquad
\qquad
\qquad
\qquad

Q7. The photographs show four ways of farming.

Growing wheat

Keeping pigs outside

Keeping sheep outside

Keeping pigs inside

Growing wheat by Eileen Henderson [CC-BY-SA-2.0], via Wikimedia Commons. Keeping Sheep outside by Andrew Smith [CC-BY-SA-2.0], via W kimedia Commons. Keeping Pigs outside by David Williams [CC-BY-SA-2.0], via Wikimedia Commons. Keeping Pigs inside supplied by iStockphoto/ Thinkstock.

The bar chart shows the amount of food produced from these four ways of farming.

(a) How much extra food can be produced when farmers grow wheat, compared with keeping sheep outside?

Show clearly how you work out your answer.
\qquad
\qquad
Answer \qquad tonnes per hectare per year
(b) Sheep eat grass.

For every 1000 g of grass eaten, a sheep increases in mass by only 50 g . The other 950 g is lost.

How is the other 950 g lost?
Tick (\checkmark) two boxes.

As oxygen from photosynthesis \square

As faeces \square

As meat \square

As carbon dioxide from respiration \square
(c) (i) Pigs kept inside lose less energy than pigs kept outside.

Why?
Tick (\checkmark) two boxes.

Pigs kept inside are fed more.

Pigs kept inside are kept in small pens. \square

Pigs kept inside are kept warm in the winter.

Pigs kept inside are healthier. \square
(ii) Meat from pigs kept inside is usually cheaper than meat from pigs kept outside.

Give one reason why.
\qquad
\qquad

Q8. There are plans for a 'cattle factory' to be built in the UK.
Information about the cattle factory and traditional cattle farming in the UK is given below.

Cattle factory

Traditional cattle farming

Cattle factory by Pirhan [CC BY-SA 2.0], via Flickr. Traditional cattle farming by Mat Fascione[CC-BY-SA-2.0], via Commons

Cattle factory

- There will be over 8000 cows in three large sheds.
- Each cow will be milked three times a day.
- Each cow will produce about 50 litres of milk every day.
- Waste will be collected and used to produce electricity for 2000 homes.
- Cows are kept near to each other so disease can spread easily.

Traditional cattle farming

- Most farms have between 5 and 500 cows.
- The cows spend most of the time in fields.
- Cows are milked once or twice a day.
- Each cow produces up to 20 litres of milk a day.
- The waste is used as natural fertiliser for crops.
(a) Use the information to answer the questions.
(i) Give two reasons why some people think the cattle factory is a good idea.

1 \qquad

2
\qquad
(ii) Give two reasons why some people think traditional farming is better than the cattle factory.

1 \qquad
\qquad
2 \qquad
\qquad
(b) The diagram shows what happens to 100 kJ of energy in the food eaten by a cow on a traditional farm.

By Dohduhdah (Own work) [Public domain], via W kimedia Commons
Use your knowledge and the information in the diagram to answer this question.

Compare the transfer of energy from the food eaten by cows in the cattle factory with the energy transferred by cows on a traditional farm.

Use words from the box to complete the table.

more	the same
Energy	Amount of energy transferred by cows in a cattle factory compared with cows on a traditional farm
transferred for growth and milk	
transferred in respiration	

M1. (a) limiting their movement
or controlling the temperature of their surroundings
reason:
reduces energy transfer
if no other marks awarded, allow 1 mark for: 'fit more chickens in same space'
(b) (i) without oxygen
ignore 'without air'
(ii) any two from:

- ethanol
allow alcohol
- carbon dioxide
- lactic acid.
do not accept energy / ATP (apply list rule)
(c) enzymes are denatured / change shape
ignore microbes are killed
(enzyme) shape is vital for function or won't work (as efficiently)
(d) (i) 200
(ii) 120
allow ecf from (d)(i)
e.g.
$60 \times$
100 (i)
(e) causes global warming
one predicted consequence of global warming
eg rising sea levels, climate change, change in migration patterns, change in distribution of species
or
methane is flammable
so might cause fire / damage
if no other marks awarded, allow methane is a greenhouse gas for 1 mark

M2. any three from:
maximum 2 marks if only advantages or only disadvantages given
ignore references to cost unqualified
advantages: (max 2)
ignore reference to fresher

- less transport / example of transport or less fuel used accept implication eg less food miles allow no transport / fuel costs
- less pollution / example
accept eg less carbon dioxide / smaller carbon footprint allow no pollution / example
- support of local / UK economy / farmers
disadvantages: (max 2$)$
- not available all year
- may require use of heat / light
- (production of) heat / light causes pollution

M3. (a) (i) wheat \rightarrow humans chain transfers 10 times more energy than wheat \rightarrow pigs \rightarrow humans chain allow 10% if given as a comparison e.g. one is 10% of the other

or

wheat \rightarrow pigs \rightarrow humans chain transfers 810000 ($k J$ per hectare) less ignore less unqualified
(ii) any one reason for energy loss from pigs e.g :
ignore respiration, growth
ignore heat unqualified

- movement
- (maintaining) body temperature
- waste materials
allow named examples
- not all parts of pig eaten by human
- because there is an extra stage (pigs) in the food chain and energy is lost at each stage
allow longer food chain so more energy lost
(b) Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also refer to the information in the Marking guidance, and apply a 'best-fit' approach to the marking.

0 marksNo relevant content.
Level 1 (1-2 marks)There is a basic description of at least one factory farming method
or
identification of an advantage or disadvantage of factory farming.

Level 2 (3-4 marks)There is a description of at least one factory farming

$$
\text { Page } 5
$$

method
and
an advantage or disadvantage is explained.
Level 3 (5-6 marks)There is a description of factory farming methods and advantage(s) and disadvantage(s) are explained.

Examples of Biology points made in the response:

factory farming methods e.g.:

- Kept in cramped conditions / battery hens / calf crates / pig barns / fish tanks
- Controlled temperature / heating
- Controlled feeding / modified food given / growth hormones
- Controlled lighting
- Treated with prophylactic antibiotics

Advantages e.g.:

- Increased efficiency / profit / greater food production / cheaper food / faster growth
- Farmer can have more livestock
- Less energy is lost through movement
- Less energy is used keeping warm
- (Food is high in calories / protein) so animals will grow faster / lay more eggs
- Easier to vaccinate all the animals
- Easier to protect animals from predators
- Antibiotic treatment stops infections in animals

Disadvantages e.g.:

- Stress / cruelty / inhumane / unethical
- Restricted movement / overcrowding
- Faster spread of diseases
- Antibiotics in the food chain / residual chemicals in the food chain
- Wasting fossil fuels / increasing global warming
- Increased pollution from animal waste and from additional transport

M4.(a) (i) fungus
(ii) oxygen / O_{2}
accept air
accept O_{2}
do not allow O^{2} / O / O2
(iii) glucose (syrup)
allow carbohydrate / sugar ignore food / starch
allow oxygen if oxygen / air not given in (a)(ii)
(b) any two from:

- quicker
- suitable for vegetarians
- cheaper
- more efficient or less land / methane ignore high in protein
ignore sustainability unqualified
ignore less pollution unqualified
allow less animals harmed / killed
allow food chain is shorter or has less trophic levels
allow less energy lost (from the food chain)
do not allow no energy lost
allow low(er) in calories (than some meat)
allow low(er) in fat / healthier (than some meat)
allow source of fibre / prevent constipation

M5.(a) (i) $76.0 / 76$
correct answer with or without working gains 2 marks allow 76.04 for 2 marks
allow 76.04 with extra decimal places eg 76.042 for 1 mark $\frac{465}{611.5}$ for 1 mark
(ii) mass of fish declines (until 2008) ignore use of numbers allow number of fish decline (until 2008)
(due to an) increase in fishing / overfishing
and then rises (until 2010)
(which could be due to) quotas / net restrictions working allow any reasonable suggestion, such as countries swapping quotas or restrictions on fishing during breeding seasons
ignore less fishing
if no other marks awarded allow 1 mark for a decrease in mass and an increase in mass if answer relates to sustainable fishing
(iii) (this is due to) public awareness / demand allow legislation / rules
(b) fishing quotas / bans
(small) net / mesh size
if size of net is stated then it must be smaller if size of mesh is stated then it must be larger
(c) (fish) cannot move freely / as much
(therefore) less energy loss from the fish do not allow 'no energy is lost' ignore references to less heat loss through controlling body temperature
ignore references to respiration
(there is) more food available / better quality food / fed more often accept 'high-protein food (for making cells)'
(so) there is more energy for growth or (more food) is converted to biomass

M6. (a) it is impossible to weigh all the fish in the sea
(b) (i) increase / from 50 to 350 / by 300 thousand tonnes
(ii) due to fishing ban / not allowed
(c) (i) fishing quotas / limits
changes to net size
(ii) yes, biomass increases
use of figures from graph eg approx 4- times or (was effective at first) but numbers decline again after 2004 must use two comparative figures for $2^{n d}$ marking point
(iii) so that breeding continues
allow prevent extinction / limit impact of fishing on food chain /web
(iii) 95%
correct answer gains 2 marks 2000-100=1900 award 1 mark
(d) any four from:

- increase in sea / water temperature
accept ref to lower sea / water temp if shift in Gulf Stream is referred to
- changes in migration patterns / distribution of species
- more eggs may survive (up to $19^{\circ} \mathrm{C}$) and could lead to an increase in herring pop
- reduction in herring pop (because eggs die if $>19^{\circ} \mathrm{C}$)
accept change in other populations of fish which are alternative prey for cod
- (appropriate) change in cod population as a result

Q1.Figures 1 and 2 show battery chickens and free-range chickens.

Figure 1 Battery chickens

© studiodr/iStock/Thinkstock

Battery chickens are kept in cages indoors. Free-range chickens can walk around outside.
(a) Give one way in which food production might be more efficient from battery chickens than from free-range chickens. Give a reason for your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Some farms use waste from chickens to produce biogas in an anaerobic digester.

Microorganisms in the digester break down the waste by anaerobic respiration.
(i) What does anaerobic mean?
(ii) One product of anaerobic respiration is methane.

Name two other products of anaerobic respiration.
1.
2.
(c) The best temperature for anaerobic digesters is about $35^{\circ} \mathrm{C}$. Explain why the volume of biogas produced would be less at higher temperatures.
\qquad
\qquad
\qquad
\qquad
(d) Figure 3 shows other types of waste that can be used in an anaerobic digester to produce biogas.

Figure 3

(i) What is the volume of biogas produced by a tonne of grass cuttings?
\qquad
(ii) Biogas is 60% methane.

Calculate the volume of methane gas produced per tonne of grass cuttings.
\qquad m^{3}
(e) Why should biogas not be allowed to escape into the atmosphere?
\qquad
\qquad
\qquad
\qquad

Q2. Tomatoes are grown in greenhouses in the UK and outdoors in the UK and the Canary Islands.

The chart shows in which months these tomatoes can be bought in shops in the UK.
Canary
Islands

The Canary Islands are about 3000 km from the UK.
Some people prefer to buy tomatoes grown in the UK.
What are the advantages and disadvantages of buying tomatoes grown in the UK, instead of buying tomatoes grown in the Canary Islands?

Advantages of buying tomatoes grown in the UK
\qquad
\qquad
\qquad
\qquad
Disadvantages of buying tomatoes grown in the UK
\qquad
\qquad
\qquad
\qquad

Q3.There are many ways to increase the efficiency of food production.
(a) The table shows the energy available to humans from two different food chains.

Food chain	Energy transferred to humans in kJ per hectare of crop
Wheat \rightarrow humans	900000
Wheat \rightarrow pigs \rightarrow humans	90000

(i) Compare the amount of energy the two food chains transfer to humans.
\qquad
\qquad
(ii) Give one reason for the difference in the amount of energy the two food chains transfer to humans.
\qquad
\qquad
(b) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Give methods used in the factory farming of animals.
Explain the advantages and disadvantages of these methods.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q4.The world population is increasing and the need for food is increasing.
Mycoprotein is a high-protein food made in fermenters using the organism Fusarium.
The process takes only a few weeks to produce a large amount of food.
(a) (i) What type of organism is Fusarium?

Draw a ring around the correct answer.
bacterium fungus virus

The diagram below shows a fermenter used in mycoprotein production.

(ii) Fusarium makes mycoprotein. Fusarium respires aerobically.

Suggest which gas is added to the fermenter at point \mathbf{A}.
\qquad
(iii) Another substance is added to the fermenter at point \mathbf{B}. This substance is used in aerobic respiration.

Name this substance.
\qquad
(b) People need to eat protein to grow and to be healthy.

Some people think that it would be an advantage to get more food from mycoprotein and less from farming animals.

Suggest two possible advantages of getting more food from mycoprotein.
1.
\qquad
2. \qquad
\qquad

Q5.The number of fish in the oceans is decreasing.
The table below shows information about the mass of fish caught by UK fishermen between 2002 and 2010.

Year	Mass of fish caught by UK fishermen from ALL SOURCES in thousands of tonnes	Mass of fish caught by UK fishermen from SUSTAINABLE SOURCES in thousands of tonnes	Percentage of fish caught from sustainable sources
2002	690.0	427.8	62.0
2004	655.0	396.6	60.5
2006	619.0	386.0	62.4
2008	589.0	436.1	74.0
2010	611.5	465.0	

(a) (i) Calculate the percentage of fish caught from sustainable sources in 2010.
\qquad
\qquad
\qquad
\%
(2)
(ii) Describe the pattern in the table above for the mass of fish caught from all sources.

Suggest reasons for this pattern.
\qquad
(iii) Suggest why the percentage of fish caught from sustainable sources is increasing.
\qquad
\qquad
(b) Give two methods of maintaining fish stocks at a sustainable level. 1

2
(c) The image below shows a fish farm.

© debsthelio/iStock/Thinkstock

In a fish farm, large numbers of fish are grown in cages in the sea.
Why do fish in the cages grow faster than fish of the same species that are free in the sea?
You should refer to energy in your answer.
\qquad

Q6.Herring are a type of fish found in the North Sea. Herring are caught using nets which are pulled by large boats.

The photographs show a fishing boat and some herring.

By Atle Grimsby from Utsira, Norway (Herring Catch at Utsira) [CC-BY-2.0 (http://creativecommons.org/licenses/by/2.0)], via Wikimedia Commons.

The herring population in the North Sea has changed a lot in recent years.
The graph shows the estimated biomass of herring in the North Sea between 1965 and 2010.

(a) Suggest why the biomass can only be estimated.

Tick (\checkmark) one box.
Scientists are not properly trained.

There are too many different types of fish in the sea. \square

It is impossible to weigh all the herring in the sea.

(b) (i) Describe the pattern shown in the graph from 1978 to 1983.
\qquad
\qquad
(ii) Suggest a reason for the pattern you have described in part (b) (i).
\qquad
\qquad
(c) In 1996 the Government brought in strict rules to help to conserve fish stocks.
(i) State two rules that would help to conserve fish stocks.

1
\qquad
2
\qquad
(ii) Were the Government's rules effective?

Use data from the graph to support your answer.
\qquad
\qquad
\qquad
\qquad
(iii) Why should fish stocks be kept above a certain minimum level?
\qquad
\qquad
(iv) The Government did not introduce rules about the amount of herring caught until 1977.

This was in response to a dramatic decrease in herring stocks.
What was the percentage decrease in herring stocks between 1965 and 1977?
\qquad
\qquad
Percentage decrease $=$
(d) Herring migrate to feed and spawn (lay eggs).

The eggs normally take about 3 weeks to hatch at $12^{\circ} \mathrm{C}$.
If the temperature of the water is higher the eggs will hatch more quickly.
But, if the temperature of the water is above $19^{\circ} \mathrm{C}$, the eggs will die.
Other fish, such as cod, feed on herring.
Suggest how climate change could affect North Sea fish.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

M1. (a) (i) 200 kJ for 1 mark
1
(ii) 2
gains 2 marks
(if answer incorrect, 20 / 1000×100 gains 1 mark)
(b) ideas that
energy lost by animal (pig / cattle) / extra stage / extra trophic level in waste materials e.g.
in muscular activity / movement
in keeping body temperature higher than surroundings / lost as heat any three for 1 mark each references to respiration regarded as neutral
(c) ideas that
controlling (high) temperature of surroundings / keeping indoors / insulating reduces energy transferred from animal as heat / animal uses body heat to maintain temperature restricting movement (e.g. caging or keeping in darkness) reduces muscular contraction / muscular activity
each for 1 mark accept respiration as explanation once only if neither explanation point has received credit reject give more food / different food

M2. to reduce energy 'lost' (by movement) accept need less energy
so more energy is available for growth
accept prevents loss of body mass to provide energy accept so need less food accept get fatter accept so weight gain accept so more growth

M3. (a) circulation / mixing / described
or
temperature maintenance
supply oxygen
do not allow oxygen for anaerobic respiration
or
for aerobic conditions
or
for faster respiration
1
(b) any one from:

- energy supply / fuel or use in respiration
do not allow just food / growth
ignore reference to aerobic / anaerobic
- material for growth or to make mycoprotein
(c) (heat / energy) from respiration
allow exothermic reactions
allow description eg breakdown of glucose / catabolism
ignore metabolism
ignore aerobic / anaerobic
(d) (i) any one from:
- compete (with Fusarium) for food / oxygen
or reduce yield of Fusarium
- make toxic waste products
or they might cause disease / pathogenic
or harmful to people / Fusarium do not allow harmful unqualified
(ii) any two from:
- steam / heat treat / sterilise fermenter (before use)
not just clean
allow sterilisation unqualified for 1 mark
- steam / heat treat / sterilise glucose / minerals / nutrients / water (before use)
not just use pure glucose
- filter / sterilise air intake
- check there are no leaks
(e) any three from:
- beef is best or beef is better than mycoprotein(*)
- mycoprotein mainly better than wheat(*)
- more phenylalanine in wheat than in mycoprotein(*)
allow equivalent numerical statements(${ }^{*}$)
- but no information given on other amino acids / costs / foods
overall conclusion:
statement is incorrect
or
it would be the best source for vegetarians
or
for given amino acids, beef is the best source
or
three foods provide insufficient data to draw a valid conclusion

M4. (a) 4 of:
intensification due to need to improve efficiency of energy transfer; has led to developing fast growing crop varieties;
native plants cannot compete with these;
for e.g. light/water/minerals;
effect of herbicides;
pesticides killing pollinating insects
each for 1 mark
(b) recommend a variety of measures; (can be implied) because rotational will allow these species to continue; permanent will allow others;
leading to conservation of a wide range of species
each for 1 mark

M5.
(a) any two from:

- diseases spread more rapidly
- antibiotics can build up in the food chain
or
over use of antibiotics
- increased use of fossil fuels (to heat the barn)
(b) Level 2 (3-4 marks):

Clear statements made identifying the farming methods which are linked to relevant explanations of how this increases the efficiency of food production.

Level 1 (1-2 marks):
Simple statements made identifying the farming methods used, but no attempt to link to explanations of how this increases the efficiency of food production.

0 marks:
No relevant content.
Indicative content
statements:

- kept inside or in a temperature controlled environment
- kept enclosed or in a restricted environment
explanations:
- less energy / heat is lost in controlling body temperature
- less energy required for movement
- so more energy is available for growth
- less energy / heat is transferred to the environment
(c) $(362-67=295) / 362 \times 100$

81 / 81.49 / 81.5
allow 81 / 81.49 / 81.5 with no working shown for 2 marks
(d) aboriginal people can eat other foods (so they may not be in food insecurity)
we do not know if other (traditional) food sources have declined

M6. (a) any one from:

- increase / give light
- increase temperature / make warmer
award marks if the method by which these could be done is given eg leave lights on all night or use a heater
- increase / give CO_{2}
- add fertiliser / nutrients / minerals / named allow nitrogen
ignore 'food'
(b) (i) any two from:
- cheaper
allow grow faster / more grown
- better quality / flavour
ignore size
- available all year
accept converse if clear that answer refers to use of British tomatoes
allow 'Fair Trade'
(ii) any two from:
- greater distance or more food miles or more transport
idea of more needed only once
- transport needs (more) energy / fuel
- reference to eg greenhouse effect / global warming / pollution / CO_{2} release / carbon footprint ignore ozone

M7. (a) circulating / mixing / described or temperature maintenance
supply oxygen
or for aerobic conditions
or for faster respiration
do not allow oxygen for anaerobic respiration
(b) energy supply / fuel / use in respiration do not allow just food / growth
ignore reference to aerobic / anaerobic
or material for growth / to make mycoprotein
(c) respiration
allow exothermic reaction
allow catabolism
ignore metabolism
ignore aerobic / anaerobic
(d) (i) any one from:

- compete (with Fusarium) for food / oxygen or reduce yield of Fusarium
- make toxic waste products or they might cause disease / pathogenic or harmful to people / to Fusarium do not allow harmful unqualified
(ii) steam / heat treat / sterilise fermenter (before use)
not just clean

or

steam / heat treat / steriliseglucose / minerals / nutrients / water (before use)
or
filter / sterilise air intake
or
check there are no leaks
allow sterilisation unqualified not just use pure glucose
(e) any three from:

- beef is best or beef is better than mycoprotein
- mycoprotein mainly better than wheat
- more phenylalanine in wheat than in mycoprotein allow equivalent numerical statements
- but no information given on other amino acids / costs / foods
overall conclusion:
statement is incorrect because
either
it would be the best source for vegetarians
or
for given amino acids, beef is the best source
or
three foods provide insufficient data to draw a valid conclusion

Q1. (a) The diagram shows what happens to each 1000 kJ of light energy absorbed by plants growing in a meadow.

Use the information from the diagram to calculate:
(i) how much energy was transferred to herbivores;
\qquad
(ii) the percentage of the energy absorbed during photosynthesis that was eventually transferred to carnivores. Show your working.
\%
(b) The table gives the energy output from some agricultural food chains.

FOOD CHAIN	ENERGY AVAILABLE TO HUMANS FROM FOOD CHAIN (kJ PER HECTARE OF CROP)
cereal crop \Rightarrow humans	800000
cereal crop \Rightarrow pigs \Rightarrow humans	90000
cereal crop \Rightarrow cattle \Rightarrow humans	30000

Explain why the food chain cereal crop \Rightarrow humans gives far more energy than the other two food chains.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) The amounts of energy available to humans from the food chaincereal crop \Rightarrow pigs \Rightarrow humanscan be increased by changing the conditions in which the pigs are kept.

Give two changes in conditions which would increase the amount of energy available. In each case explain why changing the condition would increase the available energy.

Change of condition 1
Explanation \qquad
\qquad
Change of condition 2
Explanation
\qquad
\square
\qquad
\qquad

Q2. Battery Pigs!

Some countries have battery pigs! Large numbers of pigs are kept indoors and have limited living space which restricts their movement. The temperature of their environment is carefully controlled.

This is a way of producing food efficiently.
These pigs have their movement restricted. Explain why.
\qquad
\qquad
\qquad
\qquad

Q3. The diagram shows a fermenter. This fermenter is used for growing the fungus Fusarium which is used to make mycoprotein.

(a) Bubbles of air enter the fermenter at \mathbf{A}.

Give two functions of the air bubbles.

1 \qquad
\qquad
2 \qquad
\qquad
(b) Glucose is added to the fermenter at B.

Explain why glucose is added.
\qquad
\qquad
(c) The fermenter is prevented from overheating by the cold water flowing in through the heat exchanger coils at \mathbf{C}.

Explain what causes the fermenter to heat up.
\qquad
\qquad
(d) It is important to prevent microorganisms other than Fusarium from growing in the fermenter.
(i) Why is this important?
\qquad
\qquad
(ii) Suggest two ways in which contamination of the fermenter by microorganisms could be prevented.

1
\qquad
\qquad

2
(e) Human cells cannot make some of the amino acids which we need. We must obtain these amino acids from our diet.

The table shows the amounts of four of these amino acids present in mycoprotein, in beef and in wheat.

$\begin{array}{c}\text { Name of } \\ \text { amino acid }\end{array}$	Amount of amino acid per $\mathbf{1 0 0} \mathbf{~ g}$			$\begin{array}{c}\text { Daily amount } \\ \text { in mg }\end{array}$
	Mycoeded by a 70			
kg human in				
mg				

A diet book states that mycoprotein is the best source of amino acids for the human diet.

Evaluate this statement.
Remember to include a conclusion in your evaluation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The drawings and text for this question are based on an article from The Independent newspaper.

Some of Britain's rarest wild flowers are likely to make a come-back thanks to an EC set-aside regime in which 15 per cent of arable land has been taken out of production.

As a result of this set-aside, shepherd's needle, pheasant's eye, corn gromwell, corn cockle, spreading hedge parsley and corn mouse tail are now thriving once again. They were once common in and around cereal fields and were even regarded as weeds, but were swept to near extinction by the intensification of agriculture after the Second World War. Their small, pale flowers are hardly seen. These plants cannot compete in fields where modern cereal crops are cultivated. Nor, however, do they flourish in semi-natural or wild habitats where nature is left to its own devices. They need farmland which is
lightly tilled and cut once a year.

Dr Nick Sotherton, lowland research manager with the Game Conservancy Council, says that these species will flourish under the new rotational set-aside regime, in which farmers are compensated for taking land out of production in an attempt to end crop surpluses.

EC agriculture ministers are meeting to decide how much land should be used for rotational set-aside - in which a field is taken out of production for just one year before being replanted - and how much should be set-aside permanently. The ultimate set-aside is a wood, and Britain is seeking a forestry option.

The Game Conservancy Council says that the rotational scheme can benefit ground nesting birds as well as rare flowers that will not be helped by longer-term set-aside. But Richard Knight of the Wildlife Advisory Group, says "Non-rotational is better because it gives flora and fauna a chance to get well established".
"Intensification of agriculture" has led to the creation of artificial ecosystems.
(a) Explain how the creation of artificial ecosystems may have led to the near-extinction of the plants seen in the picture above.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) What would you recommend to ministers meeting to decide a policy involving rotational set-aside and permanent set-aside? Explain the reasons for your answer.

Q5.Food security is when a population has enough food to stay healthy.

Lack of food security is a global problem.

One way to maintain food security is to increase the efficiency of food production.
The diagram below shows how some pigs are farmed using intensive methods.

© Ingram Publishing/Thinkstock
(a) Some people think the farming methods shown in the diagram above are unethical.

Suggest two other possible disadvantages of intensive farming methods.

1 \qquad
\qquad

2 \qquad
\qquad
(b) Explain how the intensive farming of pigs increases the efficiency of food production.
\qquad
(c) A newspaper reported that:
'Food security is a serious problem in remote communities in Canada.
This is because Aboriginal communities are eating fewer traditional foods.'
One traditional food eaten by Aboriginal communities in Canada is seal.
Look at the table below

Year	Number of seals caught in thousands
2004	362
2005	316
2006	348
2007	224
2008	215
2009	91
2010	67

Calculate the percentage (\%) decrease in the number of seals caught from 2004 to 2010.
\qquad
\qquad
Decrease in seals $=$ \%
(d) The conclusion in the newspaper might not be correct.

Page 13

Suggest two reasons why.
1

2
\qquad

Q6. In this country most tomatoes are grown in greenhouses.

(a) Suggest one way in which a grower could increase the yield of tomatoes from plants growing in his greenhouse.
\qquad
\qquad
(b) Large supermarkets often import tomatoes from overseas.
(i) Suggest two reasons why a supermarket might decide to import tomatoes rather than buy them from British growers.

1 \qquad
\qquad
2 \qquad
\qquad
(ii) Importing tomatoes may be more damaging to the environment than selling tomatoes grown in this country.

Explain why.

Q7.The diagram shows a fermenter. This fermenter is used for growing the fungus Fusarium.

Fusarium is used to make mycoprotein.

(a) Bubbles of air enter the fermenter at \mathbf{A}.

Give two functions of the air bubbles.

1. \qquad
\qquad
2. \qquad
\qquad
(b) Why is glucose added to the fermenter?
(c) The fermenter is prevented from overheating by the cold water flowing in through the heat exchanger coils at \mathbf{C}.

Name the process that causes the fermenter to heat up.
\qquad
(d) It is important to prevent microorganisms other than Fusarium growing in the fermenter.
(i) Why is this important?
\qquad
\qquad
(ii) Suggest one way in which contamination of the fermenter by microorganisms could be prevented.
\qquad
\qquad
(e) Human cells cannot make some of the amino acids which we need. We must obtain these amino acids from our diet.

The table shows the amounts of four of these amino acids present in mycoprotein, in beef and in wheat.

Name of amino acid	Amount of amino acid per 100 g			Daily amount in mg
	Beef	Wheat		

Lysine	910	1600	300	840
Methionine	230	500	220	910
Phenylalanine	540	760	680	980
Threonine	610	840	370	490

A diet book states that mycoprotein is the best source of amino acids for the human diet.

Evaluate this statement.

Remember to include a conclusion in your evaluation.
\qquad

M1.(a) snail

> or
> shrew
additional incorrect answer negates correct answer
(b) shrew
additional incorrect answer negates correct answer
(c) fewer shrews to eat them
(d) population
(e) \mathbf{C}
(f) $\quad(11000 \times 0.1=)$

1100 (kJ)
(g) the snails do not eat the roots of the lettuces
(h) any one from:

- light (intensity)
- temperature
- moisture (levels)
- soil pH
- mineral / ion content (of soil)
- wind intensity / speed
ignore wind direction

Page 2

- carbon dioxide (levels)
- oxygen (levels)

Page 3

M2.(a) 40-60 hours
(b) (i) decrease
$1^{\text {st }}$ slowly then faster / appropriate detail from the graph - e.g. from 7.8 to 0 / faster after 4 - 10h
(ii) oxygen after glucose
extra box ticked cancels 1 mark
oxygen less than glucose
(iii) respiration

M3.(a) a higher concentration would be difficult to stir
(b) (i) methane
(ii) 60

100-(5 + 35) but incorrect answer allow 1 mark
(c) (i) aerobic respiration
(ii) oxygen

M4.(a) place all the quadrats randomly on the lawn
(b) (i) 14

22
32
40
all 4 counts correct

Total $=15$
total correct for their figures
(ii) 1.5
allow ecf from (b)(i)
(iii) 180
correct answer with or without working
if answer incorrect, allow 1 mark for $\frac{15}{10} \times 120$ or 15×20
or $\frac{15}{10} \times 12 \times 10$
or $1.5 \times 12 \times 10$ or 1.5×120
allow ecf from (b)(ii)
allow 1 mark if only 1 error
(c) use a larger sample size / more quadrats
ignore repeats but allow repeat in different places
ignore 'count them all'
or
use bigger quadrats

M5. (a) microorganisms / microbes / bacteria / fungi / decomposers allow named example or mould ignore germs / worms / other detritivores

M7.(a) any three from:

- place 30-m tape measure across field / from one wood to the other
- place quadrat(s) next to the tape
- count / record the number / amount of dandelions / plants in the quadrat ignore 'record the results'
ignore measures / estimates dandelions
- repeat every 2 metres
allow every metre / at regular intervals
(b) (i) low light / it is shady
allow no light
ignore sun / rays
or
not enough water / ions / nutrients
accept correct named ion
ignore no water / ions / nutrients
or
wrong pH of soil
accept competition with trees for light / water / ions ignore competition for space and competition unqualified accept soil too acidic / too alkaline ignore temperature
(ii) sensible suggestion for a small area, eg chance variation / anomaly / poisoned by animal waste / wrong pH of soil / eaten (by animals) / cut down / footpath
(c) repeat (transect) / compare with the results of other groups allow 'do it in two different locations' for 2 marks

M8.(a) measure the length / area of the field
(b) use (a) random number(s) (generator)
or
use coordinates method explained
(c) compare their results with another student's results
place more quadrats
(d) $0.25 \times 5=1.25$
$500 / 1.25=400$
$(40 \times 400=) 16000$
allow 16000 with no working shown for $\mathbf{3}$ marks
(e) 11
(f) (quadrat) 5
both quadrat number and correct reason must be given for 1 mark
very few or only 2 growing (here)

M9.(a) any two from:

- amount of waste on each heap allow size of heap
- (type of) materials on each heap if neither marking points one or two awarded, allow 1 mark for same waste
- put heaps in same (environmental) conditions.
e.g. keep at same (outside) temperature allow put in same place

Q1.The diagram below shows a food chain in a garden.

Lettuce

Snail

Shrew
Lettuce © destillat/iStock/Thinkstock; Snail ©Valengilda/iStock/Thinkstock; Shrew © GlobalT/iStock/Thinkstock
(a) Name one consumer shown in the diagram above.
\qquad
(b) Name one carnivore shown in the diagram above.
\qquad
(c) A disease kills most of the shrews in the garden.

Suggest why the number of snails in the garden may then increase.
\qquad
\qquad
(d) What is the name given to all the snails in the garden shown in the diagram above?

Tick one box.
Community \square
Ecosystem \square
Population

Territory

(e) Which pyramid of biomass is correct for the food chain shown in the diagram above?

Tick one box.

B \square
A
\square

$c \square$
(f) Some snails ate some lettuces.

The lettuces contained 11000 kJ of energy.
Only 10% of this energy was transferred to the snails.
Calculate the energy transferred to the snails from the lettuces.
\qquad
\qquad kJ
(g) Give one reason why only 10% of the energy in the lettuces is transferred to the snails.

Tick one box.
The lettuces carry out photosynthesis

The snails do not eat the roots of the lettuces

Not all parts of a snail can be eaten

(h) Abiotic factors can affect the food chain.

Wind direction is one abiotic factor.
Name one other abiotic factor.

Q2.The mould Penicillium can be grown in a fermenter. Penicillium produces the antibiotic penicillin.

The graph shows changes that occurred in a fermenter during the production of penicillin.

(a) During which time period was penicillin produced most quickly?

Draw a ring around one answer.
0 - 20 hours
40 - 60 hours
80 - 100 hours
(b) (i) Describe how the concentration of glucose in the fermenter changes between 0 and 30 hours.
\qquad
\qquad
\qquad
\qquad
(ii) How does the change in the concentration of oxygen in the fermenter compare with the change in concentration of glucose between 0 and 30 hours?

Tick (\checkmark) two boxes.

The oxygen concentration changes after the glucose concentration.

The oxygen concentration changes before the glucose concentration.

The oxygen concentration changes less than the glucose concentration.

The oxygen concentration changes more than the glucose concentration.

(iii) What is the name of the process that uses glucose?

Draw a ring around one answer.

$$
\begin{array}{lll}
\text { distillation } & \text { filtration } & \text { respiration }
\end{array}
$$

Q3.The diagram shows one type of biogas generator.

(a) With this type of biogas generator, the concentration of solids that are fed into the reactor must be kept very low.

Suggest one reason for this.
Tick (\checkmark) one box.

A higher concentration contains too little oxygen.

A higher concentration would be difficult to stir.

A higher concentration contains too much carbon dioxide.

(b) The pie chart shows the percentages of the different gases found in the biogas.

Gas \mathbf{X} is the main fuel gas found in the biogas.
(i) What is the name of gas \mathbf{X} ?

Draw a ring around one answer.
methane nitrogen oxygen
(ii) What is the percentage of gas \mathbf{X} in the biogas?

Show clearly how you work out your answer.
\qquad
\qquad
Percentage of gas $\mathbf{X}=$
(c) If the biogas generator is not airtight, the biogas contains a much higher percentage of carbon dioxide.

Draw a ring around one answer in each part of this question.
(i) The air that leaks in will increase the rate of $\begin{aligned} & \text { aerobic respiration. } \\ & \text { anaerobic respiration. }\end{aligned}$

Page 8

Q4.Some students wanted to find the number of thistle plants growing on a lawn.
The students placed 10 quadrats at different positions on the lawn.
Each quadrat measured 1 metre $\times 1$ metre.
The students counted the number of thistle plants in each quadrat.
(a) Which method should the students use to decide where to place the 10 quadrats?

Tick (\checkmark) one box.
Place the quadrats as evenly as possible around the lawn. \square
Place 5 quadrats in areas with many thistle plants and 5 quadrats in areas with only a few thistle plants.

Place all the quadrats randomly on the lawn.
(b) The diagram shows the lawn with the positions of the thistle plants and the students' 10 quadrats.

(i) Complete the table to show:

- how many thistle plants the students found in each of the first four quadrats
- the total number of thistle plants found in all 10 quadrats.

Quadrat number	Number of thistle plants in each quadrat
1	
2	
3	1
4	3
5	0
6	0
7	2
9	1
10	
Total	

(ii) Calculate the mean number of thistle plants in one quadrat.
\qquad
Mean =
(iii) The lawn measured 12 metres long and 10 metres wide.

Use your answer from part (b)(ii) to estimate the number of thistle plants on the lawn.

> Estimated number of thistle plants =
\qquad
(c) How could the students make their estimate more accurate?
\qquad
\qquad

Q5.Gardeners often collect fallen leaves in autumn and place them on compost heaps.

(a) Over the next year the leaves decay.

Which living things cause decay?
\qquad
(b) The leaves decay more quickly in summer than in winter.

Give one reason why.
\qquad
\qquad
(c) The compost heap has holes in its sides to let gases enter.

Which gas is needed for decay?
Tick (\checkmark) one box.
Carbon dioxide \square
Nitrogen $\quad \square$

Oxygen \square

Q6. Some students set up biogas generators to find out which type of animal manure produced the most biogas.

The diagram shows the apparatus they used.

The students:
Step 1: Put some cow manure into the plastic bottle
Step 2: Filled the bottle with distilled water
Step 3: Attached a balloon over the top of the bottle
Step 4: Put the bottle in a warm room for 10 days
Step 5: Measured the diameter of the balloon on day 10
Step 6: Repeated steps 1 to 5 using each type of animal manure.
The students' results are shown in the table.

Type of animal manure	Diameter of balloon on day $\mathbf{1 0}$ in cm
Cow	29
Horse	26
Sheep	34
Pig	32

(a) What is the main gas found in biogas?
\qquad
(b) The students concluded that sheep manure is the best type of manure to use in a biogas generator.

A teacher told the students that the design of their investigation meant that their
conclusion might not be correct.
Suggest two reasons why.
1.
\qquad
2.
\qquad
(c) Another student suggested that adding potato to the manure would increase the amount of biogas produced.

Why would adding potato increase the amount of biogas produced?
Tick (\checkmark) one box.

The potato contains a lot of carbohydrate.

The potato contains a lot of protein.

The potato contains a lot of water.

Q7.Some students investigated the distribution of dandelion plants in a grassy field. The grassy field was between two areas of woodland.

Figure 1 shows two students recording how many dandelion plants there are in a 1 metre $\times 1$ metre quadrat.

Figure 1

Figure 2 shows a section across the area studied and Figure 3 shows a bar chart of the students' results.

Figure 2

Figure 3

Number of dandelion plants

Distance in m
(a) How did the students use the quadrat and the 30-metre tape measure to get the results in Figure 3?

Use information from Figure 1.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) (i) Suggest one reason why the students found no dandelion plants under the trees.
\qquad
\qquad
(ii) Suggest one reason why the students found no dandelion plants at 16 metres.
\qquad
\qquad
(c) The teacher suggested that it was not possible to make a valid conclusion from these results.

Describe how the students could improve the investigation so that they could make a valid conclusion.
\qquad
\qquad
\qquad
\qquad

Q8.A student was asked to estimate how many clover plants there are in the school field. The image below shows the equipment used.

Quadrat

Tape

Identification key
Not drawn to scale

This is the method used.

1. Throw a quadrat over your shoulder.
2. Count the number of clover plants inside the quadrat.
3. Repeat step 1 and step 2 four more times.
4. Estimate the number of clover plants in the whole field.
(a) What is the tape in the image above used for in this investigation?
\qquad
\qquad
(b) The teacher told the student that throwing the quadrat over his shoulder was not random.

The method could be improved to make sure the quadrats were placed randomly.
Suggest one change the student could make to ensure the quadrats were placed randomly.
\qquad
\qquad
(c) How could the student improve the investigation so that a valid estimate can be
made?

Tick two boxes.
Weigh the clover plants \square
Compare their results with another student's results

Count the leaves of the clover plants

Place more quadrats

Place the quadrats in a line across the field \square
(d) The table below shows the student's results.

Quadrat number	Number of clover plants counted
1	11
2	8
3	11
4	9
5	1
Total	40

The area of the school field was $500 \mathrm{~m}^{2}$.
The quadrat used in the table above had an area of $0.25 \mathrm{~m}^{2}$.
Calculate the estimated number of clover plants in the school field.
\qquad
\qquad
Estimated number of clover plants =
(e) What was the mode for the results in the table above?

Tick one box.
1

8

11

40

(f) Suggest which quadrat could have been placed under the shade of a large tree.

Give one reason for your answer.
Quadrat number \qquad
Reason \qquad
\qquad

Q9.A gardener investigates if turning over the waste in a compost heap makes the waste decay more quickly.

The gardener:

- makes two separate heaps of garden waste, heap A and heap B
- turns over the material in heap A every 2 weeks
- does not turn over the material in heap B
- estimates the amount of decay in the two heaps after 6 months.

The diagram shows the two heaps of garden waste at the beginning of the investigation.
Heap A

(a) Suggest two factors, other than time, the gardener should control to make the investigation fair.

1. \qquad
\qquad
2. \qquad
\qquad
(b) Name one type of living thing that causes decay.
\qquad
(c) The gardener's results are shown in the table.

Compost heap	Estimated amount of decay
A	A lot
B	Very little

(i) Why does turning over the material in heap \mathbf{A} make the material decay more quickly?
\qquad
\qquad
(ii) The gardener puts decayed material around his plants to help them grow.

Suggest why the plants in a woodland grow well each year without material from compost heaps being added.
\qquad
\qquad
\qquad
\qquad

M1.
(a) methane is produced
ignore bad smell
which is a greenhouse gas / causes global warming
(b) $\quad(9.80 / 0.20=49$ therefore $) 49: 1$
(c) horse (manure)
allow ecf from 11.2
closest to $25: 1$ (ratio)
(d) Level 3 (5-6 marks):

A detailed and coherent explanation is given, which logically links how carbon is released from dead leaves and how carbon is taken up by a plant then used in growth.

Level 2 (3-4 marks):

A description of how carbon is released from dead leaves and how carbon is taken up
by a plant, with attempts at relevant explanation, but linking is not clear.

Level 1 (1-2 marks):

Simple statements are made, but no attempt to link to explanations.
0 marks:
No relevant content.
Indicative content
statements:

- (carbon compounds in) dead leaves are broken down by microorganisms / decomposers / bacteria / fungi
- photosynthesis uses carbon dioxide

explanations:

- (microorganisms) respire
- (and) release the carbon from the leaves as carbon dioxide
- plants take in the carbon dioxide released to use in photosynthesis to produce glucose

use of carbon in growth:

- glucose produced in photosynthesis is used to make amino acids / proteins / cellulose
- (which are) required for the growth of new leaves
(e) any three from:
(storage conditions)
- (at) higher temperature / hotter
- (had) more oxygen
- (had) more water / moisture
- (contained) more microorganisms (that cause decay) allow reference to bacteria / fungi / mould

M2. (a) photosynthesis
(b) (i) 140
(ii) (10 billion tonnes) more added (to atmosphere) than removed allow ecf from part (b)(i)

M3. (a) (i) counts / 12
$\times 120 \times 80 / \times 9600$
or
\times area of field
(ii) (more) quadrats / repeats
placed randomly
ignore method of achieving randomness
(b) (i) any three from:

- temperature / warmth / heat
- water / rain
- minerals / ions / salts (in soil)
allow nutrients / fertiliser / soil fertility
ignore food
- $\quad \mathrm{pH}$ (of soil)
- trampling
- herbivores
ignore predators
- competition (with other species)
- pollution qualified e.g. SO_{2} / herbicide
- wind (related to seed dispersal).
ignore space / oxygen / CO_{2} / soil unqualified
(ii) light needed for photosynthesis
for making food / sugar / etc.
effect on buttercup distribution eg more plants in sunny areas / fewer plants in shady areas
(c) (i) fertiliser / ions / salts cause growth of algae / plants
(algae / plants) block light
(low light) causes algae / plants to die
microorganisms / bacteria feed on / break down / cause decay of organic matter / of dead plants
do not allow germs / viruses
(ii) sewage / toxic chemicals / correct named example eg metals / bleach / disinfectant / detergent etc
allow suitable named examples eg metals such as $\mathrm{Pb} / \mathrm{Zn}$ / Cr / oil / SO ${ }_{2}$ / acid rain / pesticides / litter ignore chemicals unqualified ignore waste unqualified ignore human waste / domestic waste / industrial waste unqualified
(d) (i) 2
(ii) more food
allow other sensible suggestion eg more species colonise from tributary streams after forest
(iii) number of stonefly species decreases (from \mathbf{A} to \mathbf{B} / \mathbf{B} to \mathbf{C} / \mathbf{A} to \mathbf{C}) as more pollution enters river / less oxygen allow fewer species in more polluted water ignore none are found at site C

M4. (a) wear a face mask
allow wear gloves
(b) Level 2 (3-4 marks):

A detailed and coherent plan covering all the major steps. It sets out the steps needed in
a logical manner that could be followed by another person to produce an outcome which
will address the hypothesis.

Level 1 (1-2 marks):

Simple statements relating to steps are made but they may not be in a logical order.
The plan may not allow another person to produce an outcome which will address the hypothesis.

0 marks:

No relevant content.

Indicative content

Plan:

- cut a specified number of pieces of bread to the same size
- place mould spores on the bread
- the number of mould spores needs to be the same quantity of mould spores on each piece of bread
- place bread in different sealable plastic bags
- place in different temperatures (minimum of three) eg fridge, room, incubator
- leave each for the same amount of time eg four days
- measure the percentage cover of mould on each piece of bread
- repeat experiment
additional examiner guidance:
- good level 2 answer will describe how the growth of mould can be measured and
will give a range of different temperatures to be used
- allow equivalent levels of credit for alternative methodologies that would clearly produce a measurable outcome in terms of mould growth at various temperatures
(c) any one from:
- type of mould
- amount of mould (put on each piece of bread)
- amount of air in the plastic bags
- size of the pieces of bread
- type of bread
- amount of moisture / water added
(d) $(56-4=52) / 5$
10.4
allow 10.4 with no working shown for 2 marks
ecf for incorrectly read figures for 1 mark
(e) (decomposition occurs at a faster rate when the temperature is higher or amount of decomposition is higher when temperature is higher

M5.
(a) limiting their movement
or controlling the temperature of their surroundings
reason:
reduces energy transfer
if no other marks awarded, allow $\mathbf{1}$ mark for: 'fit more chickens in same space'
(b) (i) without oxygen
ignore 'without air'
(ii) any two from:

- ethanol
allow alcohol
- carbon dioxide
- lactic acid.
do not accept energy / ATP (apply list rule)
(c) enzymes are denatured / change shape ignore microbes are killed
(enzyme) shape is vital for function or won't work (as efficiently)
(d) (i) 200
(ii) 120
allow ecf from (d)(i)
e.g.

60 x 100 (i)
(e) causes global warming
one predicted consequence of global warming
eg rising sea levels, climate change, change in migration patterns, change in distribution of species
or
methane is flammable so might cause fire / damage
if no other marks awarded, allow methane is a greenhouse gas for 1 mark

Q1.A gardener wants to add compost to the soil to increase his yield of strawberries.
The gardener wants to make his own compost.
(a) An airtight compost heap causes anaerobic decay.

Explain why the gardener might be against producing compost using this method.
\qquad
\qquad
\qquad
\qquad
(b) The gardener finds this research on the Internet:
'A carbon to nitrogen ratio of $\mathbf{2 5 : 1}$ will produce fertile compost.'
Look at the table below.

Type of material to compost	Mass of carbon in sample in \mathbf{g}	Mass of nitrogen in sample in \mathbf{g}	Carbon:nitrogen ratio
Chicken manure	8.75	1.25	$7: 1$
Horse manure	10.00	0.50	$20: 1$
Peat moss	9.80	0.20	\mathbf{X}

Determine the ratio \mathbf{X} in the table above.
\qquad
Ratio \qquad
(c) Which type of material in the table above would be best for the gardener to use to make his compost?

Justify your answer.
(d) Some of the leaves from the gardener's strawberry plant die. The dead leaves fall off the strawberry plant onto the ground. The carbon in the dead leaves is recycled through the carbon cycle. Explain how the carbon is recycled into the growth of new leaves.
\qquad
(e) The diagram below shows two strawberries.

- Both strawberries were picked from the same strawberry plant.
- Both strawberries were picked 3 days ago.
- The strawberries were stored in different conditions.

Strawberry A

A © sarahdoow/iStock/Thinkstock, B © Mariusz Vlack/iStock/Thinkstock
Give three possible reasons that may have caused strawberry A to decay.
1
\qquad
2 \qquad
\qquad
3 \qquad
\qquad

Q2.This question is about carbon.
The graph shows the mass of carbon added to and removed from the atmosphere each year.

(a) Name process \mathbf{X}.
\qquad
(b) (i) Calculate the mass of carbon added to the atmosphere by respiration per year.

Answer = \qquad billion tonnes
(ii) Some scientists are concerned that the mass of carbon in the atmosphere is changing.

How does the data in the graph support this idea?
\qquad
\qquad

Q3.A grassy field on a farm measured 120 metres by 80 metres.
A student wanted to estimate the number of buttercup plants growing in the field.
The student found an area where buttercup plants were growing and placed a $1 \mathrm{~m} \times 1 \mathrm{~m}$ quadrat in one position in that area.

Figure 1 shows the buttercup plants in the quadrat.
Figure 1

The student said, 'This result shows that there are 115200 buttercup plants in the field.'
(a) (i) How did the student calculate that there were 115200 buttercup plants in the field?
\qquad
\qquad
\qquad
\qquad
(ii) The student's estimate of the number of buttercup plants in the field is probably not accurate. This is because the buttercup plants are not distributed evenly.

How would you improve the student's method to give a more accurate estimate?
\qquad
\qquad
\qquad
(b) Sunlight is one environmental factor that might affect the distribution of the buttercup plants.
(i) Give three other environmental factors that might affect the distribution of the buttercup plants.

1. \qquad
2.
3. \qquad
(ii) Explain how the amount of sunlight could affect the distribution of the buttercup plants.
(c) Figure 2 is a map showing the position of the farm and a river which flows through it.

Figure 2

Every year, the farmer puts fertiliser containing mineral ions on some of his fields. When there is a lot of rain, some of the fertiliser is washed into the river.
(i) When fertiliser goes into the river, the concentration of oxygen dissolved in the water decreases.

Explain why the concentration of oxygen decreases.
\qquad
(ii) There is a city 4 km downstream from the farm.

Apart from fertiliser, give one other form of pollution that might go into the river as it flows through the city.
(d) Three sites, A, B and C, are shown in Figure 2.

Scientists took many samples of river water from these sites.
The scientists found larvae of three types of insect in the water: mayfly, stonefly and caddisfly. For each type of insect the scientists found several different species.

The scientists counted the number of different species of the larvae of each of the three types of insect.

Figure 3 shows the scientists' results.

Figure 3

(i) How many more species of mayfly were there at Site \mathbf{B} than at Site \mathbf{A} ?
(ii) Suggest what caused this increase in the number of species of mayfly.
\qquad
\qquad
(iii) The scientists stated that the number of species of stonefly was the best indicator of the amount of oxygen dissolved in the water.

Use information from Figure 3 to suggest why.

Q4.A student plans an investigation using mould.
(a) Mould spores are hazardous.

Give one safety precaution the student should take when doing this investigation.
\qquad
\qquad
(b) A student made the following hypothesis about the growth of mould:
'The higher the temperature, the faster the growth of mould'.
The student planned to measure the amount of mould growing on bread.
The student used the following materials and equipment:

- slices of bread
- sealable plastic bags
- a knife
- a chopping board
- mould spores.

Describe how the materials and equipment could be used to test the hypothesis.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Give one variable the student should control in the investigation.
(d) Another student did a similar investigation.

The diagram below shows the results.

Determine the rate of mould growth at $42^{\circ} \mathrm{C}$ between day 2 and day 7 .
\qquad
\qquad
Rate of mould growth = \qquad units per day
(e) The growth of mould shows decomposition of the bread.

Give a conclusion about decomposition from the results in the diagram above.
\qquad
\qquad

Q5.Figures 1 and 2 show battery chickens and free-range chickens.

Figure 1 Battery chickens

© studiodr/iStockThinkstock

Battery chickens are kept in cages indoors. Free-range chickens can walk around outside.
(a) Give one way in which food production might be more efficient from battery chickens than from free-range chickens. Give a reason for your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Some farms use waste from chickens to produce biogas in an anaerobic digester.

Microorganisms in the digester break down the waste by anaerobic respiration.
(i) What does anaerobic mean?
\qquad
\qquad
(ii) One product of anaerobic respiration is methane.

Name two other products of anaerobic respiration.
1.
2.
(c) The best temperature for anaerobic digesters is about $35^{\circ} \mathrm{C}$.

Explain why the volume of biogas produced would be less at higher temperatures.
\qquad
\qquad
\qquad
\qquad
(d) Figure 3 shows other types of waste that can be used in an anaerobic digester to produce biogas.

Figure 3

(i) What is the volume of biogas produced by a tonne of grass cuttings?
\qquad
(ii) Biogas is 60% methane.

Calculate the volume of methane gas produced per tonne of grass cuttings.
\qquad m^{3}
(e) Why should biogas not be allowed to escape into the atmosphere?
\qquad
\qquad
\qquad
\qquad

M1. (a) any two from:

- fewer trees to take in carbon dioxide for photosynthesis
- decomposers / microorganisms respire (as they decay debris) releasing carbon dioxide
- burning of wood releases carbon dioxide
allow carbon dioxide released by burning fossil fuels in vehicles / factories
(b) Marks awarded for this answer will be determined by the Quality of Communication (QC) as well as the standard of the scientific response. Examiners should also refer to the information on page 5, and apply a 'best fit' approach to the marking.

0 marks
No relevant content.

Level 1 (1-2 marks)

There is a brief description of some steps in the process but the order is not clear with little biological vocabulary used.

Level 2 (3-4 marks)
There is a reasonably clear description of the process involving many of the steps and using some biological vocabulary.

Level 3 (5-6 marks)

There is a clear, logical and detailed scientific description of the process using appropriate biological vocabulary.

examples of biology points made in the response:

- this contains mineral ions (and organic matter)
- this increases growth of algae / water plants
- the plants / algae (underneath) die
- due to lack of light / photosynthesis / space
- decomposers / microorganisms feed on decaying matter or multiply rapidly
- the respiration of decomposers uses up all the oxygen
- so invertebrates die due to lack of oxygen
- this is called eutrophication

M2. (a) (i) anaerobic respiration
or
fermentation
(ii) oxygen is present
accept O_{2}
do not accept O, O^{2} or O^{2}
aerobic respiration occurs
ignore anaerobic
CO_{2} from respiration
allow from fermentation
(b) high methane after this time ignore CO_{2}
(c) organic matter / food / nutrients / named eg used up / reactants allow too hot / accumulation of toxins / named do not allow products ignore energy

M3. (a) 0.18

> award both marks for correct answer irrespective of working if no answer or incorrect answer
> allow 1 mark for $45 \times 100 / 25000$
(b) heat / thermal
allow heat from respiration
(c) energy / mass / biomass lost / not passed on or energy / mass / biomass is used or not enough energy / mass / biomass left ignore reference to losses via eg respiration / excretion / movement / heat
a sensible / appropriate use of figures including heron
eg only 2 from frog / to heron
ignore units
(d) any three from:
accept marking points if candidate uses other terms for microorganisms

- (microorganisms) decay / decompose / digest / breakdown / rot ignore eat
- (breakdown) releases minerals / nutrients / ions / salts / named ignore food
- (microorganisms) respiration
ignore other organisms respiring
- (microorganisms / respiration) release of carbon dioxide

M4. (a) (i) 5.2
award 2 marks for correct answer, irrespective of workingor lack of it
award 1 mark for $62.4 \div 12$ only with incorrect or no answer
(ii) the smaller the (mass of the) bird the more energy is needed(per gram of body mass)
allow converse
ignore figures
(iii) smaller bird has larger surface area : volume / mass ratio allow converse
so heat / energy lost more quickly allow lose more heat / energy if (a)(ii) describes a trend of more energy with increasing body mass allow one mark for idea of more energy needed for flight
(b) larger birds spend less time feeding
accept converse
allow the less energy they need per day the longer they spend feeding
since they need less food per gram of body mass (to satisfy energy needs)

M5. (a) use of quadrat / point frame allow description
randomly placed / random sampling ignore reference to transects
(b) (i) 6
(ii) more light in A / in field / where sunny
more / better / faster photosynthesis in A / with more light allow converse

ignore sun

(iii) use light meter / measure light intensity in both habitats
take many measurements at same time of the day

or

laboratory / field investigation with 2 batches high light and low light (1)
count or number of flowers in each (1)
counting point is dependent on investigation point
(c) more glucose / energy available
allow other named product eg protein

Page 6

allow if more energy produced
for growth
dependent on 1st mark

M6.(a) (i) to get data re position of seaweed / of organism
in relation to distance from sea / distance down shore / how long each seaweed was exposed
(ii) repeat several times minimum $=2$ repeats
elsewhere along the shore
(iii) bladder wrack is further up the shore (than the sea lettuce) / exposed for longer
ignore found in dry areas / on bare rock
sea lettuce (only) in rock pools / in the sea / (only) in water
(b) gets more light / closer to light
allow better access to CO_{2}
(so) more photosynthesis
allow 1 mark for light for photosynthesis
allow 1 mark for CO_{2} for photosynthesis
ignore reference to oxygen for respiration
'more' only needed once for 2 marks

M7.(a) (i) (initially there is) oxygen
accept:
oxygen hasn't been used up yet (so not anaerobic conditions yet)
(so) aerobic respiration (by microorganisms)
accept (because) methane is produced in anaerobic (fermentation)
producing CO_{2} (which does not burn)
accept there is no methane ignore inflammable
(sheep manure) produces biogas with a higher percentage methane or produces 2\% more methane
allow correct difference in volume calculated using 0.408(7) / 0.41 / 0.409 minus answer given in (i) for 2 marks

M8. (a) extremophile(s)
(b) (i) common (periwinkle) and flat (periwinkle) either order, both required
(ii) (common and flat) both live in the same habitat / area / named area allow habitats overlap the most
(iii) any two from:

- would have wrong food
- would otherwise be exposed to (specific) predators
- cannot tolerate extended exposure to air or reduced submersion in seawater
allow cannot tolerate temperature / dehydration
- cannot tolerate high salt concentration (in rock pools) allow low salt concentration (in rock pools)
- cannot compete with small periwinkle

Q1.Human activities affect the environment.
(a) Deforestation results in an increase in carbon dioxide levels in the atmosphere. Give two reasons why.
\qquad
\qquad
\qquad
\qquad
(b) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

A dairy farmer washes out his cow shed each day. The waste water contains urine and faeces. The waste water overflows into a stream by mistake.

The waste water will have an effect on the plants and invertebrates living in the stream.

Explain why.
\qquad

Q2. Some scientists set up a biogas generator.
The table shows how the rate of biogas production and the composition of the biogas changed over the first 30 days.

Time in days	Rate of biogas production in cm³ per hour	$\|c\|$ 	Percentage of methane
	Percentage of carbon dioxide		
5	90	27	56
10	50	20	78
15	170	30	68
20	115	68	30
25	110	72	26
30	105	71	27

(a) (i) Name the process that produces the methane in biogas.
\qquad
(ii) For the first 10 days, the gas released from the generator contained a high concentration of carbon dioxide. This was because there was air in the generator when it was first set up.

Explain why the presence of air results in a high concentration of carbon dioxide in the biogas.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The scientists concluded that it would not be profitable to collect biogas from the generator until after about 20 days.

Use the data to explain why.
\qquad
\qquad
(c) The rate of biogas production slowed down towards the end of the investigation. Suggest one reason why.
\qquad
\qquad

Q3. The diagram shows the annual energy flow through $1 \mathrm{~m}^{2}$ of a habitat.
The unit, in each case, is kJ per m^{2} per year.

(a) Calculate the percentage of the energy absorbed by the grass from sunlight that is transferred to the frog.

Show clearly how you work out your answer.
\qquad
\qquad
Answer ... \%
(b) All of the energy the grass absorbs from the sun is eventually lost to the surroundings.

In what form is this energy lost?
\qquad
(c) Food chains are usually not more than five organisms long.

Explain why.

To gain full marks you must use data from the diagram.
\qquad
\qquad
\qquad
\qquad
(d) In this habitat microorganisms help to recycle materials.

Explain how.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q4.The photographs show four different species of bird.

Great tit

© JensGade/iStock
Coal tit

© MikeLane45/iStock

Blue tit

© Marcobarone/iStock
Long-tailed tit

© Andrew Howe/iStock

The table gives information about the four species of bird in winter.

Bird species	Mean body mass in grams	Mean energy needed in kJ per day	Mean percentage of day spent feeding
Great tit	21	84.2	75
Blue tit	12	62.4	81
Coal tit	9	49.5	88
Lond-tailed tit	7	42.0	92

(a) (i) Calculate the energy needed per day per gram of body mass for the blue tit.
\qquad
\qquad
\qquad
Answer = \qquad kJ per day per gram of body mass
(ii) Describe the trend for energy needed per day per gram of body mass for the four species of bird.
\qquad
\qquad
\qquad
(iii) Suggest an explanation for the trend you have described in part (a)(ii).
\qquad
\qquad
\qquad
\qquad
(b) Describe and explain the trend shown by the data for the time spent feeding in winter for the birds.
\qquad
\qquad
\qquad
\qquad

Q5.Some students studied bluebell plants growing in two different habitats.
Habitat A was a sunny field next to woodland. Habitat B was a shady, moist woodland.

A bluebell plant can have several flowers on one flower stalk. The students counted the number of flowers on each of 40 bluebell flower stalks growing in each habitat. The bar charts show the results.

Habitat A: Sunny field next to woodland

Habitat B: Shady, moist woodland

(a) The students wanted to collect valid data.

Describe how the students should have sampled the bluebell plants at each habitat to collect valid data.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) (i) The students used the bar charts to find the mode for the number of flowers per stalk in the two habitats.

The mode for the number of flowers per stalk in habitat \mathbf{A} was 11.
What was the mode for the number of flowers per stalk in habitat \mathbf{B} ?
Mode = ..
(ii) The students suggested the following hypothesis:
'The difference in the modes is due to the plants receiving different amounts of sunlight.'

Suggest why.
\qquad
\qquad
\qquad
\qquad
(iii) Suggest how the students could test their hypothesis for the two habitats.
\qquad
\qquad
\qquad
\qquad
(c) Suggest how receiving more sunlight could result in the plants producing more flowers per stalk.
\qquad
\qquad

Q6.At the seashore, the tide comes in and goes out twice each day.
Some students investigated whether two different species of seaweed could live only at certain positions on a rocky shore.
Seaweeds are plant-like organisms that make their food by photosynthesis.
Figure 1 shows the two species of seaweed that the students investigated.

Figure 1

(a) The students:

1 placed a 50-metre tape measure on the rocks at right angles to the sea
2 placed a quadrat next to the tape measure
3 recorded whether each species was present or not.
The students repeated steps 2 and 3 every metre down the shore.
Figure 2 shows a section of the seashore and the students' results.
Figure 2
Section of the seashore

(i) The students placed the quadrat at regular intervals along a transect line rather than placing the quadrat at random positions anywhere on the rocky shore.

Explain why.
\qquad
\qquad
\qquad
\qquad
(ii) How could the students have improved their investigation to ensure that they produced valid data?
\qquad
\qquad
\qquad
(iii) Figure 2 is repeated here to help you answer this question.

Figure 2
Section of the seashore

The students concluded that bladder wrack is better adapted than sea lettuce to survive in dry conditions.

What is the evidence for this conclusion?
Use information from Figure 2.
\qquad
\qquad
\qquad
(b) The bladder wrack has many air bladders. The air bladders help the bladder wrack to float upwards when the sea covers it. Suggest how this helps the bladder wrack to survive.
\qquad
\qquad
\qquad
\qquad

Q7.The image below shows a model biogas generator.

Students used the model biogas generator to investigate which type of food waste produces the greatest yield of biogas.

Gas collects in the balloon. The gas is then released through the valve and is burned at the Bunsen burner.

The students:

- put 500 g of potato peelings in the plastic bottle with some water and sealed the apparatus
- released the gas from the balloon after day two and timed how long the gas burned for
- released the gas that had collected in the balloon from day two to day four and timed how long the gas burned for
- repeated the investigation using 500 g of cooked rice, then 500 g of cabbage leaves and then 500 g of cooked pasta.
(a) Table 1 shows the students' results.

Table 1

Type of food waste	Length of time the gas burned in seconds	
	After day two	From day two to day four
	0	175
Cooked rice	0	100
Cabbage leaves	0	150
Cooked pasta	0	160

(i) Suggest why the gas collected in the balloon and released after day two did not burn.
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Suggest why potato peelings produced the most biogas.
\qquad
\qquad
(b) Scientists investigated the production of biogas from different types of animal manure.

Table 2 shows the scientists' results.

Table 2

Type of mannure	Volume of biogas produced in \mathbf{m}^{3} per kg of manure	Methane in the biogas as \% of total volume
Cow	0.34	65
Pig	0.58	68
Hen	0.62	60
Horse	0.30	66
Sheep	0.61	67

(i) Calculate the volume of methane produced from 1 kg of cow manure.
\qquad
\qquad
Volume of methane $=$ \qquad m^{3}
(ii) One scientist concluded that it would be better to use sheep manure in a biogas generator than to use cow manure.

What is the evidence for this conclusion?
Use information from Table 2 in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q8.On a rocky shore, when the tide goes in and out, organisms are exposed to the air for different amounts of time.
(a) On hot, windy days when the tide is out the concentration of the salt solution in rock pools may become very high.

What term is used to describe organisms that can survive in severe conditions such as very high concentrations of salt solution?
\qquad
(b) Periwinkles are types of snail.

Students surveyed the different types of periwinkle living on a rocky shore.
The diagram shows the results of the students' survey.
The highest position that the sea water reaches on the shore is called the high tide level.
Each bar represents the range of habitats for each type of periwinkle.

Position on shore	Small periwinkle	Rough periwinkle	Common periwinkle	Flat periwinkle
High tide level \downarrow \downarrow Low tide level	T	T		

(i) Which two types of periwinkle are likely to compete with each other to the greatest extent?
\qquad
(ii) Explain your answer to part (b)(i).
\qquad
\qquad
(iii) The small periwinkle can survive much nearer to the high tide level than the
flat periwinkle.
Suggest two reasons why the flat periwinkle cannot survive near to the high tide level.
1.
\qquad
\qquad
2. \qquad
\qquad
\qquad

M1.
(a) snail or shrew
additional incorrect answer negates correct answer
(b) shrew
additional incorrect answer negates correct answer
(c) fewer shrews to eat them
(d) population
(e) \mathbf{C}
(f) $\quad(11000 \times 0.1=)$ 1100 (kJ)
(g) the snails do not eat the roots of the lettuces
(h) any one from:

- light (intensity)
- temperature
- moisture (levels)
- soil pH
- mineral / ion content (of soil)

Page 2

- wind intensity / speed
ignore wind direction
- carbon dioxide (levels)
- oxygen (levels)

M2. (a) In sequence:

heron
frog
slug
lettuce
(b) (i) light / sun
ignore photosynthesis / respiration cancel mark if water / ions etc given do not accept heat
(ii) traps / absorbs light accept energy for light do not accept collects / attracts do not accept 'traps sun'
(iii) 162
if correct answer, ignore working / lack of working $\frac{10 \times 1620}{100}$ for 1 mark

M3. (a) (i) tick in box of FIRST pyramid
(ii) any one from:

- less energy / biomass lost / wasted
- greatest biomass / energy for humans
ignore human box is bigger ignore .food. for humans
- \quad shortest food chain or less stages or least number of different organisms or only one predator or only 2 boxes tall or least boxes
allow only one stage

1

2
(ii) any one from:

- less cruelty or more ethical or better animal welfare ignore more natural ignore ideas referring to against God's will
- better flavour / quality (of meat) ignore pig health or free range / organic
- less pollution / etc / less fossil fuel used for heating
ignore quality of life
assume for pigs outdoors
allow converse if clear for pigs indoors

M4. (a) bottom / third pyramid ticked extra box ticked cancels the mark
(b) the sun
extra ring drawn cancels the mark
(c) any two from:

- heat ignore keeping warm
- movement / named example internal or external ignore digestion
- respiration
do not allow for respiration
- faeces / not all digested
allow waste for 1 mark if neither faeces nor excretion given (ie waste + movement = $\mathbf{2}$ marks waste + faeces = $\mathbf{1}$ mark
- excretion/ urine
- not all of animal / all parts eaten
do not accept growth / reproduction

M5. (a) (i) any two from:

- more milk
(about) 50 litres milk compared to (up to) 20 litres / 30 litres more ignore costs / profit
- electricity produced
- farmers can keep more cows in the space answers must refer to number of cows and space
(ii) any two from:
- less stress for cow or not cruel to cow or cows have freedom to move around ignore references to ethical / unnatural without qualification
- crops fertilised
- less disease or disease not as easily spread
(b) more
less
in this order

M6. (a) (i) sun ignore light apply list principle
(ii) photosynthesis

> apply list principle allow approximate spelling do not accept phototropism
(b) (i) chemical
(ii) carbon dioxide
(iii) carbohydrates
(c) As carbon dioxide from the caterpillar
if more than 2 boxes ticked deduct one mark for each additional incorrect box

As faeces (droppings) from the blue-tit

M7.(a) sulfur dioxide
(b) (i) mutation
(ii) pale form now (more) easily seen (by predators) or dark form now less easily seen (by predators)
accept ref to camouflage
so pale form (more) likely to be eaten or dark form less likely to be eaten
so dark form (more likely to) breed / pass on genes
or
pale form less likely to breed / pass on genes
(c) (i) pyramid of three layers of diminishing size either way up
three labels in food chain order
award 2 marks only if the pyramid is correctly labelled accept trees / birch accept (peppered) moth(s) / larvae
(ii) some material is lost in waste from the birds
peppered moth larvae do not eat all the leaves from the trees

M8. (a) 3 (.0)
correct answer, irrespective of working gains $\mathbf{2}$ marks. if the answer is incorrect or there is no answer, award 1 mark for use of correct figures (0.5 and 3.5) [and no other figures]
(b) as faeces
if more than two boxes ticked deduct 1 mark for each additional tick
as carbon dioxide from respiration
(c) (i) pigs kept inside are kept in small pens if more than two boxes ticked deduct 1 mark for each additional tick
pigs kept inside are kept warm in the winter
(ii) any one from:

- faster growth
ignore bigger / less flavour / fatty
- need less food
ignore references to movement / energy
- ready for market sooner
ignore ethical arguments

Q1.The diagram below shows a food chain in a garden.

Lettuce

Snail

Shrew
Lettuce © destillat/iStock/Thinkstock; Snail ©Valengilda/iStock/Thinkstock; Shrew © GlobalT/iStock/Thinkstock
(a) Name one consumer shown in the diagram above.
\qquad
(b) Name one carnivore shown in the diagram above.
\qquad
(c) A disease kills most of the shrews in the garden.

Suggest why the number of snails in the garden may then increase.
\qquad
\qquad
(d) What is the name given to all the snails in the garden shown in the diagram above?

Tick one box.
Community \square
Ecosystem \square
Population

Territory

(e) Which pyramid of biomass is correct for the food chain shown in the diagram above?

Tick one box.

B \square
A
\square

$c \square$
(f) Some snails ate some lettuces.

The lettuces contained 11000 kJ of energy.
Only 10% of this energy was transferred to the snails.
Calculate the energy transferred to the snails from the lettuces.
\qquad
Energy = ... kJ
(g) Give one reason why only 10% of the energy in the lettuces is transferred to the snails.

Tick one box.
The lettuces carry out photosynthesis

The snails do not eat the roots of the lettuces

Not all parts of a snail can be eaten

(h) Abiotic factors can affect the food chain.

Wind direction is one abiotic factor.
Name one other abiotic factor.

Q2. This is a simple food chain.
Lettuce plant \rightarrow Slug \rightarrow Frog \rightarrow Heron
The diagram shows a pyramid of biomass for this food chain.

(a) Write the names of the organisms in the food chain on the correct lines next to the pyramid of biomass.
(b) (i) The slug obtains its energy from the lettuce plant. What is the source of energy for the lettuce plant?
\qquad
(ii) What is the function of chlorophyll in a lettuce plant?
\qquad
(iii) The slugs ate some lettuce plants which contained 1620 kJ of energy. Only 10 per cent of this energy is used by the slugs for growth. Use the formula to calculate how much energy can be used by the slugs for growth. Show clearly how you work out your final answer.

Amount of energy =
$\frac{\text { (Percentage of energy used by slugs) } \times \text { (Amount of energy in lettuce) }}{100}$
Amount of energy = ... kJ
(Total 5 marks)

Q3. (a) The diagrams show three pyramids of biomass.
(i) Which pyramid would be the most efficient in providing food for humans?

Tick $\left(v^{\prime}\right)$ one box.

(ii) Give one reason for your choice.
\qquad
\qquad
(b) Pigs may be kept indoors or outdoors.

Pigs kept indoors
Pigs kept outdoors

The pie charts show what happens to the energy in the food eaten by pigs kept indoors and pigs kept outdoors.

Pigs kept indoors
Pigs kept outdoors

(i) Farmers make more profit from keeping pigs indoors than from keeping pigs outdoors.

Use information from the pie charts to explain why.
\qquad
\qquad
\qquad
\qquad
(ii) Meat from pigs kept outdoors may cost more than meat from pigs kept indoors.

Some people prefer to buy meat from animals that have been kept outdoors.
Suggest one reason why.
\qquad

Q4. The picture shows a food chain.

(a) Which diagram shows a pyramid of biomass for the food chain in the picture? Tick (\checkmark) one box.

(b) The plants at the start of the food chain absorb energy.

Where does this energy come from?
Draw a ring around one answer.
the water
the sun
minerals
(c) Some energy is lost at each stage of the food chain.

Give two ways in which energy may be lost from the food chain.
1
\qquad

2 \qquad
\qquad

Q5. There are plans for a 'cattle factory' to be built in the UK.
Information about the cattle factory and traditional cattle farming in the UK is given below.

Cattle factory

Traditional cattle farming

Cattle factory by Pirhan [CC BY-SA 2.0], via Flickr. Traditional cattle farming by Mat Fascione[CC-BY-SA-2.0], via

Cattle factory

- There will be over 8000 cows in three large sheds.
- Each cow will be milked three times a day.
- Each cow will produce about 50 litres of milk every day.
- Waste will be collected and used to produce electricity for 2000 homes.
- Cows are kept near to each other so disease can spread easily.

Traditional cattle farming

- Most farms have between 5 and 500 cows.
- The cows spend most of the time in fields.
- Cows are milked once or twice a day.
- Each cow produces up to 20 litres of milk a day.
- The waste is used as natural fertiliser for crops.
(a) Use the information to answer the questions.
(i) Give two reasons why some people think the cattle factory is a good idea. 1 \qquad
\qquad
\qquad
\qquad
(ii) Give two reasons why some people think traditional farming is better than the cattle factory.

1
\qquad
2 \qquad
\qquad
(b) The diagram shows what happens to 100 kJ of energy in the food eaten by a cow on a traditional farm.

By Dohduhdah (Own work) [Public domain], via W kimedia Commons
Use your knowledge and the information in the diagram to answer this question.
Compare the transfer of energy from the food eaten by cows in the cattle factory
with the energy transferred by cows on a traditional farm.
Use words from the box to complete the table.

more less	the same
Energy	Amount of energy transferred by cows in a cattle factory compared with cows on a traditional farm
transferred for growth and milk	
transferred in respiration	

Q6. Green plants are found at the start of all food chains.
(a) Complete the sentences.
(i) The source of energy for green plants is radiation from the
(ii) Green plants absorb some of the light energy that reaches them for a process called \qquad
(b) Draw a ring around the correct answer to complete each sentence.
(i) This process transfers light energy into

chemical
sound
electrical

(ii) The process uses the gas

(iii) The process produces carbon-containing compounds called
(c) The amount of living material (biomass) at each stage in a food chain is less than at the previous stage.

The diagram shows a food chain.
oak tree \longrightarrow caterpillar \longrightarrow blue-tit \longrightarrow hawk

Give two ways in which biomass is lost in this food chain.
Tick (\checkmark) two boxes.

As carbon dioxide from the caterpillar \square
As food eaten by the hawk \square
As oxygen from the oak tree

As faeces (droppings) from the blue-tit \square

Q7.There are two forms of peppered moth, dark and pale.
Birds eat the moths when the moths are resting on tree bark.
Pollution in the atmosphere may:

- kill lichens living on tree bark
- make the bark of trees go black.
(a) Draw a ring around the correct answer to complete the sentence.

Lichens are very sensitive to air pollution caused by

```
carbon
dioxide.
nitrogen.
sulfur dioxide.
```

(b) The photographs show the two forms of peppered moth, on tree bark.

© Kim Taylor/Warren Photographic
(i) The dark form of the peppered moth was produced by a change in the genetic material of a pale moth.

Use one word from the box to complete the sentence.
characteristic clone mutation

A change in genetic material is called a

(ii) In the 19th century, pollution made the bark of many trees go black.

Explain why:

- the population of the pale form of the moth in forests decreased
- the population of the dark form of the moth in forests increased.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) (i) The larvae (young) of the peppered moths eat the leaves of birch trees.

The diagram shows the food chain:
birch trees \rightarrow peppered moth larvae \rightarrow birds
Draw a pyramid of biomass for this food chain.
Label the pyramid.
(ii) Which two reasons explain the shape of the pyramid you drew in part (c)(i)? Tick (\checkmark) two boxes.

Some material is lost in waste from the birds

The trees are much larger than peppered
moth larvae
Peppered moth larvae do not eat all the leaves from the trees

The trees do not use all of the Sun's energy

Q8. The photographs show four ways of farming.

Growing wheat

Keeping pigs outside

Keeping sheep outside

Keeping pigs inside

Growing wheat by Eileen Henderson [CC-BY-SA-2.0], via Wikimedia Commons. Keeping Sheep outside by Andrew Smith [CC-BY-SA-2.0], via W kimedia Commons. Keeping Pigs outside by David Williams [CC-BY-SA-2.0], via Wikimedia Commons. Keeping Pigs inside supplied by iStockphoto/ Thinkstock.

The bar chart shows the amount of food produced from these four ways of farming.

(a) How much extra food can be produced when farmers grow wheat, compared with keeping sheep outside?

Show clearly how you work out your answer.
\qquad
\qquad
Answer \qquad tonnes per hectare per year
(b) Sheep eat grass.

For every 1000 g of grass eaten, a sheep increases in mass by only 50 g . The other 950 g is lost.

How is the other 950 g lost?
Tick (\checkmark) two boxes.

As oxygen from photosynthesis \square

As faeces \square

As meat \square

As carbon dioxide from respiration \square
(c) (i) Pigs kept inside lose less energy than pigs kept outside.

Why?
Tick (\checkmark) two boxes.

Pigs kept inside are fed more.

Pigs kept inside are kept in small pens. \square

Pigs kept inside are kept warm in the winter.

Pigs kept inside are healthier. \square
(ii) Meat from pigs kept inside is usually cheaper than meat from pigs kept outside.

Give one reason why.
\qquad
\qquad

Page 23

M1. (a) 3-layered triangular pyramid as blocks or layered triangle, ignore (small) gaps between layers
(b) (i) C
(ii) shortest or fewest stages / transfers / (trophic) levels allow only if (b)(i) is C or blank

M2. (a) (i) 6000
award 2 marks for correct answer irrespective of working allow 1 mark for 20×300 with incorrect or no answer allow answer in table if answer line blank
(ii) bar width 6000 or to match answer to (a)(i) anywhere on scale ignore depth / height of bar
label not required
(b) any three from:
ignore reference to size / mass / number of organisms assume reference is to / of hedgehog unless stated otherwise

- respiration (by hedgehog) do not accept idea that respiration uses / produces energy
- (results in) loss of CO_{2}
- faeces (of hedgehog) or not digested
- excreted / urine / urea (by hedgehog)
accept waste for $\mathbf{1}$ mark if neither faeces nor excretion point made
ignore sweat alone
- not all slug(s) are eaten (by hedgehogs) or some slugs eaten by other things ignore some slugs die
ignore reference to movement / heat / growth
allow references to energy losses by these methods, rather than biomass losses

M3. (a) (i) wheat \rightarrow humans chain transfers 10 times more energy than wheat \rightarrow pigs \rightarrow humans chain allow 10% if given as a comparison e.g. one is 10% of the other

or

wheat \rightarrow pigs \rightarrow humans chain transfers 810000 ($k J$ per hectare) less ignore less unqualified
(ii) any one reason for energy loss from pigs e.g :
ignore respiration, growth
ignore heat unqualified

- movement
- (maintaining) body temperature
- waste materials
allow named examples
- not all parts of pig eaten by human
- because there is an extra stage (pigs) in the food chain and energy is lost at each stage allow longer food chain so more energy lost
(b) Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response.
Examiners should also refer to the information in the Marking guidance, and apply a 'best-fit' approach to the marking.

0 marksNo relevant content.
Level 1 (1-2 marks)There is a basic description of at least one factory farming method
or
identification of an advantage or disadvantage of factory farming.

Level 2 (3-4 marks)There is a description of at least one factory farming method
and
an advantage or disadvantage is explained.
Level 3 (5-6 marks)There is a description of factory farming methods and
advantage(s) and disadvantage(s) are explained.

Examples of Biology points made in the response:

factory farming methods e.g.:

- Kept in cramped conditions / battery hens / calf crates / pig barns / fish tanks
- Controlled temperature / heating
- Controlled feeding / modified food given / growth hormones
- Controlled lighting
- Treated with prophylactic antibiotics

Advantages e.g.:

- Increased efficiency / profit / greater food production / cheaper food / faster growth
- Farmer can have more livestock
- Less energy is lost through movement
- Less energy is used keeping warm
- (Food is high in calories / protein) so animals will grow faster / lay more eggs
- Easier to vaccinate all the animals
- Easier to protect animals from predators
- Antibiotic treatment stops infections in animals

Disadvantages e.g.:

- Stress / cruelty / inhumane / unethical
- Restricted movement / overcrowding
- Faster spread of diseases
- Antibiotics in the food chain / residual chemicals in the food chain
- Wasting fossil fuels / increasing global warming
- Increased pollution from animal waste and from additional transport

M4. (a) (i) triangular pyramid with 3 layers may be as blocks or as triangle ignore food chains and arrows
layers appropriately labelled:
bean / plant
aphid,
ladybird
labelled in food chain order must not contradict correct pyramid
allow correctly labelled inverted pyramid for 2 marks
(ii) any two from:
(for aphid / ladybird)
ignore energy

- not all digested / faeces
- loss in urine
- loss of CO_{2}
ignore loss of CO_{2} from bean plant
- not all eaten
if none of first 3 points given then allow waste (materials) / excretion for 1 mark
(b) microorganisms / microbes / bacteria / fungi / decomposers / detritivores /named do not accept germs
allow mould ignore aphids
decay / breakdown / digest / decompose / rot (bean plant) ignore eat
respiration (of microorganisms etc / aphids)
allow burning / combustion
carbon dioxide released (from respiration of microorganisms etc / aphids) allow carbon dioxide released / produced (from burning / combustion)
ignore other parts of the carbon cycle ignore formation of fossil fuels
(b) increasing / higher light / temperature ignore references to months other than February - April do not accept mineral / ions increase
decrease due to fall in plant plankton / food or decrease as eaten by (basking) sharks
allow decrease as eaten by predators / animals / fish
(d) fall due to use / intake by plant (plankton)
ignore ref to no change section of graph
for fall allow March / April
ignore May / February
increase due to decay / decomposition / breakdown
for increase allow any month in range August to November ignore December
of dead (plant / animal) plankton
allow of dead organisms / waste

M6.(a) Sun / sunlight / light accept radiation from the Sun / solar energy
(b) (i) $2(.0)$

8 (.0)
(ii) 3 layers of decreasing size as they go up
labelled wheat grains, field mice, red kites in correct order of food chain
sizes correct (showing half on each side)
allow ecf from (b)(i)
error \pm half square
(c) any two from:

- not all the field mice are eaten
- not all parts of eaten mice are absorbed / some passed as faeces (of red kite)
- due to respiration (of red kites) / production of CO_{2}
allow reference to uric acid / urea / urine (of red kite)
reference to waste / excretion alone gains 1 mark
(d) any two from:
- cannot find all wheat grains / too many to count
- field mice hiding / in hedgerows
allow ref to hibernation / nests / burrows
- red kites / mice come and go all the time
allow count an organism more than once

M7. (a) (i) $1800(\mathrm{~g})$
(ii) triangular pyramid with four layers
accept ecf from (a)(i)
allow inverted pyramid
correctly labelled in order of food chain
(b) any two from:

- (lost as) crab faeces / not all digested
allow waste / excretion for one mark if neither faeces nor urine are given
- (lost as) crab urine / urea
- loss of carbon dioxide by crab accept (lost via) respiration
- not all the limpet is eaten eg don't eat the shell
- not all limpets are eaten (by crabs)
allow not enough crabs to eat all the limpets / the limpet population
ignore energy losses, such as movement

M8.(a) (i) 6000
award 2 marks for correct answer irrespective of working allow 1 mark for 60×100 with incorrect or no answer allow answer in table if answer line blank
(ii) bar width 6000 or to match answer to (a)(i) anywhere on scale ignore depth / height of bar
drawn below slugs label not required
(b) any three from:
ignore references to number / size / mass of organisms assume reference is to / of hedgehog unless stated otherwise

- respiration (by hedgehog) do not accept idea that respiration uses / produces energy
- faeces (of hedgehog) or (slug) not absorbed (by hedgehog) or (slug) not digested (by hedgehog)
- excreted / urine / urea (by hedgehog)

accept waste for $\mathbf{1}$ mark if neither faeces nor excretion point made
- not all slug (s) eaten (by hedgehogs) or some slugs eaten by other things or not all parts (of slug) eaten
ignore (some) slugs die
- movement (by hedgehog)
- heat (from hedgehog) allow appropriate references to biomass lost by these methods, rather than energy losses

