M1.(a) any one from:

- there was a flame
- energy was given out
- a new substance was formed
- the magnesium turned into a (white) powder answers must be from the figure
(b) Magnesium oxide
(c) The reaction has a high activation energy
(d) 9
(e) They have a high surface area to volume ratio
(f) any one from:
- Better coverage
- More protection from the Sun's ultraviolet rays
(g) any one from:
- Potential cell damage to the body
- Harmful effects on the environment
(h) indication of $\frac{1}{1.6}=0.625$
and
use of indices $10^{-9}-10^{-6}=10^{3}$
Both steps must be seen to score first mark
$0.625 \times 1000=625$ (times bigger)
(ii) 4620 (J)
correct answer gains 2 marks with or without working
allow 4.62 kJ for $\mathbf{2}$ marks
if answer is incorrect:
$100 \times 4.2 \times 11$ gains 1 mark
or
$100 \times 4.2 \times$ (their temp. rise) gains 1 mark
or
$100 \times 4.2 \times$ (their temp. rise) correctly calculated gains 2 marks
(b) the temperature increases
allow gets hotter
allow heat / energy is given off
(c) (i) (energy of) products lower than (energy of) reactants
allow converse
allow arrow C points downwards
(ii) A

M3.(a) heat / energy
given out / transfers to surroundings
the mark for given out / transfers to cannot be awarded without heat / energy
allow given off
(b) (i) decreases
increases
(ii) it gives the particles more energy
it makes the particles move faster

M4. (a) 22
(b) (i) exothermic
(ii) C
gives out most heat energy
accept has largest temperature change / increase allow has highest (final) temperature or hottest
(c) (i) increases
(ii) blue
ignore pale / dark etc
(iii) reversible (reaction)
allow goes both ways or two / either way
(iv) anhydrous copper sulfate

M5. (a) (i) the temperature at start
ignore reference to bubbles / heat
the temperature at end
(measure) the temperature rise $/$ change $=\mathbf{2}$ marks
(measure) the temperature 1 mark
(ii) temperature would increase
allow it gets hot(ter) / warm(er) or heat given off allow energy released / transferred
(b) any one from:

- volume of acid
allow amount
allow liquid
- temperature of acid
- size of magnesium ribbon
allow volume / mass / amount
- surface area of magnesium
ignore size of test tube and reference to water
(c) (i) (Test tube) B
(ii) produces bubbles faster
accept more bubbles
or
faster rate of reaction allow most reactive
(d) The particles move faster

The particles collide more often

M6. (a) (i) increase
(ii) energy is given out to the surroundings
(b) (i) NO

> allow 2 NO
> ignore nitrogen oxide
> do not allow equations
(ii) harmful / poisonous (owtte) allow dangerous ignore reference to pollution / global warming do not accept references to ozone layer
(c) a catalyst can speed up a chemical reaction
different reactions need different catalysts
(d) (i) smaller
accept less / tiny / very small
allow 10^{-9}
do not allow small unless qualified
(ii) reduce cost (owtte) or

ignore references to energy

 save resources / raw materials (owtte)M7. (a) (i) 4
(ii) (Make) 3
biggest temperature rise
(b) (i) 1008 (kJ)
correct answer with or without working gains $\mathbf{2}$ marks if incorrect answer given allow evidence of 240×4.2 for 1 mark
(ii) crisps have a high energy content allow crisps have lots of calories / kilojoules / fat / one ninth of daily energy intake
so if you take in more energy than you need the excess is stored as fat accept consequences: obesity; heart disease; high blood pressure; diabetes; arthritis
or
crisps contain salt (1)
too much salt can cause high blood pressure or heart problems or kidney problems (1)

M8. (a) goes up
(b) (i) B
(ii) A
(iii) a catalyst
activation energy
(c) (i) eg (ensures) complete reaction allow spread heat / energy or even heating
allow mixes properly or mix them together or to get correct temperature ignore dissolves
(ii) lid (on beaker)
accept cover beaker
or
insulate (beaker) / use a plastic cup

Q1.The figure below shows magnesium burning in air.

© Charles D Winters/Science Photo Library
(a) Look at the figure above.

How can you tell that a chemical reaction is taking place?
\qquad
\qquad
(b) Name the product from the reaction of magnesium in the figure.
\qquad
(c) The magnesium needed heating before it would react. What conclusion can you draw from this?

Tick one box.

The reaction is reversible

The reaction has a high activation energy

The reaction is exothermic

Magnesium has a high melting point
\square

(d) A sample of the product from the reaction in the figure above was added to water and shaken.

Universal indicator was added.

The universal indicator turned blue.

What is the pH value of the solution?

Tick one box.

1 \square

4

7

9

(e) Why are nanoparticles effective in very small quantities?

Tick one box.

They are elements

They are highly reactive
\square
\square

They have a low melting point
They have a high surface area to volume ratio
(f) Give one advantage of using nanoparticles in sun creams.
\qquad
\qquad
(g) Give one disadvantage of using nanoparticles in sun creams.
\qquad
\qquad
(h) A coarse particle has a diameter of $1 \times 10^{-6} \mathrm{~m}$.

A nanoparticle has a diameter of $1.6 \times 10^{-9} \mathrm{~m}$.
Calculate how many times bigger the diameter of the coarse particle is than the diameter of the nanoparticle.
\qquad
\qquad
\qquad
\qquad

Q2.A student investigates the energy released when zinc powder reacts with copper sulfate solution. The student uses the apparatus shown in Figure 1.

Figure 1

The student:

- measures $100 \mathrm{~cm}^{3}$ copper sulfate solution into a beaker
- measures the temperature of the copper sulfate solution
- puts 1 g zinc powder into the beaker
- stirs the mixture with a thermometer
- measures the highest temperature.

The student's results were:
Starting temperature $=21^{\circ} \mathrm{C}$
Highest temperature $=32^{\circ} \mathrm{C}$
(a) (i) Calculate the change in temperature.
\qquad

(ii) Calculate the energy released in the reaction.

Use the equation

| energy released |
| :---: | :---: |
| in J |$=$| volume of |
| :---: |
| solution |
| in cm^{3} |$\quad \times 4.2 \times$| temperature change |
| :---: |
| in ${ }^{\circ} \mathrm{C}$ |

```
Energy released = . J
```

(b) The reaction of zinc with copper sulfate is exothermic.

How can you tell from the student's results that the reaction is exothermic?
\qquad
\qquad
(c) The energy diagram for the reaction is shown in Figure 2.

Figure 2

(i) How can you tell from the energy diagram that the reaction is exothermic?
\qquad
\qquad
(ii) Which arrow shows the activation energy in Figure 2?

Tick (\checkmark) one box.
A

B

Q3.The following steps show how to use a type of glue.
Step 1 Measure out equal amounts of the liquids from tubes \mathbf{A} and \mathbf{B}.

Step 2 Mix the liquids to make the glue.
Put a thin layer of the glue onto each of the surfaces to be joined.

Step 3 Put the pieces together and hold them with tape.

Step 4 Leave the glue to set.
(a) When liquids \mathbf{A} and \mathbf{B} are mixed a chemical reaction takes place.

This reaction is exothermic.
What does exothermic mean?
\qquad
\qquad
\qquad
\qquad
(b) The time taken for the glue to set at different temperatures is given in the table below.

Temperature in ${ }^{\circ} \mathrm{C}$	Time taken for the glue to set
20	3 days
60	6 hours
90	1 hour

(i) Use the correct answer from the box to complete each sentence.

decreases	increases	stays the same

When the temperature is increased the time taken for the glue to set
\qquad
When the temperature is increased the rate of the setting reaction
\qquad
(ii) Tick (\checkmark) two reasons why an increase in temperature affects the rate of reaction.

Reason	Tick (\checkmark)
It gives the particles more energy	
It increases the concentration of the particles	

Page 9

It increases the surface area of the particles	
It makes the particles move faster	

(2)

Q4. Hand warmers use chemical reactions.

(a) The table shows temperature changes for chemical reactions \mathbf{A}, \mathbf{B} and \mathbf{C}.

Reaction	Starting temperature in ${ }^{\circ} \mathrm{C}$	Final temperature in ${ }^{\circ} \mathrm{C}$	Change in temperature in ${ }^{\circ} \mathrm{C}$
A	18	25	+7
B	17	$\ldots \ldots \ldots \ldots \ldots \ldots$.	+5
C	18	27	+9

What is the final temperature for reaction \mathbf{B} ? Write your answer in the table.
(b) (i) What name is given to reactions that heat the surroundings? \qquad
(ii) Which reaction, \mathbf{A}, \mathbf{B} or \mathbf{C}, would be best to use in a hand warmer?

Give a reason why you chose this reaction.
\qquad
\qquad
(c) A student added water to some anhydrous copper sulfate.

The equation for the reaction is shown.
anhydrous copper sulfate + water \rightleftharpoons hydrated copper sulfate

$$
\mathrm{CuSO}_{4} \quad+5 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}
$$

The student measured the temperature before and after the reaction.
(i) The measurements showed that this reaction can be used for a hand warmer.

Draw a ring around the correct answer to complete the sentence.
When water is added to anhydrous copper sulfate the temperature

of the mixture	
decreases.	
stays the same.	

(ii) Anhydrous copper sulfate is white.

What colour is seen after water is added to the anhydrous copper sulfate?
\qquad
(iii) What does the symbol \rightleftharpoons mean?
\qquad
(iv) The student heated a tube containing hydrated copper sulfate. Name the solid substance produced.

Q5. A student investigated the reaction of magnesium with hydrochloric acid.
(a) A piece of magnesium was dropped into the hydrochloric acid.

Bubbles of gas were produced and the magnesium disappeared.
The reaction is exothermic.
(i) What measurements would the student make to show that the reaction is exothermic?
\qquad
\qquad
\qquad
\qquad
(ii) How would these measurements show that the reaction is exothermic?
\qquad

The student investigated how changing the concentration of the hydrochloric acid affects this reaction.

Each test tube contained a different concentration of hydrochloric acid.

The diagrams show the results of this experiment.

(b) Suggest one control variable in this investigation.
\qquad
\qquad
(c) (i) Which test tube, A, B, C or D, contained the greatest concentration of hydrochloric acid?

Test tube \square
(ii) Why did you choose this test tube?
\qquad
\qquad
(d) The student predicted that if the temperature of the acid was increased the reaction would take place faster.

Tick (\checkmark) two statements in the table which explain why.

Statement	Tick ($\sqrt{ }$)
The particles move faster	
The particles collide with less energy	
The particles collide more often	
The particles are bigger	

Q6. Read the information about car engines.
Burning petrol in air is an exothermic reaction. This reaction is used in car engines.
When petrol burns it produces harmful substances such as nitrogen oxides and
carbon monoxide.
A catalytic converter stops these harmful substances being released into the air.
Car engine
(a) Draw a ring around the correct answer to complete each sentence.
(i) The exothermic reaction makes the temperature of the engine

```
decrease.
```

> energy is taken in from the surroundings.
> energy is given out to the surroundings.
> there is no energy change.
(b) The diagram shows a catalytic converter which removes harmful substances. The catalytic converter has two parts, \mathbf{A} and \mathbf{B}, which contain different catalysts.

(i) The equation for the reaction that takes place in part \mathbf{A} is:
$2 \mathrm{NO} \rightarrow \mathrm{N}_{2}+\quad \mathrm{O}_{2}$

Which one of the substances shown in the equation is a compound?
Give the formula of this compound.
\qquad
(ii) The equation for the reaction that takes place in part \mathbf{B} is:
$2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow \quad \rightarrow \quad \mathrm{CO}_{2}$

Why is it important to stop carbon monoxide (CO) from being released into the air?
\qquad
\qquad
(c) The table lists some statements about catalysts. Only two statements are correct.

Tick (\checkmark) the two correct statements.
\square

A catalyst can speed up a chemical reaction.	
A catalyst is used up in a chemical reaction.	
Different reactions need different catalysts.	
A catalyst does not change the rate of a chemical reaction.	

(d) Modern catalytic converters contain nanosized particles of catalyst. Less catalyst is needed when nanosized catalyst particles are used.
(i) Complete the sentence.

The size of nanosized particles is \qquad than normal sized particles.
(ii) The catalysts contain platinum.

Suggest why a manufacturer of catalytic converters would want to use less catalyst.
\qquad
\qquad

Q7. A student investigated the amount of energy released when four different makes of plain salted crisps were burned.

The following method was used for each make of plain salted crisp. The pieces of crisp were all the same size.

- The starting temperature of the water was measured.
- The piece of crisp was burned underneath the test tube.
- The final temperature of the water was measured.
(a) The results of the investigation are shown in the table.

	Make 1	Make 2	Make 3	Make 4
Final temperature of the water in ${ }^{\circ} \mathrm{C}$	26	25	29	25
Starting temperature of the water in ${ }^{\circ} \mathrm{C}$	19	20	20	21
Temperature rise of the water in ${ }^{\circ} \mathrm{C}$	7	5	9	

(i) Calculate the temperature rise for make 4.
(ii) Which make of crisp, 1, 2, $\mathbf{3}$ or 4, releases the most energy?

Make \qquad

Give a reason for your answer.
\qquad
\qquad
(b) The energy needed by a student is about 9000 kJ each day.
(i) One large bag of crisps states that the energy released by the crisps is 240 kcal . Calculate the energy of this bag of crisps in kJ.
$1 \mathrm{kcal}=4.2 \mathrm{~kJ}$
\qquad
\qquad
\qquad
(ii) Eating too many crisps is thought to be bad for your health.

Use the information above and your knowledge to explain why.
\qquad
\qquad
\qquad
\qquad

Q8. Hydrogen peroxide decomposes slowly to give water and oxygen.
The reaction is exothermic.
$2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \quad 2 \mathrm{H}_{2} \mathrm{O}+\quad \mathrm{O}_{2}$
(a) In an exothermic reaction, energy is given out.

Draw a ring around the correct answer to complete the sentence.

	In an exothermic reaction, the temperature
goes.	
goes up.	
stays the same.	

(b) The energy level diagram for this reaction is shown below.

The energy changes, \mathbf{A}, \mathbf{B} and \mathbf{C}, are shown on the diagram.
Use the diagram to help you answer these questions.

(iii) Hydrogen peroxide decomposes quickly when a small amount of manganese(IV) oxide is added.

Draw a ring around the correct answer to complete each sentence.
Hydrogen peroxide decomposes quickly because

	a catalyst.
manganese(IV) oxide is	an element.
a solid.	

[^0](c) A student did an experiment to find the amount of energy produced when hydrogen peroxide solution is decomposed using manganese(IV) oxide.

The apparatus the student used is shown in the diagram.

The student first measured the temperature of the hydrogen peroxide. Then the student added the manganese(IV) oxide, stirred the mixture and recorded the highest temperature.
(i) Suggest why the student stirred the mixture before recording the highest temperature.
\qquad
\qquad
(ii) The biggest error in this experiment is heat loss.

Suggest how the student could change the apparatus so that less heat is lost.
\qquad
\qquad

M1.(a) any one from:

- solution becomes colourless or colour fades
- zinc becomes bronze / copper coloured allow copper (forms) or a solid (forms)
- zinc gets smaller allow zinc dissolves
- bubbles or fizzing. ignore precipitate
(c) Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also refer to the information in the Marking Guidance and apply a 'best-fit' approach to the marking.

0 marks
No relevant content
Level 1 (1-2 marks)
There is a statement about the results.

Level 2 (3-4 marks)

There are statements about the results. These statements may be linked or may include data.

Level 3 (5-6 marks)

There are statements about the results with at least one link and an attempt at an explanation.

Examples of chemistry points made in the response:
Description:
Statements
Concentration of copper sulfate increases
Temperature change increases
There is an anomalous result
The temperature change levels off
Reaction is exothermic

Linked Statements

Temperature change increases as concentration of copper sulfate increases The temperature change increases, and then remains constant After experiment 7 the temperature change remains constant

Statements including data

The trend changes at experiment 7
Experiment 3 is anomalous

Attempted Explanation

Temperature change increases because rate increases
Temperature change levels off because the reaction is complete

Explanation

As more copper sulfate reacts, more heat energy is given off Once copper sulfate is in excess, no further heat energy produced

M2.(a) any three from:

- concentration of (salt) solution
- volume of (salt) solution
ignore amount of solution
- initial temperature (of the solution)
ignore room temperature
- surface area / form of metal
- moles of metal
allow mass / amount
ignore time
ignore size of tube
(b) 20

32

12
allow ecf
bars labelled
(ii) one variable is non-continuous / categoric accept qualitative or discrete
(iii) magnesium

because biggest temperature change
accept gives out most energy
ignore rate of reaction
dependent on first mark

(iv) does not react / silver cannot displace copper
because silver not more reactive (than copper) or silver below copper in reactivity series
do not accept silver is less reactive than copper sulfate
(v) replace the copper sulfate
could be implied
with any compound of a named metal less reactive than copper
allow students to score even if use an insoluble salt

M3.(a) eg plastic (beaker) / insulation / lid / cover or any mention of enclosed any sensible modification to reduce heat loss ignore prevent draughts ignore references to gas loss ignore bomb calorimeter
(e) $7 / 7.0$
(f) $(100 \times 4.2 \times 7)=2940$
ecffrom (e)
(g) diagram A and reaction exothermic / heat evolved / $\Delta \mathrm{H}$ is negative / temperature rises accept energy is lost (to the surroundings) accept energy of products lower than reactants allow arrow goes downwards

M4. (a) any one from:

- no method / electrolysis / equipment / technology allow 'didn't know how to' or 'no knowledge'
- aluminium is a very reactive metal
- high melting point
allow 'couldn't heat it enough'
- potassium had not been discovered
(b) because others / scientists / they could not repeat the experiment ignore he could not repeat the experiment
or
others / they could not obtain the same results
(c) reaction is endothermic or reaction takes in heat / energy
accept activation energy
ignore rate / high temperature
ignore bonds broken
(d) (aluminium chloride + potassium) \rightarrow aluminium + potassium chloride in either order accept correct formulae ignore metal ignore balancing
(e) when tested it had the properties of a metal accept a test for a metal property eg conductivity / reaction with acid
> properties were different (from other known metals) accept properties compared with other metals

M5. (a) gives out energy or heat
(b) (i) accept qualified answers in terms of volume of gas related to time fast initially
(b) (ii) 21
(iii) 84
correct answer with or without working = $\mathbf{2}$ marks allow ecf from (b)(ii) correctly calculated for $\mathbf{2}$ marks allow evidence of 21/25 or (b)(ii)/25 for 1 mark
(c) because they / particles have more energy / move faster ignore particles move more / vibrate
(and so) particles collide more often / more frequently or particles more likely to collide ignore collide faster
ignore more collisions
(and) more of the collisions are successful or particles collide with more energy / harder or more of the particles have the activation energy
accept more successful collisions
1

M6.
(a) gives out heat / energy allow release / loses allow the products have less energy
or
energy / heat transferred to the surroundings ignore temperature rises allow more energy given out in forming bonds than taken in to break bonds
(b) (i) speed up the reaction (owtte) accept changes the rate accept lowers activation energy accept increases successful collisions accept allows reaction to take place at a lower temperature
(ii) nitrogen $\left(\mathrm{N}_{2}\right)$ / oxygen $\left(\mathrm{O}_{2}\right)$ / products are safe or not harmful / pollutant / toxic / dangerous / damaging ignore releases nitrogen / oxygen unless qualified
or
(harmful) nitrogen monoxide / NO is not released into the air. accept prevents / less acid rain ignore greenhouse gas / ozone layer
(iii) 2 and 2
accept correct multiples or fractions
(iv) idea of catalyst not being used up allow not changed by reaction ignore catalyst does not take part
ignore catalyst not used in the reaction
(v) idea of different reactions (require different catalysts) accept catalysts work for specific reactions allow different gases
(c) • smaller / very small / or any indication of very small / 1-100 nanometres /
a few (hundred) atoms
$\quad \begin{aligned} & \text { ignore just small } \\ & \\ & \text { ignore size of the converter }\end{aligned}$

- big(ger) surface area
- less (catalyst) needed / small amount of catalyst needed

Q1.A student investigated the temperature change when zinc reacts with copper sulfate solution.

The student used a different concentration of copper sulfate solution for each experiment.

The student used the apparatus shown below.

The student:

- measured $50 \mathrm{~cm}^{3}$ copper sulfate solution into a glass beaker
- measured the temperature of the copper sulfate solution
- added 2.3 g zinc
- measured the highest temperature
- repeated the experiment using copper sulfate solution with different concentrations.

The equation for the reaction is:

| $\mathrm{Zn}(\mathrm{s})$ | $+\mathrm{CuSO}_{4}(\mathrm{aq})$ | $\longrightarrow \mathrm{Cu}(\mathrm{s})$ | $+\quad \mathrm{ZnSO}_{4}(\mathrm{aq})$ |
| :--- | :--- | :--- | :--- | :--- |
| zinc | + copper sulfate solution | \longrightarrow copper | + zinc sulfate solution |

(a) The thermometer reading changes during the reaction.

Give one other change the student could see during the reaction.
\qquad
\qquad
(b) Suggest one improvement the student could make to the apparatus.

Give a reason why this improves the investigation.
Improvement \qquad

Reason \qquad
\qquad
(c) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

The student's results are shown in the table.

Table

Experiment number	Concentration of copper sulfate in moles per dm^{3}	Increase in temperature in ${ }^{\circ} \mathrm{C}$
1	0.1	5
2	0.2	10
3	0.3	12
4	0.4	20
5	0.5	25
6	0.7	35
7	0.8	35
8	0.9	35
9	1.0	35
10		\begin{tabular}{c}
\end{tabular} |

Describe and explain the trends shown in the student's results.
\qquad
\qquad
\qquad
\qquad

Q2.A student investigated displacement reactions of metals.

The student added different metals to copper sulfate solution and measured the temperature change.

The more reactive the metal is compared with copper, the bigger the temperature change.
The apparatus the student used is shown in Figure 1.
Figure 1

(a) State three variables that the student must control to make his investigation a fair test.

1. \qquad
2. \qquad

3 \qquad
(b) Figure 2 shows the thermometer in one experiment before and after the student added a metal to the copper sulfate solution.

Figure 2

After adding metal

Page 5

Use Figure 2 to complete Table 1.
Table 1

Temperature before adding metal in ${ }^{\circ} \mathrm{C}$	\ldots.
Temperature after adding metal in ${ }^{\circ} \mathrm{C}$	\ldots.
Change in temperature in ${ }^{\circ} \mathrm{C}$	$\ldots \ldots$.

(c) The student repeated the experiment three times with each metal.

Table $\mathbf{2}$ shows the mean temperature change for each metal.
Table 2

Metal	Mean temperature change in ${ }^{\circ} \mathrm{C}$
Cobalt	4.5
Gold	0.0
Magnesium	10.0
Nickel	3.0
Silver	0.0

Tin	1.5

(i) On Figure 3, draw a bar chart to show the results.

Figure 3

(ii) Why is a line graph not a suitable way of showing the results?
\qquad
\qquad
(iii) Use the results to work out which metal is the most reactive.

Give a reason for your answer.

Most reactive metal \qquad

Reason \qquad
\qquad
(iv) Explain why there was no temperature change when silver metal was added to the copper sulfate solution.
\qquad
\qquad
\qquad
\qquad
(v) It is not possible to put all six metals in order of reactivity using these results.

Suggest how you could change the experiment to be able to put all six metals into order of reactivity.
\qquad
\qquad
\qquad
\qquad
\qquad

Q3.Read the information about energy changes and then answer the questions.
A student did an experiment to find the energy change when hydrochloric acid reacts with sodium hydroxide.

The equation which represents the reaction is:

$$
\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

The student used the apparatus shown in the diagram.

The student placed $50 \mathrm{~cm}^{3}$ of hydrochloric acid in a glass beaker and measured the initial temperature.

The student then quickly added $50 \mathrm{~cm}^{3}$ of sodium hydroxide solution and stirred the mixture with the thermometer. The highest temperature was recorded.

The student repeated the experiment, and calculated the temperature change each time.

	Experimen $\mathbf{t ~ 1}$	Experimen $\mathbf{t ~ 2}$	Experimen $\mathbf{t 3}$	Experimen $\mathbf{t ~ 4}$
Initial temperature in ${ }^{\circ} \mathrm{C}$	19.0	22.0	19.2	19.0
Highest temperature in${ }^{\circ} \mathrm{C}$	26.2	29.0	26.0	23.5
Temperature change in				

(a) The biggest error in this experiment is heat loss.

Suggest how the apparatus could be modified to reduce heat loss.
\qquad
\qquad
(b) Suggest why it is important to mix the chemicals thoroughly.
\qquad
(c) Which one of these experiments was probably done on a different day to the others? Give a reason for your answer.
\qquad
(d) Suggest why experiment $\mathbf{4}$ should not be used to calculate the average temperature change.
\qquad
\qquad
(e) Calculate the average temperature change from the first three experiments.
\qquad
\qquad
(f) Use the following equation to calculate the energy change for this reaction.

Energy change in joules $=100 \times 4.2 \times$ average temperature change
\qquad
Answer = ... J
(g) Which one of these energy level diagrams represents the energy change for this reaction?

Give a reason for your answer.

Q4. Read the information.

Alumina is a white solid. In 1800 , scientists thought that alumina contained an undiscovered metal. We now call this metal aluminium. At that time, scientists could not extract the aluminium from alumina.

In 1825, Christian Oersted, a Danish scientist, did experiments with alumina.

Step 1 He reacted a mixture of hot alumina and carbon with chlorine to form aluminium chloride. The reaction is very endothermic.

Step 2 The aluminium chloride was reacted with potassium. He was left with potassium chloride and tiny particles of aluminium metal.

Other scientists were not able to obtain the same results using his experiment and his work was not accepted at that time.

In 1827, Friedrich Wöhler, a German chemist, made some changes to Oersted's experiment. He obtained a lump of aluminium. He tested the aluminium and recorded its properties.
(a) Suggest why scientists in 1800 could not extract aluminium from alumina.
\qquad
\qquad
(b) Oersted's experiment in 1825 was not thought to be reliable.

Explain why
\qquad
\qquad
(c) Why must the reaction in Step 1 be heated to make it work?
\qquad
\qquad
(d) Complete the word equation for the reaction in Step 2.

```
aluminium +potassiu-;
    chloride m
```

(e) Suggest how Wöhler was able to prove that he had made a new metal.
\qquad
\qquad
\qquad
\qquad

Q5. The symbol equation for the decomposition of hydrogen peroxide is:

$$
2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}
$$

(a) This reaction is exothermic.

What is an exothermic reaction?
\qquad
\qquad
(b) A student measured the volume of oxygen produced by $50 \mathrm{~cm}^{3}$ of hydrogen peroxide.

The graph shows the results.

(i) Use the graph to describe the changes in the rate of the reaction from 0 to 35 seconds.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) What was the total volume of oxygen gas collected?
\qquad cm^{3}
(iii) The student had calculated that the hydrogen peroxide used should produce $25 \mathrm{~cm}^{3}$ of oxygen.

Calculate the percentage yield of oxygen.
\qquad
\qquad
Answer = \%
(c) An increase in the temperature of the hydrogen peroxide increases the rate of the reaction. Use your knowledge of particles to explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q6. Read the information about car engines.

(a) The reaction is exothermic. What is the meaning of exothermic?
\qquad
\qquad
(b) The catalytic converter has two parts shown as \mathbf{A} and \mathbf{B} in the diagram.

Part A contains a catalyst made from platinum and rhodium.
Part B contains a catalyst made from platinum and palladium.
(i) Why are catalysts used in chemical reactions?
(ii) One reaction in part \mathbf{A} is shown by this equation.
$2 \mathrm{NO} \rightarrow \mathrm{N}_{2}+\quad \mathrm{O}_{2}$

Suggest why this reaction helps the environment.
\qquad
\qquad
(iii) The equation for one of the reactions in part \mathbf{B} is shown below.

Balance this equation.
$\ldots \ldots . \mathrm{O}_{2} \quad \rightarrow \quad \ldots \ldots . \mathrm{CO}_{2}$
(iv) The catalytic converter works for many years without replacing the catalyst. Explain why the catalyst does not need to be replaced.
\qquad
\qquad
(v) Suggest why different catalysts are used in parts \mathbf{A} and \mathbf{B}.
\qquad
\qquad
(c) Modern catalytic converters contain nanosized particles of catalyst. Using nanosized particles reduces the cost of the catalytic converter.

Suggest and explain why the use of nanosized catalyst particles reduces the cost of the catalytic converter.

Your answer should include information about the size and surface area of the particles.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

M1.(a) line goes up before it goes down
energy given out correctly labelled
activation energy labelled correctly
(b) electrostatic force of attraction between shared pair of negatively charged electrons
and both positively charged nuclei
(c) bonds formed $=348+4(412)+2(276)=2548 \mathrm{~kJ} / \mathrm{mol}$
bonds broken - bonds formed $=612+4(412)+(\mathrm{Br}-\mathrm{Br})-2548=95 \mathrm{~kJ} / \mathrm{mol}$

Alternative approach without using C-H bonds
For step 1 allow $=348+2(276)=900 \mathrm{~kJ} / \mathrm{mol}$
Then for step 2 allow $612+(B r-B r)-900=95 \mathrm{~kJ} / \mathrm{mol}$
193 (kJ / mol)

> -193(kJ / mol) scores 2 marks
> allow ecf from step 1 and step 2
(d) Level 3 (5-6 marks):

A detailed and coherent explanation is given, which demonstrates a broad understanding of the key scientific ideas. The response makes logical links between the points raised and uses sufficient examples to support these links. A conclusion is reached.

Level 2 (3-4 marks):

An explanation is given which demonstrates a reasonable understanding of the key scientific ideas. A conclusion may be reached but the logic used may not be clear or linked to bond energies.

Level 1 (1-2 marks):

Simple statements are made which demonstrate a basic understanding of some of the relevant ideas. The response may fail to make logical links between the points raised.

0 marks:

No relevant content.

Indicative content

Size and strength

- chlorine atoms have fewer electron energy levels / shells
- chlorine atoms form stronger bonds
- $\quad \mathrm{Cl}-\mathrm{Cl}$ bond stronger then $\mathrm{Br}-\mathrm{Br}$
- $\quad \mathrm{C}-\mathrm{Cl}$ bond stronger that $\mathrm{C}-\mathrm{Br}$

Energies required

- more energy required to break bonds with chlorine
- more energy given out when making bonds with chlorine
- overall energy change depends on sizes of energy changes

Conclusions

- if $\mathrm{C}-\mathrm{Cl}$ bond changes more, then less exothermic
- if $\mathrm{C}-\mathrm{Cl}$ bond changes more then more exothermic
- can't tell how overall energy change will differ as do not know which changes more.

M2.(a) (i) the products are at a lower energy level than the reactants accept products have less energy / less energy at the end than the beginning
(ii) because a catalyst provides an alternative / different pathway / mechanism / reaction route
accept adsorption or 'increases concentration at the surface' ignore absorption
(that has) lower activation energy
allow weakens bonds
allow idea of increased successful collisions.
DO NOT ALLOW answers stating catalysts provide energy for M1 and M2
(b) one pair of electrons in each overlap (8 pairs in total)
allow any combination of dots, crosses or other symbols
the rest of the diagram correct with four non-bonding electrons on the oxygen giving a total of eight electrons in oxygen outer energy level.

(c) (i) ± 3024 (J)
correct answer with or without working gains $\mathbf{3}$ marks if the answer is incorrect, award up to $\mathbf{2}$ marks for the following steps:

- $\Delta T=14.4\left({ }^{\circ} \mathrm{C}\right)$
- $50 \times 4.2 \times 14.4$
allow ecf for incorrect ΔT
(ii) $0.015(2173913)$

correct answer with or without working gains $\mathbf{3}$ marks

if answer is incorrect, allow 1 mark each for any of the following steps up to a max of 2.

- 0.70 g
- M_{1} of ethanol $=46$
- $0.70 / 46$
allow ecf in final answer for arithmetical errors
(iii) ± 198 720(J / mole)
$c(i) \div c(i i)$
allow ecf from (c)(i) and (c)(ii)
0.015 gives 201600
0.0152 gives 198947
0.01522 gives 198686
(d) (as the molecules get bigger or the number of carbon atoms increases) the intermolecular forces
allow intermolecular bonds
(intermolecular forces) increase
allow more / stronger (intermolecular forces)
and therefore require more (heat) energy to overcome
breaking covalent bonds or unspecified bonds max 1 mark (M3)
(b) (i) any two from:
- incorrect reading of thermometer / temperature
- incorrect measurement of volume of acid
- incorrect measurement of volume of alkali (burette).
(ii) glass is a (heat) conductor or polystyrene is a (heat) insulator
answer needs to convey idea that heat lost using glass or not lost using polystyrene
accept answers based on greater thermal capacity of glass (such as "glass absorbs more heat than polystyrene")
(c) (i) temperature increases
(ii) no reaction takes place or all acid used up or potassium hydroxide in excess
cool / colder potassium hydroxide absorbs energy or lowers temperature ignore idea of heat energy being lost to surroundings
(iii) take more readings
ignore just "repeat"
around the turning point or between $20 \mathrm{~cm}^{3}$ and $32 \mathrm{~cm}^{3}$ accept smaller ranges as long as no lower than $20 \mathrm{~cm}^{3}$ and no higher than $32 \mathrm{~cm}^{3}$
(d) 1.61 or $1.6(12903)$
correct answer with or without working scores 3 if answer incorrect, allow a maximum of two from: moles nitric acid $=(2 \times 25 / 1000)=0.05$ for 1 mark moles $\mathrm{KOH}=($ moles nitric acid $)=0.05$ for 1 mark concentration $\mathrm{KOH}=0.05 / 0.031$

Page 6

(e) same amount of energy given out
which is used to heat a smaller total volume or mixture has lower thermal capacity or
number of moles reacting is the same but the total volume / thermal capacity is less
if no other marks awarded award 1 mark for idea of reacting faster

M4.(a) circle round any one (or more) of the covalent bonds
any correct indication of the bond - the line between letters
(b) Methane contains atoms of two elements, combined chemically
(c) (i) activation energy labelled from level of reagents to highest point of curve ignore arrowheads
enthalpy change labelled from reagents to products

arrowhead must go from reagents to products only
(ii) $2 \mathrm{O}_{2}$
$2 \mathrm{H}_{2} \mathrm{O}$
if not fully correct, award $\mathbf{1}$ mark for all formulae correct. ignore state symbols
(iii) carbon monoxide is made
this combines with the blood / haemoglobin or prevents oxygen being carried in the blood / round body or kills you or is toxic or poisonous
dependent on first marking point
(iv) energy is taken in / required to break bonds accept bond breaking is endothermic
energy is given out when bonds are made accept bond making is exothermic
the energy given out is greater than the energy taken in this mark only awarded if both of previous marks awarded
(d) (i) energy to break bonds $=1895$ calculation with no explanation $\max =2$
energy from making bonds $=1998$

1895-1998 (= -103)
or
energy to break bonds $=656$
energy from making bonds $=759$
$656-759$ (=-103)
allow:
bonds broken - bonds made = $413+243-327-432=-103$ for 3 marks.
(ii) The $\mathrm{C}-\mathrm{Br}$ bond is weaker than the $\mathrm{C}-\mathrm{Cl}$ bond

Q1.This question is about the reaction of ethene and bromine.
The equation for the reaction is:

$$
\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}
$$

(a) Complete the reaction profile in Figure 1.

Draw labelled arrows to show:

- \quad The energy given out (ΔH)
- The activation energy.

Figure 1

(b) When ethene reacts with bromine, energy is required to break covalent bonds in the molecules.

Explain how a covalent bond holds two atoms together.
\qquad
\qquad
\qquad
\qquad
(c) Figure 2 shows the displayed formulae for the reaction of ethene with bromine.

Figure 2

The bond enthalpies and the overall energy change are shown in the table below.

	C=C	C-H	C-C	C-Br	Overall energy change
Energy in $\mathrm{kJ} /$ mole	612	412	348	276	-95

Use the information in the table above and Figure 2 to calculate the bond energy for the $\mathrm{Br}-\mathrm{Br}$ bond.
\qquad
\qquad
\qquad

Bond energy
kJ / mole
(d) Figure 3 shows the reaction between ethene and chlorine and is similar to the reaction between ethene and bromine.

Figure 3

"The more energy levels (shells) of electrons an atom has, the weaker the covalent bonds that it forms."

Use the above statement to predict and explain how the overall energy change for the reaction of ethene with chlorine will differ from the overall energy change for the reaction

Page 3

of ethene with bromine.
\qquad

Q2.This question is about ethanol.
(a) Ethanol is produced by the reaction of ethene and steam:

$$
\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}
$$

(i) Figure 1 shows the energy level diagram for the reaction.

Figure 1

How does the energy level diagram show that the reaction is exothermic?
\qquad
\qquad
(ii) A catalyst is used for the reaction.

Explain how a catalyst increases the rate of the reaction.
\qquad
\qquad
\qquad
\qquad
(b) Figure 2 shows the displayed structure of ethanol.

Page 5

Figure 2

Complete the dot and cross diagram in Figure 3 to show the bonding in ethanol.
Show the outer shell electrons only.

Figure 3

(c) A student burned some ethanol.

Figure 4 shows the apparatus the student used.
Figure 4

(i) The student recorded the temperature of the water before and after heating. His results are shown in Table 1.

Page 6

Table 1

Temperature before heating	$20.7^{\circ} \mathrm{C}$
Temperature after heating	$35.1^{\circ} \mathrm{C}$

Calculate the energy used to heat the water.
Use the equation $Q=m \times c \times \Delta T$

The specific heat capacity of water $=4.2 \mathrm{~J} / \mathrm{g} /{ }^{\circ} \mathrm{C}$
\qquad
\qquad
\qquad
\qquad
\qquad

Energy used = . J
(ii) Table 2 shows the mass of the spirit burner before the ethanol was burned and after the ethanol was burned.

Table 2

Mass of spirit burner before ethanol was burned	72.80 g
Mass of spirit burner after ethanol was burned	72.10 g

Calculate the number of moles of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ that were burned.

Relative atomic masses $\left(A_{\mathrm{r}}\right): \mathrm{H}=1 ; \mathrm{C}=12 ; \mathrm{O}=16$
\qquad
\qquad
\qquad
\qquad

Number of moles burned =

(iii) Calculate the energy released in joules per mole.

You should assume that all the energy from the ethanol burning was used to heat the water.
\qquad
Energy = J / mole
(d) The names, structures and boiling points of ethanol and two other alcohols are shown in Table 3.

Table 3

Name	Methanol	Ethanol	Propanol
Structure			
Boiling point in ${ }^{\circ} \mathrm{C}$	65	78	97

Use your knowledge of structure and bonding to suggest why the boiling points increase as the number of carbon atoms increases.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q3.Dilute nitric acid reacts with potassium hydroxide solution.

The equation for the reaction is:

$$
\mathrm{HNO}_{3}+\mathrm{KOH} \longrightarrow \mathrm{KNO}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

A student investigated the temperature change in this reaction.
This is the method the student used.

Step $1 \quad$ Put $25 \mathrm{~cm}^{3}$ of dilute nitric acid in a polystyrene cup.
Step 2 Use a thermometer to measure the temperature of the dilute nitric acid.
Step 3 Use a burette to add $4 \mathrm{~cm}^{3}$ of potassium hydroxide solution to the dilute nitric acid and stir the mixture.
Step 4 Use a thermometer to measure the highest temperature of the mixture.
Step 5 Repeat steps 3 and 4 until $40 \mathrm{~cm}^{3}$ of potassium hydroxide solution have been added.

The dilute nitric acid and the potassium hydroxide solution were both at room temperature.
(a) Figure 1 shows part of the thermometer after some potassium hydroxide solution had been added to the dilute nitric acid.

Figure 1

What is the temperature shown on the thermometer?

The temperature shown is \qquad ${ }^{\circ} \mathrm{C}$
(b) Errors are possible in this experiment.
(i) Suggest two causes of random error in the experiment.
\qquad
\qquad
\qquad
(ii) Another student used a glass beaker instead of a polystyrene cup.

This caused a systematic error.
Why does using a glass beaker instead of a polystyrene cup cause a systematic error?
\qquad
\qquad
\qquad
(c) The results of the student using the polystyrene cup are shown in Figure 2.

Figure 2

(i) How do the results in Figure 2 show that the reaction between dilute nitric acid and potassium hydroxide solution is exothermic?
\qquad
\qquad
(ii) Explain why the temperature readings decrease between $28 \mathrm{~cm}^{3}$ and $40 \mathrm{~cm}^{3}$ of potassium hydroxide solution added.
\qquad
\qquad
\qquad
(iii) It is difficult to use the data in Figure $\mathbf{2}$ to find the exact volume of potassium hydroxide solution that would give the maximum temperature.

Suggest further experimental work that the student should do to make it easier to find the exact volume of potassium hydroxide solution that would give the maximum temperature
\qquad
\qquad
\qquad
\qquad
(d) The student did further experimental work and found that $31.0 \mathrm{~cm}^{3}$ of potassium hydroxide solution neutralised $25.0 \mathrm{~cm}^{3}$ of dilute nitric acid.

The concentration of the dilute nitric acid was 2.0 moles per dm^{3}.

$$
\mathrm{HNO}_{3}+\mathrm{KOH} \longrightarrow \mathrm{KNO}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

Calculate the concentration of the potassium hydroxide solution in moles per dm^{3}.
\qquad
\qquad
\qquad
\qquad
\qquad moles per dm^{3}
(e) The student repeated the original experiment using $25 \mathrm{~cm}^{3}$ of dilute nitric acid in a polystyrene cup and potassium hydroxide solution that was twice the original concentration.

She found that:

- a smaller volume of potassium hydroxide solution was required to reach the maximum temperature
- the maximum temperature recorded was higher.

Explain why the maximum temperature recorded was higher.
\qquad
\qquad
\qquad
\qquad

Q4.Methane $\left(\mathrm{CH}_{4}\right)$ is used as a fuel.
(a) The displayed structure of methane is:

Draw a ring around a part of the displayed structure that represents a covalent bond.
(b) Why is methane a compound?

Tick (\checkmark) one box.

Methane contains atoms of two elements, combined chemically.

Methane is not in the periodic table.

Methane is a mixture of two different elements.
(c) Methane burns in oxygen.
(i) The diagram below shows the energy level diagram for the complete combustion of methane.

Draw and label arrows on the diagram to show:

- the activation energy
- the enthalpy change, ΔH.

(ii) Complete and balance the symbol equation for the complete combustion of methane.

(iii) Explain why the incomplete combustion of methane is dangerous.
\qquad
\qquad
\qquad
\qquad
(iv) Explain why, in terms of the energy involved in bond breaking and bond making, the combustion of methane is exothermic.
\qquad
\qquad
\qquad
\qquad
(d) Methane reacts with chlorine in the presence of sunlight.

The equation for this reaction is:

Some bond dissociation energies are given in the table.

Bond	Bond dissociation energy in kJ per mole
$\mathrm{C}-\mathrm{H}$	413
$\mathrm{C}-\mathrm{Cl}$	327
$\mathrm{Cl}-\mathrm{Cl}$	243
$\mathrm{H}-\mathrm{Cl}$	432

(i) Show that the enthalpy change, ΔH, for this reaction is -103 kJ per mole.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Methane also reacts with bromine in the presence of sunlight.

This reaction is less exothermic than the reaction between methane and chlorine.

The enthalpy change, ΔH, is -45 kJ per mole.

What is a possible reason for this?

Tick (\checkmark) one box.
$\mathrm{CH}_{3} \mathrm{Br}$ has a lower boiling point than $\mathrm{CH}_{3} \mathrm{Cl}$

The $\mathrm{C}-\mathrm{Br}$ bond is weaker than the $\mathrm{C}-\mathrm{Cl}$ bond.

The $\mathrm{H}-\mathrm{Cl}$ bond is weaker than the $\mathrm{H}-\mathrm{Br}$ bond.

Chlorine is more reactive than bromine.

M1.(a) $36 \mathrm{~cm}^{3}$
(b) all points correct
$\pm 1 / 2$ small square
allow $\mathbf{1}$ mark if 6 or 7 of the points are correct
2 best fit lines drawn
must not deviate towards anomalous point
allow 1 mark if 1 line correct
(c) The bung was not pushed in firmly enough.

The measuring cylinder was not completely over the delivery tube.
(d) as mass of lithium carbonate increases volume of gas produced increases
linear / (directly) proportional
(e) A gas / carbon dioxide is produced.
allow because the air in the tube expands
(f) any one from:

Page 2

- Potassium carbonate does not decompose to produce carbon dioxide / a gas.
- Potassium carbonate does not decompose at the temperature of the Bunsen burner or the Bunsen burner is not hot enough to decompose potassium carbonate.
- When potassium carbonate decomposes a gas is not formed.

M2.(a) cotton wool
(b) all points correct
$\pm 1 / 2$ small square
allow 1 mark if 5 or 6 of the points are correct
best fit line
must not deviate towards anomalous point
(c) (mass)
2.1 (g)
allow ecf from drawn best fit line
(time)
100 (s)
(d) a gas is produced
which escapes from the flask
(e) $\frac{9.85}{150}=0.0656$

0.07 (g / s) allow ecf answer correctly calculated to 2 decimal places

(f) collect the gas in a gas syringe
measured the volume of gas
allow carbon dioxide for gas
allow for 1 mark
collected gas
or
counted bubbles
(g) The particles have more energy

The particles move faster

M3.(a) (i) oxygen, sulfur trioxide both needed for mark
(ii) compound
(b) increases
accept (goes) higher / (goes) up / (is) faster) / (are) more frequent
(c) activation
(d) catalyst or increase temperature

M4.(a) heat / energy
given out / transfers to surroundings
the mark for given out / transfers to cannot be awarded without heat / energy
allow given off
(b) (i) decreases
increases
(ii) it gives the particles more energy
it makes the particles move faster

M5.(a) (i) In suntan creams
(ii) Much smaller
(b) (i) have a high surface area to volume ratio
(ii) because a catalyst provides an alternative / different pathway / mechanism / reaction route
accept adsorption or 'increases concentration at the surface' ignore absorption
(that has) lower activation energy
allow weakens bonds
allow idea of increased successful collisions
max 1 mark for incorrect chemistry eg increased energy of particles

M6. (a) (i) 10
(ii) OH^{-}
(b) (i) air
(ii) particles move faster
particles collide more often
(iii) catalyst(s)
(c) liquid

Page 9

Q1.Lithium carbonate reacts with dilute hydrochloric acid.
A group of students investigated the volume of gas produced.
This is the method used.

1. Place a known mass of lithium carbonate in a conical flask.
2. Measure $10 \mathrm{~cm}^{3}$ of dilute hydrochloric acid using a measuring cylinder.
3. Pour the acid into the conical flask.
4. Place a bung in the flask and collect the gas as shown in Figure 1.

Figure 1

(a) Figure 2 shows the measuring cylinder.

Figure 2

What volume of gas has been collected?
\qquad
Volume $=$
cm^{3}
(b) The table below shows the students' results.

Mass of lithium carbonate in \mathbf{g}	Volume of gas in $\mathbf{~ c m}^{3}$
0.0	0
0.1	22
0.2	44
0.3	50
0.4	88
0.5	96
0.6	96
0.7	96

On Figure 3:

- Plot these results on the grid.
- Complete the graph by drawing two straight lines of best fit.

Figure 3

(c) What are two possible reasons for the anomalous result?

Tick two boxes.

Too much lithium carbonate was added. \square
The bung was not pushed in firmly enough. \square
There was too much water in the trough. \square

The measuring cylinder was not completely over the delivery

The conical flask was too small.
\square
(d) Describe the pattern the graph shows up to 0.4 g of lithium carbonate added.
\qquad
\qquad
\qquad
\qquad
(e) Lithium carbonate decomposes when heated.

The equation shows the decomposition of lithium carbonate.
$\mathrm{Li}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Li}_{2} \mathrm{O}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
Figure 4 shows the apparatus a student used to decompose lithium carbonate.
Figure 4

Why does the limewater bubble?
(f) The student repeated the experiment with potassium carbonate. The limewater did not bubble.

Suggest why there were no bubbles in the limewater.
\qquad
\qquad

Q2.A student investigated the rate of reaction between marble chips and hydrochloric acid.
Figure 1 shows the apparatus the student used.
Figure 1

(a) What is \mathbf{A} ?

Tick one box.

(b) Table 1 shows the student's results for one investigation.

Table 1

Time in s	Mass lost in g
0	0.0
20	1.6
40	2.6
60	2.9

Page 7

80	3.7
100	4.0
120	4.0

On Figure 2:

- Plot these results on the grid.
- Draw a line of best fit.

Figure 2

(c) Use Figure 2 to complete Table 2.

Table 2

Mass lost after 0.5 minutes	$\ldots \ldots \ldots . . . \mathrm{g}$
Time taken to complete the reaction	$\ldots \ldots \mathrm{s}$

(d) The equation for the reaction is:

```
2HCl(aq) + CaCO}3(s) -> CaCl (aq) + H2O(I) + COO2(g
```

Explain why there is a loss in mass in this investigation.
\qquad
\qquad
\qquad
\qquad
(e) Another student investigated the rate of a different reaction.

Table 3 shows the results from the different reaction.

Table 3

Mass lost when the reaction was complete	9.85 g
Time taken to complete the reaction	2 minutes 30 seconds

Calculate the mean rate of the reaction using Table 3 and the equation:

$$
\text { mean rate of reaction }=\frac{\text { mass lost in g }}{\text { time taken in } \mathrm{s}}
$$

Give your answer to two decimal places.
\qquad
\qquad
Mean rate of reaction $=$ g/s
(f) The student measured the change in mass of the reactants.

Describe another method, other than measuring the change in mass of the reactions, that the student could have used to find the rate of the reaction between marble chips and

Page 9

hydrochloric acid.

\qquad
\qquad
\qquad
\qquad
(g) Another student planned to investigate the effect of temperature on the rate of reaction. The student predicted that the rate of reaction would increase as the temperature was increased.

Give two reasons why the student's prediction is correct.

Tick two boxes.

The particles are more concentrated. \square
The particles have a greater mass.

The particles have a larger surface area.

The particles have more energy.

The particles move faster.

Q3.(a) The figure below represents the reaction of sulfur dioxide with oxygen.

(i) Complete the word equation for the reaction of sulfur dioxide with oxygen. sulfur dioxide \qquad

(ii) Draw a ring around the correct answer to complete the sentence.

Sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ is \quad| a compound. |
| :--- |
| an element. |
| a mixture. |.

(b) The reactants are gases.

When the pressure of the gases is increased, the reaction gets faster.
Complete the sentence.
When the pressure of the gases is increased, the frequency of the collisions \qquad
(c) The particles need energy to react.

Complete the sentence.
The minimum amount of energy that particles need to react is called the \qquad energy.
(d) Give one way of increasing the rate of the reaction other than changing the pressure.

Q4.The following steps show how to use a type of glue.
Step 1 Measure out equal amounts of the liquids from tubes \mathbf{A} and \mathbf{B}.

Step 2 Mix the liquids to make the glue.
Put a thin layer of the glue onto each of the surfaces to be joined.

Step 3 Put the pieces together and hold them with tape.

Step 4 Leave the glue to set.
(a) When liquids \mathbf{A} and \mathbf{B} are mixed a chemical reaction takes place.

This reaction is exothermic.
What does exothermic mean?
\qquad
\qquad
\qquad
\qquad
(b) The time taken for the glue to set at different temperatures is given in the table below.

Temperature in ${ }^{\circ} \mathrm{C}$	Time taken for the glue to set
20	3 days
60	6 hours
90	1 hour

(i) Use the correct answer from the box to complete each sentence.

decreases	increases	stays the same

When the temperature is increased the time taken for the glue to set
\qquad
When the temperature is increased the rate of the setting reaction
\qquad
(ii) Tick (\checkmark) two reasons why an increase in temperature affects the rate of reaction.

Reason	Tick (\checkmark)
It gives the particles more energy	
It increases the concentration of the particles	

It increases the surface area of the particles	
It makes the particles move faster	

(2)

Q5. Nanoparticles have many uses.
(a) (i) Tick (\boldsymbol{V}) one use of nanoparticles.

(ii) How is the size of nanoparticles different from normal-sized particles?

Draw a ring around the correct answer.
much smaller same size much larger
(b) Very small amounts of cerium oxide nanoparticles can be added to diesel fuel. The cerium oxide is a catalyst.
(i) Draw a ring around the correct answer to complete the sentence.

Only a very small amount of cerium oxide nanoparticles is needed because

the nanoparticles	are elements. are very reactive. have a high surface area to volume ratio.

(ii) Explain how a catalyst increases the rate of a reaction.
\qquad
\qquad
\qquad
\qquad
\qquad

Q6. (a) Ammonia solution is used in cleaning products to remove grease from kitchen surfaces.

Ammonia solution is alkaline.
(i) Draw a ring around the number most likely to be the pH of ammonia solution.

1
3
7
10
(ii) Draw a ring around the ion in ammonia solution which makes it alkaline.
$\begin{array}{llll}\mathrm{Cl}^{-} & \mathbf{H}^{+} & \mathbf{N a}^{+} & \mathbf{O H}^{-}\end{array}$
(1)
(b) Ammonia is made using the Haber process.

(i) Where does the nitrogen used in the Haber process come from?

Draw a ring around your answer.
air natural gas
water
(ii) A high temperature of $450^{\circ} \mathrm{C}$ is used in the reactor.

Tick (\checkmark) two reasons in the table which explain why high temperatures make reactions faster.

Reasons	Tick (\checkmark)
Particles move faster	
Particles are closer together	
Particles collide more often	
Particles have less energy	

(iii) The iron in the reactor speeds up the reaction but is not used up.

What is the name given to substances that speed up the chemical reaction but which are not used up during the reaction?
\qquad
(c) Complete the sentence.

The condenser separates the ammonia from the unreacted nitrogen and hydrogen by turning the ammonia into a

M1.(a) sulfur / sulphur / S / S(s)
(b) as the temperature increases, the rate of reaction increases
allow two correct values for rate quoted (from graph) at different temperatures
the rate of increase increases or there is an exponential relationship
accept the rate of reaction increases slowly (from $20^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$) then increases more rapidly for $\mathbf{2}$ marks
answer MUST be based on rate / speed of reaction
(c) (i) any two from:

- temperature (of the reactants)
- concentration of hydrochloric acid
- volume of hydrochloric acid
- volume of sodium thiosulfate
- the (size / darkness / thickness of the) cross
- total volume of solution.
if no other marks gained, allow 1 mark for:
rate of stirring
OR
amount of hydrochloric acid / sodium thiosulfate
OR
volume of solution
(ii) (because as the concentration increases) the number of particles per unit volume increases or particles are closer together.
idea of more particles in a given space is required for the first mark.
ignore references to area.
(therefore) the frequency of (successful) collisions increases
allow increased chance / probability of collisions
number of collisions increases is insufficient here.
must mention per unit time or frequency.
ignore speed of collisions.
if reference to space and time missing from M1 and M2 but they are otherwise correct, then award 1 mark.
so the number of particles (per unit volume) doubles or (the frequency of) collisions doubles.
students can score $\mathbf{2}$ marks for a qualitative explanation; the third mark is for a quantitative explanation.

M2.(a) (i) the higher the temperature, the greater the rate
or at $40^{\circ} \mathrm{C}$ rate is faster than at $20^{\circ} \mathrm{C}$ accept the higher the temperature, the faster the reaction
(ii) $40^{\circ} \mathrm{C}$ curve is steeper
accept the $40^{\circ} \mathrm{C}$ line becomes horizontal sooner accept at higher temperatures the reaction finishes sooner accept reaction finishes sooner at $40^{\circ} \mathrm{C}$ accept at higher temperatures the gas is produced faster
or
correct comparison of data from the graph
(iii) 2
(b) (i) Concentration of acid Mass of marble chips
(ii) increases rate
incorrect reference to energy $=\max 1$
(because of) more frequent collisions (between particles)
accept particles are more likely to collide
ignore more collisions
ignore more successful collisions
(c) any one from:

- increases rate of reaction
- reduces energy required
- lower temperature can be used
- catalyst is not used up.

M3.(a) (i) precipitation
(ii) (aq) on left hand side
(s) on right hand side
(iii) potassium iodide
potassium nitrate
(iv) filtration
(b) (i) diffusion
(ii) iodide ions move / diffuse faster than lead ions or travel further in the same time

Must be a comparison
Accept converse
because the lead iodide forms much closer to the lead nitrate (or \mathbf{X}) than the potassium iodide (or \mathbf{Y}).
allow because iodide ions are smaller than lead ions
allow references to potassium iodide and lead nitrate
(iii) the particles / ions move / diffuse faster ignore which particles / ions the student refers to
because they have more energy or will collide / meet sooner ignore reference to frequency of collisions

M4.(a) time from when the heating is started until
the limewater turns cloudy / milky
(b) (i) the temperature was not high enough
accept the copper carbonate had not started to decompose / react accept it takes time to heat up the copper carbonate
the bubbles of gas were air accept no carbon dioxide produced
(ii) the copper carbonate was decomposing / reacting accept the temperature was high enough to cause decomposition / a reaction
so carbon dioxide was produced allow correct word / symbol equation
(iii) copper oxide was produced allow correct word / symbol equation
because the copper carbonate had completely decomposed / reacted ignore all of the carbon dioxide had been given off

M5.(a) because sulfur / S forms
which is insoluble / a solid / a precipitate
(b) (i) 32
correct answer with or without working gains $\mathbf{2}$ marks accept evidence of $31+33 / 2$ for 1 mark allow 35 for 1 mark
(ii) reaction rate increases
if incorrect reference to energy $=\max 2$
because of more particles (per unit volume)
allow because particles are closer together
and because there is an increase in frequency of collisions
accept because particles are more likely to collide or higher chance of collision ignore more (successful) collisions

M6.(a) (i) a continuous straight line missing anomalous point allow a line which does not start at zero / origin
(ii) any two sensible errors eg
ignore systematic / zero error / weighing error or error unqualified

- timing errors and / or example
- measurement errors and / or example
- apparatus errors and / or example
- human / experimental / reading / random error and / or example
or 'did not do it right'
could be two from same category
eg two timing errors - watch not started at the same time plus difficulty in deciding when the cross has disappeared.
- temperature fluctuation
- anomalous point
accept outlier / wrong result
- results not recorded correctly
- plotting error
- rate calculated incorrectly ignore 'not repeated'
(b) (i) straight line
allow as concentration increases the rate goes up or converse
allow numerical example
allow positive correlation
allow same gradient
ignore 'most points near / on line of best fit'
(ii) because of an increase in frequency of collisions

Page 9
max 1 if incorrect reference to energy or if subatomic particle specified
accept because particles are more likely to collide or higher chance of collision
ignore more (successful) collisions
because there are more particles (per unit volume)
allow because particles are closer together

M7. (a) gives out energy or heat
(b) (i) accept qualified answers in terms of volume of gas related to time fast initially
(b) (ii) 21
(iii) 84
correct answer with or without working = $\mathbf{2}$ marks allow ecf from (b)(ii) correctly calculated for $\mathbf{2}$ marks allow evidence of 21/25 or (b)(ii)/25 for 1 mark
(c) because they / particles have more energy / move faster ignore particles move more / vibrate
(and so) particles collide more often / more frequently or particles more likely to collide ignore collide faster
ignore more collisions
(and) more of the collisions are successful or particles collide with more energy / harder or more of the particles have the activation energy
accept more successful collisions
1

Q1.A student investigated the rate of reaction between sodium thiosulfate solution and dilute hydrochloric acid, as shown in Figure 1.

Figure 1

The reaction produced a precipitate, which made the mixture turn cloudy.
The student timed how long it took until she could no longer see the cross.
She calculated the rate of the reaction.
(a) The equation for the reaction is:

$$
\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{S}(\mathrm{~s})+\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Name the product that made the mixture go cloudy.
\qquad
(b) The student investigated the effect of changing the temperature of the sodium thiosulfate solution on the rate of reaction.

She plotted her results on a graph, as shown in Figure 2.

Figure 2

Describe the trends shown in the student's results.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) The student then investigated the effect of changing the concentration of sodium thiosulfate solution on the rate of the reaction.
(i) Suggest two variables the student would need to control to make sure that her results were valid.

Page 3

(ii) From this investigation the student correctly concluded:
'As the concentration of sodium thiosulfate solution doubles, the rate of reaction doubles.'

Explain the student's conclusion in terms of particles.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q2.A student investigated the rate of reaction between calcium carbonate (marble chips) and hydrochloric acid.

The student used the apparatus shown in Figure 1.
Figure 1

The student:

- recorded the volume of gas collected every 5 seconds
- repeated the experiment using hydrochloric acid at different temperatures.

The equation for the reaction is:
$\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})$
(a) The student plotted results for the hydrochloric acid at $20^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ on a graph.

Figure 2 shows the student's graph.
Figure 2

Page 5

Use information from Figure 2 to answer these questions.
(i) State one conclusion the student could make about the effect of temperature on the rate of the reaction.
\qquad
\qquad
(ii) Give one reason why the student could make this conclusion.
\qquad
\qquad
(iii) For the hydrochloric acid at $60^{\circ} \mathrm{C}$ the student had collected $30 \mathrm{~cm}^{3}$ after 15 seconds.

Calculate the average rate of reaction from 0 to 15 seconds.
\qquad
\qquad

Rate of reaction $=$ \qquad cm^{3} per second
(b) The student then investigated how the surface area of marble chips affected the rate of reaction.
(i) Which two variables should the student keep constant?

Tick (\checkmark) two boxes.

Amount of water in the trough

Concentration of acid

Mass of marble chips

Size of marble chips

Volume of measuring cylinder

(ii) Explain, in terms of particles and collisions, the effect that increasing the surface area of the marble chips has on the rate of reaction.
\qquad
\qquad
\qquad
\qquad
(c) Calcium carbonate is a catalyst for the industrial production of biodiesel.

Give one reason why using a catalyst reduces costs.
\qquad
\qquad

Q3.Lead nitrate solution reacts with potassium iodide solution.
The reaction produces a solid.
Figure 1 shows the reaction occurring.
Figure 1

Lead Iodide By Der Kreole (own work) (CC-BY-3.0) via Wikimedia Commons
(a) (i) Give the name of this type of reaction.

Tick (\checkmark) one box.
Combustion

Neutralisation

Precipitation

(ii) Write the missing state symbols in the chemical equation.

$$
\begin{equation*}
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{KI}(\ldots \ldots) \longrightarrow \mathrm{Pbl}_{2}(\ldots . . .)+2 \mathrm{KNO}_{3}(\mathrm{aq}) \tag{2}
\end{equation*}
$$

(iii) Complete the word equation for the reaction.

Page 8
lead nitrate + \qquad \longrightarrow lead iodide + \qquad
(iv) How is solid lead iodide separated from the solution?

Draw a ring around the correct answer.

Distillation Electrolysis Filtration

(b) A group of students investigated the movement of particles.

The students filled a container with water.
The students added a crystal of lead nitrate at position \mathbf{X} and a crystal of potassium iodide at position \mathbf{Y}, as shown in Figure 2.

Figure 2 - view from above

After 3 minutes solid lead iodide started to form at the position shown in Figure 3.
Figure 3 - view from above

(i) Tick (\checkmark) the correct box to complete the sentence.

Page 9

Lead ions and iodide ions move through the water by diffusion. \square
evaporation.

neutralisation.

(ii) What conclusion can you make about the speed of movement of lead ions compared with iodide ions?

Give a reason for your answer.
\qquad
\qquad
\qquad
\qquad
(iii) The students repeated the experiment at a higher temperature.

The solid lead iodide formed after a shorter period of time.

Explain why, in terms of particles.
\qquad
\qquad
\qquad
\qquad

Q4.Carbon dioxide is produced when copper carbonate is heated.

A student investigated heating copper carbonate.
The student used the apparatus to measure how long it took for carbon dioxide to be produced.
The student also noted what happened during each minute for three minutes.

(a) The student used changes to the limewater to measure how long it took for carbon dioxide to be produced.

Describe how.
\qquad
\qquad
\qquad
\qquad
(b) The student wrote down her observations.

Time interval in minutes	Observations
Between 0 and 1	A slow release of gas bubbles. The limewater did not change. The solid in the test tube was green.
Between 1 and 2	A fast release of gas bubbles.

	The limewater changed at 1 minute 10 seconds.
Between 2 and 3	No release of gas bubbles. The solid in the test tube was black.

(i) Suggest the reason for the student's observations between 0 and 1 minute.
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Explain the student's observations between 1 and 2 minutes.
\qquad
\qquad
\qquad
\qquad
(iii) Explain the student's observations between 2 and 3 minutes.
\qquad
\qquad
\qquad
\qquad

Q5.A student investigated the rate of reaction between sodium thiosulfate and dilute hydrochloric acid.
The student placed a conical flask over a cross on a piece of paper.

The student mixed the solutions in the flask.
The solution slowly went cloudy.
The student timed how long it took until the cross could not be seen.

The equation for the reaction is:

$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})$	+	$2 \mathrm{HCl}(\mathrm{aq})$	$\therefore 2 \mathrm{NaCl}(\mathrm{aq})$	$+$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+	$\mathrm{SO}_{2}(\mathrm{~g})$	+	S(s)
sodium thiosulfate	+	hydrochloric acid	$\therefore \quad \begin{gathered} \text { sodium } \\ \text { chloride } \end{gathered}$	+	water	+	sulfur dioxide	+	sulfur

(a) Explain why the solution goes cloudy.
\qquad
\qquad
\qquad
\qquad
(b) The student repeated the experiment with different concentrations of sodium thiosulfate.
\square
Concentration of Time taken until the cross could not be

sodium thiosulfate in moles per dm				
	seen in seconds			
	Trial 1	Trial 2	Trial 3	Mean
0.040	71	67	69	69
0.060	42	45	45	44
0.080	31	41	33	

(i) Calculate the mean time for 0.080 moles per dm^{3} of sodium thiosulfate.

Mean = \qquad seconds
(ii) Describe and explain, in terms of particles and collisions, the effect that increasing the concentration of sodium thiosulfate has on the rate of the reaction.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q6.Sodium thiosulfate solution reacts with hydrochloric acid. As the reaction takes place the solution slowly turns cloudy.

The diagram shows a method of measuring the rate of this reaction.

A student used this method to study how changing the concentration of the sodium thiosulfate solution alters the rate of this reaction.

The student used different concentrations of sodium thiosulfate solution. All the other variables were kept the same.

The results of the experiments are shown on the graph below.
(a) (i) Draw a line of best fit on the graph.
(ii) Suggest two reasons why all of the points do not lie on the line of best fit.
\qquad
\qquad
\qquad
\qquad
\qquad

(b) (i) In a conclusion to the experiment the student stated that:
'The rate of this reaction is directly proportional to the concentration of the sodium thiosulfate.'

How does the graph support this conclusion?
\qquad
\qquad
(ii) Explain, in terms of particles, why the rate of reaction increases when the concentration of sodium thiosulfate is increased.
\qquad
\qquad
\qquad

Q7. The symbol equation for the decomposition of hydrogen peroxide is:

$$
2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}
$$

(a) This reaction is exothermic.

What is an exothermic reaction?
\qquad
\qquad
(b) A student measured the volume of oxygen produced by $50 \mathrm{~cm}^{3}$ of hydrogen peroxide.

The graph shows the results.

(i) Use the graph to describe the changes in the rate of the reaction from 0 to 35 seconds.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) What was the total volume of oxygen gas collected?
\qquad cm^{3}
(iii) The student had calculated that the hydrogen peroxide used should produce $25 \mathrm{~cm}^{3}$ of oxygen.

Calculate the percentage yield of oxygen.
\qquad
\qquad
Answer = \%
(c) An increase in the temperature of the hydrogen peroxide increases the rate of the reaction. Use your knowledge of particles to explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

M1.(a) $\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
allow 1 mark for correct formulae
(b) sensible scales, using at least half the grid for the points
all points correct
$\pm 1 / 2$ small square
allow 1 mark if 8 or 9 of the points are correct
best fit line
(c) steeper line to left of original
line finishes at same overall volume of gas collected
(d) acid particles used up
allow marble / reactant used up
so concentration decreases
allow surface area of marble decreases
so less frequent collisions / fewer collisions per second do not accept fewer collisions unqualified
so rate decreases / reaction slows down
(e) mass lost of 2.2 (g)
time taken of
270 s
allow values in range 265-270
$\frac{2.2}{270}=0.00814814$ allow ecf for values given for mass and time
0.00815 (g / s)
or
8.15×10^{-3}
allow 1 mark for correct calculation of value to 3 sig figs accept 0.00815 or 8.15×10^{-3} with no working shown for 4 marks
(f) correct tangent
eg 0.35 / 50

M2.(a) (s) (aq) (aq) (g)
must be in this order
2 marks if all four correct
1 mark if 2 or 3 correct
(b) (i) 55
ignore units
(ii) 54
allow ecf from (b)(i)
(iii) 0.92
correct answer with or without working gains $\mathbf{2}$ marks
ecf from volume in (b)(i)
accept 2 d.p. up to calculator value
if answer incorrect, allow rate = (b)(i) / 60 for 1 mark
(c) (i) circle round point at $(48,22)$
(ii) problem (1) and explanation (1)
explanation must give lower volume of gas or slower reaction ignore human error unless qualified
problem with bung
e.g. bung not placed in firmly / quickly enough
so gas lost
or

```
problem with reagent
e.g. acid was diluted or acid not replaced
so reaction slower
or
problem with temperature
e.g. temperature was lower than recorded temperature
so reaction slower
or
problem with measurement
e.g. length of magnesium less than 8 cm or timed for less than a minute
so less gas produced
```

(d) repeat the experiment (several times)
because anomalous results could be excluded
and then the mean can be determined / calculated
accept suggestion of alteration to method, which is explained as to why it would reduce the error, for $\mathbf{3}$ marks (e.g. place the magnesium in a container within the flask (1) so it can be tipped into the acid once the bung is in place (1). This will prevent anomalous results or gas loss (1))
ignore idea of more accurate gas syringe ignore shorter time intervals
(d) repeat the experiment (several times)
(e) (i) use clean magnesium or use magnesium without oxide coating
compare results
(ii) either
measure the temperature of the acid before (adding magnesium)
and after adding magnesium
or
place the conical flask in a water bath (at $40^{\circ} \mathrm{C}$) (1)
compare results (1)

M3. (a) 118
(b) it loses / transfers electrons

$$
\text { it }=A u / \text { gold atom }
$$

three electrons
sharing / covalency = max 1 mark
(c) (i) O_{2}

2 CO and $2 \mathrm{CO}_{2}$
or
correct balancing of equation from O accept correct multiples / fractions throughout
(ii) reference to incorrect bonding $=\mathbf{1}$ mark max
because carbon dioxide is simple molecular / small molecules
there are intermolecular forces (between the molecules)
allow intermolecular bonds
so a small amount of energy needed (to separate molecules) or (intermolecular forces) are weak
(d) any three from:

- gold is the only catalyst for some reactions
- catalysts are not used up
- improves speed of reaction
reduces amount of energy or process needs low(er) temperature
if no mark awarded, allow catalyst reduce costs (of the process) for 1 mark
- only small quantities (of catalyst) needed

M4. (a) same number of (gaseous) molecules / moles / volume on both sides of the equation
allow particles for molecules
do not accept atoms
ignore amount
(b) (forward) reaction is exothermic accept reverse answer
(c) any three from:

- particles gain energy
- particles move faster
allow particles collide faster / quicker
ignore move more / vibrate more
- particles collide more or more collisions
- more of the collisions are successful or more of the particles have the activation energy or particles collide with more force / energy
(d) any two from:
- more product (obtained in shorter time) accept better yield (of product)
- less fuel needed
accept less energy / heat / electricity needed
or
lower fuel costs ignore cheaper unqualified
- less pollution caused by burning fuels
or
less specified type of pollution caused by producing heat / burning fuels allow correct specified pollutants caused by burning fossil fuels eg CO_{2} / greenhouse gases or correct effect of burning fossil fuels eg global warming accept thermal / heat pollution
- using less fuel conserves resources
accept sustainable
accept fossil fuels are non-renewable

Q1.Marble chips are mainly calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$.
A student investigated the rate of reaction between marble chips and hydrochloric acid (HCl).
Figure 1 shows the apparatus the student used.
Figure 1

(a) Complete and balance the equation for the reaction between marble chips and hydrochloric acid.
\qquad $+$ \qquad $\rightarrow \mathrm{CaCl}_{2}+$ \qquad $+$ \qquad
(b) The table below shows the student's results.

Time in s	Volume of gas in dm 3
0	0.000
30	0.030
60	0.046
90	0.052
120	0.065
150	0.070
180	0.076
210	0.079
240	0.080
270	0.080

On Figure 2:

- Plot these results on the grid.
- Draw a line of best fit.

Figure 2

(c) Sketch a line on the grid in Figure 2 to show the results you would expect if the experiment was repeated using 20 g of smaller marble chips.

Label this line A.
(d) Explain, in terms of particles, how and why the rate of reaction changes during the reaction of calcium carbonate with hydrochloric acid.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(e) Another student investigated the rate of reaction by measuring the change in mass.

Figure 3 shows the graph plotted from this student's results.
Figure 3

Use Figure 3 to calculate the mean rate of the reaction up to the time the reaction is complete.

Give your answer to three significant figures.

> Mean rate of reaction = .. g / s
(f) Use Figure $\mathbf{3}$ to determine the rate of reaction at 150 seconds.

Show your working on Figure 3.
Give your answer in standard form.
\qquad
\qquad
\qquad
\qquad
\qquad

Q2.A student investigated the reaction between magnesium metal and dilute hydrochloric acid.
The student placed $25 \mathrm{~cm}^{3}$ of dilute hydrochloric acid in a conical flask and set up the apparatus as shown in the diagram.

The student:

- took the bung out of the flask and added a single piece of magnesium ribbon 8 cm long
- put the bung back in the flask and started a stopwatch
- recorded the volume of gas collected after 1 minute
- repeated the experiment using different temperatures of acid.

The student plotted his results on a graph.

(a) Write the correct state symbols in the equation.

Choose from (s) for solid, (I) for liquid, (g) for gas and (aq) for aqueous.
$\mathrm{Mg}(\ldots)+.2 \mathrm{HCl}(\ldots) \longrightarrow \mathrm{MgCl}_{2}(\ldots)+\mathrm{H}_{2}(\ldots)$
(b) The diagram shows a gas syringe after 1 minute.

(i) What volume of gas has been collected in the gas syringe after 1 minute?

Volume $=$ \qquad cm^{3}
(ii) Use the graph to determine the temperature of the acid used in this experiment.

$$
\text { Temperature = }{ }^{\circ} \mathrm{C}
$$

(iii) Calculate the average rate of reaction, in cm^{3} of hydrogen made per second ($\mathrm{cm}^{3} / \mathrm{s}$), for this experiment.
\qquad
\qquad
Rate of reaction $=$ \qquad $\mathrm{cm}^{3} / \mathrm{s}$
(c) The student's graph has been reprinted to help you answer this question.

One of the results on the graph is anomalous.
(i) Draw a circle on the graph around the anomalous point.
(ii) Suggest what may have happened to cause this anomalous result.

Explain your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Explain how the student could improve the accuracy of the volume of gas recorded at each temperature.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(e) The student then used the same apparatus to measure the volume of gas produced every 10 seconds at $40^{\circ} \mathrm{C}$.

The student's results are shown on the graph.

Page 9

The rate at which the gas was produced got faster over the first 60 seconds.
The student's teacher gave two possible explanations of why the reaction got faster.

Explanation 1

There was a layer of magnesium oxide on the surface of the magnesium.
The layer of magnesium oxide prevented the magnesium reacting with the acid.
As the magnesium oxide reacted slowly with the acid, the magnesium was exposed to the acid and hydrogen gas was produced.

Explanation 2

The reaction is exothermic, and so the temperature of the acid increased during the reaction.
(i) Describe further experimental work the student could do to see if Explanation 1 is correct.
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Describe further experimental work the student could do to see if Explanation $\mathbf{2}$ is correct.
\qquad
\qquad
\qquad
\qquad
\qquad

Q3. This question is about gold (Au).
(a) An atom of gold is represented as:

197 Au 79

How many neutrons are in this atom of gold? \qquad
(b) Gold ions are used as a catalyst.

How does a gold atom (Au) become a gold ion (Au^{3+})?
\qquad
\qquad
\qquad
\qquad
(c) A gold catalyst can be used when carbon monoxide reacts with oxygen to make carbon dioxide.
(i) Complete and balance the equation for this reaction.

(ii) Carbon dioxide has a very low boiling point.

Explain why.
\qquad
\qquad
\qquad
\qquad
(d) Gold is used as a catalyst in industrial processes. Gold is rare and increasingly expensive. Suggest three reasons why gold is still used in industrial processes.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q4. The equation for a reaction to produce hydrogen is:

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

(a) Explain why changing the pressure does not affect the yield of hydrogen at equilibrium.
\qquad
\qquad
(b) Suggest why the best yield of hydrogen at equilibrium is obtained at low temperatures.
\qquad
\qquad
(c) The temperature used in industry needs to be high enough for the reaction to take place quickly. Explain, in terms of particles, why the rate of reaction increases when the temperature is increased.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Scientists have developed catalysts which allow the reaction to take place quickly at lower temperatures. How could this be good for the manufacturer and for the environment?
\qquad
\qquad
\qquad
\qquad

M1.(a) reversible

allow equilibrium

(b) The colour changed from blue to pink
(c) $8.3\left({ }^{\circ} \mathrm{C}\right)$
(d) endothermic
allow dehydration
ignore reversible

M2.(a) natural gas
allow correct answer shown in box if answer line blank
(b) (i) 450
allow correct answer shown in box if answer line blank
(ii) iron
allow correct answer shown in box if answer line blank
(iii) The catalyst lowers the activation energy.
(c) (the gases are) cooled
ammonia condenses
allow ammonia liquefies
nitrogen and hydrogen are recycled
if no other mark awarded allow ammonia is separated for $\mathbf{1}$ mark
allow correct answer shown in box if answer line blank

M3. (a) reversible
(b) (from blue) to pink do not accept incorrect initial colour
(c) sensible answers such as:

- stop water reaching papers accept stop entry of moisture / wet / dampness / condensation
- water (vapour) in air ignore references to toxicity of cobalt chloride

M4. (a) (i) 10
(ii) OH^{-}
(b) (i) air
(ii) particles move faster
particles collide more often
(iii) catalyst(s)
(c) liquid

Page 5

M5. (a) 22
(b) (i) exothermic
(ii) C
gives out most heat energy
accept has largest temperature change / increase allow has highest (final) temperature or hottest
(c) (i) increases
(ii) blue
ignore pale / dark etc
(iii) reversible (reaction)
allow goes both ways or two / either way
(iv) anhydrous copper sulfate

M6. (a) gases

white
solid
ammonium chloride
(b) reversible
allow phonetic spelling allow goes both / two / either way(s)

M7. (a) increases
(b) the reaction is reversible
(c) A liquid
(d) recycled / reused (owtte)
accept returned to pump / start

M8. (a) white to blue
accept colourless to blue
(b) reversible

M9. (a) water
accept $\mathrm{H}_{2} \mathrm{O}$ or $5 \mathrm{H}_{2} \mathrm{O}$
2 must be below halfway
(b) the cold water / ice / cubes (owtte)
accept 'cooled down' or references to cold
(c) reversible reaction
(d) (i) 0.87 g
(ii) the student made errors in weighing during the experiments
the student did not heat the copper sulfate for long enough in one of the experiments
(e) white
blue
allow 1 mark for blue to white
1

M10.
(a) (i) nitrogen + hydrogen \rightarrow ammonia accept full correct balanced equation
(ii) reversible (reaction) (owtte) do not allow just 'backwards' (unqualified)
(iii) catalyst / speed up reaction accept to lower activation energy
(iv) boiling point
(v) recycled (owtte)
(b) (i) used to make explosives (owtte) used to make medicines (owtte)
(ii) used to make fertilisers (owtte)
(c) (i) sensible answers such as provides workers (owtte) good transport links ignore reference to raw materials
(ii) sensible idea
linked reason
idea
linked reason
eg escape of chemicals /fumes/waste gases / pollution
harmful to health / environmental damage owtte
do not allow harmful / damage / smell (unqualified)
risk of explosion
because of high pressures / may endanger local people / dangerous
risk of fire
because of high temperatures / may endanger local people
noise
any detrimental effect on quality of life or night and day
lorries / traffic
danger / noise / pollution etc
unsightly
detrimental effect on quality of life / house prices / reduced tourism
uses a lot of land loss of habitats

Q1.The word equation shows the reaction between anhydrous cobalt chloride and water.

$\underset{\text { anhydrous }}{\text { cobalt chloride }}$| (blue) |
| :--- |

water \quad| hydrated |
| :---: |
| cobalt chloride |
| (pink) |

(a) Name the type of reaction shown by the sign \rightleftharpoons
\qquad
(b) When the student added water to anhydrous cobalt chloride what happened?
\qquad
(c) A student measured the temperature rise when anhydrous cobalt chloride was added to water.

The student's results are shown in the table below.

	Trial 1	Trial 2	Trial 3
Temperature rise in ${ }^{\circ} \mathrm{C}$	8.5	8.2	8.2

Calculate the mean temperature rise.
\qquad

$$
\text { Temperature = ... }{ }^{\circ} \mathrm{C}
$$

(d) When water was added to anhydrous cobalt chloride an exothermic reaction took place.

Name the type of reaction when hydrated cobalt chloride reacts to form anhydrous cobalt chloride and water.

Page 2

Q2.A flow diagram of the Haber process is shown below.
The Haber process produces ammonia from nitrogen and hydrogen.

(a) Use the correct answer from the box to complete the sentence.

air	limestone	natural gas

Hydrogen is obtained from
(b) In the reactor, nitrogen and hydrogen at a high pressure are heated and passed over a catalyst.
(i) Use the correct answer from the box to complete the sentence.

25	100	450

The temperature in the reactor is \qquad ${ }^{\circ} \mathrm{C}$
(ii) Use the correct answer from the box to complete the sentence.

Page 4

copper	iron	nickel

The catalyst used in the reactor is \qquad
(iii) How does a catalyst speed up a reaction?

Tick (\checkmark) one box.

The catalyst lowers the activation energy.

The catalyst gives the reactants extra energy.

The catalyst increases the pressure in the reactor.

(c) A mixture of gases leaves the reactor.

The mixture contains ammonia, nitrogen and hydrogen.

Describe what happens to this mixture of gases in the condenser.

Use the flow diagram to help you.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q3. Read the information and then answer the questions.

Cobalt chloride paper can be used to test for water.

The paper contains anhydrous cobalt chloride.

The jar containing the papers must be kept closed when not being used.

The equation shows the reaction between anhydrous cobalt chloride and water.
$\mathrm{CoCl}_{2}+6 \mathrm{H}_{2} \mathrm{O} \quad \rightleftharpoons \quad \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
anhydrous cobalt chloride
(blue)
hydrated cobalt chloride
(pink)
(a) Choose one word from the box to complete the sentence.
endothermic exothermic reversible

The symbol \rightleftharpoons means that the reaction is \qquad
(b) Describe the colour change when water is added to the cobalt chloride paper.
\qquad
\qquad
(c) Suggest why the jar containing the unused cobalt chloride papers must be kept closed.
\qquad
\qquad

Q4. (a) Ammonia solution is used in cleaning products to remove grease from kitchen surfaces.

Ammonia solution is alkaline.
(i) Draw a ring around the number most likely to be the pH of ammonia solution.

1
3
7
10
(ii) Draw a ring around the ion in ammonia solution which makes it alkaline.
$\begin{array}{llll}\mathrm{Cl}^{-} & \mathbf{H}^{+} & \mathrm{Na}^{+} & \mathrm{OH}^{-}\end{array}$
(1)
(b) Ammonia is made using the Haber process.

(i) Where does the nitrogen used in the Haber process come from?

Draw a ring around your answer.
air natural gas
water
(ii) A high temperature of $450^{\circ} \mathrm{C}$ is used in the reactor.

Tick (\checkmark) two reasons in the table which explain why high temperatures make reactions faster.

Reasons	Tick (\checkmark)
Particles move faster	
Particles are closer together	
Particles collide more often	
Particles have less energy	

(iii) The iron in the reactor speeds up the reaction but is not used up.

What is the name given to substances that speed up the chemical reaction but which are not used up during the reaction?
\qquad
(c) Complete the sentence.

The condenser separates the ammonia from the unreacted nitrogen and hydrogen by turning the ammonia into a

Q5. Hand warmers use chemical reactions.

(a) The table shows temperature changes for chemical reactions \mathbf{A}, \mathbf{B} and \mathbf{C}.

Reaction	Starting temperature in ${ }^{\circ} \mathrm{C}$	Final temperature in ${ }^{\circ} \mathrm{C}$	Change in temperature in ${ }^{\circ} \mathrm{C}$
A	18	25	+7
B	17	$\ldots \ldots \ldots \ldots \ldots \ldots$.	+5
C	18	27	+9

What is the final temperature for reaction \mathbf{B} ? Write your answer in the table.
(b) (i) What name is given to reactions that heat the surroundings?
(ii) Which reaction, \mathbf{A}, \mathbf{B} or \mathbf{C}, would be best to use in a hand warmer?

Give a reason why you chose this reaction.
\qquad
\qquad
(c) A student added water to some anhydrous copper sulfate.

The equation for the reaction is shown.
anhydrous copper sulfate + water \rightleftharpoons hydrated copper sulfate

$$
\mathrm{CuSO}_{4} \quad+5 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}
$$

The student measured the temperature before and after the reaction.
(i) The measurements showed that this reaction can be used for a hand warmer.

Draw a ring around the correct answer to complete the sentence.
When water is added to anhydrous copper sulfate the temperature

of the mixture	
decreases.	
stays the same.	

(ii) Anhydrous copper sulfate is white.

What colour is seen after water is added to the anhydrous copper sulfate?
\qquad
(iii) What does the symbol \rightleftharpoons mean?
\qquad
(iv) The student heated a tube containing hydrated copper sulfate. Name the solid substance produced.

Q6. Stage smoke is used for special effects at pop concerts.

By Sam Cockman [CC BY 2.0], via Flickr
Ammonium chloride can be used to make stage smoke.
Ammonium chloride is a white solid.
When heated, ammonium chloride produces white smoke which can be blown onto the stage.
The equation shows what happens when ammonium chloride is heated and cooled.
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$

$\mathrm{NH}_{3}(\mathrm{~g})$
$+$
$\mathrm{HCl}(\mathrm{g})$
ammonium chloride
(white)
ammonia
(colourless)
hydrogen chloride
(colourless)
(a) The sentences explain how the smoke is made.

Draw a ring around the correct answer in each box to complete each sentence.
Use the information and the equation to help you.

When heated, ammonium chloride makes two colourless
solids.
liquids.
gases.

(b) Complete the sentence.

The symbol \rightleftharpoons means that the reaction is

Q7. The flow diagram shows how ammonia is made.

(a) What effect, if any, does the pump have on the pressure of the nitrogen and hydrogen?

Draw a ring around the correct answer to complete the sentence.

(b) The word equation for making ammonia is:
nitrogen + hydrogen \rightleftharpoons ammonia

In the reactor only a small amount of the nitrogen and hydrogen is changed into ammonia.
Tick (\checkmark) the reason why.

Reason why	Tick ($\sqrt{ }$)
Ammonia is formed from two elements.	
Nitrogen and hydrogen are gases.	
The reaction is reversible.	

(c) In the cooler the mixture of gases is cooled.

Draw a ring around the correct answer to complete the sentence.

(d) What happens to the unreacted nitrogen and hydrogen from the reactor?
\qquad
\qquad

Q8. The diagram shows how anhydrous copper sulfate can be used to test for water.

(a) What colour change will you see when water is added to the CuSO_{4} ?

Colour changes from \qquad to \qquad
(b) Draw a ring around the meaning of the symbol endothermic exothermic \rightleftharpoons reversible

Q9. A student heated some hydrated copper sulfate crystals.
The equation for this reaction is shown below.

| $\underset{\text { CuSO }}{4} .5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ |
| :--- | :--- |
| hydrated copper sulfate crystals |${ }_{\text {anhydrous copper sulfate }}^{\mathrm{CuSO}_{4}(\mathrm{~s})}+\underset{\text { water }}{5 \mathrm{H}_{2} \mathrm{O}(1)}$

Hydrated copper sulfate crystals

(a) Name liquid \mathbf{A}
(b) What helped the vapour to condense into liquid A?
\qquad
\qquad
(c) Put a tick (\vee^{\prime}) next to the correct meaning of the symbol \qquad

Meaning	$\left(\vee^{\prime}\right)$
equal amounts of reactants and products	
exothermic reaction	
reversible reaction	

(d) The student weighed the copper sulfate before and after it was heated.

The experiment was repeated and the two sets of results are shown in the table.

Mass of copper sulfate before heating in grams	Mass of copper sulfate after heating in grams	Mass lost in grams
2.50	1.65	0.85
2.50	1.61	0.89

(i) Draw a ring around the average mass lost for these two sets of results.

$$
0.85 \mathrm{~g} \quad 0.87 \mathrm{~g} \quad 0.89 \mathrm{~g}
$$

(ii) The student used the same mass of copper sulfate each time but the mass lost was different.

Put a tick (\checkmark^{\prime}) next to the two reasons which could explain why the mass lost is different.

Reason	$\left(\boldsymbol{r}^{\prime}\right)$
The student used different test tubes for the two experiments.	
The student made errors in weighing during the experiments.	
The student used more ice in one of the experiments.	
The student did not heat the copper sulfate for long enough in one of the experiments.	

(e) Anhydrous copper sulfate is used to test for water.

Use words from the box to complete the sentence.

blue	green	red	white

Water changes the colour of anhydrous copper sulfate from \qquad to \qquad

Q10. The Haber process is named after the German chemist, Fritz Haber. The diagram shows the main stages in the Haber process.

Nitrogen and hydrogen

The nitrogen and hy drogen mixture is compressed to a pressure of 200 atmospheres and heated to $450^{\circ} \mathrm{C}$

The hot gases are

Reproduced with the permission of Nelson Thornes Ltd from PATRICK FULLICK et al, ISBN 0-7487-96444. First published in 2006
(a) Use the diagram to help you to answer these questions.
(i) Complete the word equation for the reaction that takes place in the reactor.
nitrogen + \rightleftharpoons
(ii) What does the symbol \rightleftharpoons mean?
\qquad
(iii) What is the purpose of the iron in the reactor?
\qquad
(iv) Ammonia is separated from unreacted nitrogen and hydrogen.

Draw a ring around the physical property that allows this separation to take place.

boiling point density melting point

(v) What is done with the unreacted nitrogen and hydrogen?
\qquad
(b) Some of the products that can be made from ammonia are:

- fertilisers
- dyes
- explosives
- medicines
- plastics
(i) The Haber process was invented a few years before the start of the First World War. It is thought that the First World War would have finished earlier if the Germans had not invented the Haber process.

Suggest why.
\qquad
\qquad
(ii) The Haber process has helped to increase food production.

Explain why.
\qquad
\qquad
(c) Factories that make ammonia are very large and operate night and day.
(i) Ammonia factories are often near towns.

Suggest why.
(ii) Suggest and explain one reason why local people might not want an ammonia factory near their town.
\qquad
\qquad
\qquad
\qquad

M1. (a) to speed up the reaction or it is a catalyst
allow higher level answers such as to reduce the activation energy ignore cost or yield
(b) (i) reaction is exothermic accept reverse reaction is endothermic or high temperature causes decomposition of ammonia ignore reference to rate
(ii) more (gaseous) reactant molecules than (gaseous) product molecules accept 4 volumes / moles of reactant and 2 volumes / moles of product accept lower volume of products or volume lower on right hand side accept 'favours the reaction which produces fewer molecules' ignore incorrect number of moles ignore reference to 'amount' of product / reactant ignore references to rate
(c) (rate is) too slow / slower owtte allow catalyst would not work accept at higher temperature the rate is quicker accept at lower temperatures particles do not collide as often or fewer particles have the activation energy or particles do not have the activation energy ignore reaction would not work ignore optimum / compromise type answers

M2. (i) reversible (reaction)
(ii) (yield of ammonia) increases
(iii)

$$
\begin{aligned}
& \text { M3. (i) } \quad \mathrm{A}=\text { air } \\
& \mathrm{B}=\text { natural gas } \\
& \\
& \\
& \text { for } 1 \text { mark each }
\end{aligned}
$$

(ii) nitrogen

$$
\text { both for } 1 \text { mark }
$$

(iii) catalyst / speed up reaction for 1 mark
(iv) recycle unreacted gases / save money for 1 mark

M4. (a) as a catalyst accept to speed up the reaction (equilibrium)
(b) nitrogen + hydrogen \rightleftharpoons ammonia

$$
\mathrm{N}_{2}+\mathrm{H}_{2} \rightleftharpoons \mathrm{NH}_{3}
$$

accept mixed formula / word equations ignore balancing
(c) (i) the reaction is reversible / an equilibrium accept that ammonia can break down again into nitrogen and hydrogen accept reaction goes both ways do not accept some nitrogen and hydrogen do not react
(ii) (the gases are cooled)
no marks as given in the diagram accept correct formulae $\mathrm{NH}_{3}, \mathrm{~N}_{2} \mathrm{H}_{2}$
ammonia removed as a liquid accept ammonia liquefies or condenses
nitrogen and hydrogen are recycled accept nitrogen and hydrogen are put back through the converter accept 'other gases' only if ammonia identified for first mark

M5. (a) endothermic (reaction)
accept thermal decomposition
(b) gives out heat (energy)
accept exothermic (reaction)
turns blue accept goes to hydrated copper sulphate

M6.
(a) (i) gas
accept they are all gases
(ii) reversible (reaction) accept can go either way accept ammonia can be decomposed (to nitrogen and hydrogen) accept could be (an) equilibrium do not credit just 'equilibrium'
(iii) (liquid) air or atmosphere
(iv) same number or amount or weight (of atoms) on each side (of the equation)
accept "sums" for each side
accept same amounts of elements on each side do not credit molecules or compounds do not credit both sides are the same unless explained
of the same type
or gives a correct example 'e.g. six hydrogen atoms' (on each side)
(b) (i) nitrate or sulphate or phosphate
if first left blank, second may be awarded do not credit chloride
nitric or sulphuric or phosphoric
(only if correct above, exception is for ammonium chloride followed by hydrochloric acid (1 mark))
as appropriate if only the formula is given this should be credited only if it is correct in every detail i.e. $\mathrm{NH}_{4} \mathrm{NO}_{3} \mathrm{HNO}_{3}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \mathrm{H}_{2} \mathrm{SO}_{4}$ accept correct name with an incorrect version of the formula do not credit a correct formula with an incorrect version of the name e.g. 'nitrate/sulphite' etc

* (solution) can be sprayed (on the fields or crops) accept more even distribution
* dissolves in soil water or rain (water) accept soaks into soil (because soaks implies water)
* can be taken up by (plant) roots do not credit can be added to water to "feed" the plants
(c) (i) elements or different atoms are bonded or joined or combined or reacted
do not credit just 'atoms' do not credit added or mixed
(ii) (pairs of) electrons are shared do not credit an electron is shared

M7. (a) (i) ammonia and hydrogen chloride both required either order accept formulae if correct in every detail
(ii) ammonium chloride / $\mathrm{NH}_{4} \mathrm{Cl}$ do not credit ammonia chloride
(iii) the fumes / gases / are poisonous / toxic or ammonia and hydrogen chloride are poisonous / toxic / lethal accept just ammonia is poisonous / toxic accept just hydrogen chloride is poisonous / toxic accept vapour is poisonous / toxic do not credit just fumes are dangerous or harmful
(iv) nitrogen
do not credit N / N_{2}
hydrogen
do not credit $\mathrm{H} / \mathrm{H}_{2}$
molecule
do not credit compound or mole
covalent
accept single / molecular
(b) (i) proton
neutron
electron
either all three correct
Page 8

or one or two correct

however do not credit a response which is repeated
(ii) protons and neutrons
both required in either order

M8. (a) (i) idea that it is
a reaction in which the products can themselves react to reform the original substance or a reaction that can go in either direction
(allow explanation in terms of the specific reaction in the question)
for 1 mark
(ii) nitrogen, hydrogen and ammonia (allow formulae)
for 1 mark
(b) (i) high pressure/400 atm low temperature $/ 100^{\circ} \mathrm{C}$
for 1 mark each
(ii) higher rate of reaction good rate of production or idea that more economic (ally viable) (allow catalyst more effective at higher temperature) for 1 mark each
(c) (i) ideas that it involves
use of catalyst
gains 1 mark
but use of platinum catalyst
gains 2 marks
high temperature $/ 900^{\circ} \mathrm{C}$
for 1 mark
(ii) $\underline{2} \mathrm{NO}+\mathrm{O}_{2} \rightarrow \underline{2} \mathrm{NO}_{2}$
for 1 mark each
(iii) $\underline{3} \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \underline{2} \mathrm{HNO}_{3}+\mathrm{NO}$
for 1 mark each
(d) (i) references to

- transport reductions
- economic savings
- saves time
- guaranteed consumer/supplier
for 1 mark each
(ii) - selection of site
- design of plant
- \quad safe disposal of waste
- make gas emissions safe(r)
- monitoring/safety checks
- reduction of waste gas emissions
- research into more efficient processes
- research into energy savings/use of cooling water
- training of staff re: emergency procedures
- warning/evacuation procedures for the community
(or any two sensible suggestions)
any two for 1 mark each

Q1. Ammonium nitrate is an important chemical. The diagram shows the main stages in the manufacture of ammonium nitrate.

Study the diagram and then answer the question.

(a) What is the purpose of the iron in reactor $\mathbf{1}$?
\qquad
\qquad
(b) Explain why the best yield of ammonia at equilibrium is obtained:
(i) at low temperature
\qquad
\qquad

(ii) at high pressure.

\qquad
\qquad
(c) The temperature used in reactor 1 is $450^{\circ} \mathrm{C}$.

Explain why a much lower temperature is not used.
\qquad
\qquad
(d) A mixture of ammonia, nitrogen and hydrogen leaves reactor 1.

In the separator, what is done to the mixture to separate the ammonia from the other gases?
\qquad
\qquad

Q2. Transition metals are useful as catalysts. Iron is used as a catalyst in the manufacture of ammonia.
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
(i) What is meant by \rightleftharpoons in the chemical equation?
\qquad
\qquad
(ii) What would be the effect on the yield of ammonia if the pressure was increased?
\qquad
\qquad
(iii) Draw a diagram to show the arrangement of the electrons in a molecule of ammonia. The electron arrangement of each atom is shown.

Hydrogen
atom

Q3. The flow chart below shows the main stages in the production of ammonium nitrate.

(i) Name the two raw materials shown in the flow chart as \mathbf{A} and \mathbf{B} by choosing words from the list.
air coke limestone natural gas
Raw material A \qquad
Raw material B \qquad
(ii) Complete the word equation for the reaction which makes ammonia.

Page 5

\qquad
(iii) What is the purpose of the iron in the reactor?
\qquad
\qquad
(iv) What is the purpose of pipe \mathbf{C} ?
\qquad
\qquad

Q4. The diagram shows the final stages in the manufacture of ammonia.

(a) Why is iron used in the converter?
\qquad
\qquad
(b) Write the word equation for the reaction in the converter.

(c) The yield of ammonia is only about 15\%.
(i) Why can the yield not be 100% ?
\qquad
\qquad
(ii) Describe what happens to the mixture of gases after it leaves the converter.
\qquad
\qquad
\qquad

Q5.Hydrated copper sulphate is a blue solid. When it is heated, white solid anhydrous copper sulphate is made. This is a reversible reaction.
$\begin{gathered}\text { hydrated copper sulphate } \\ \text { (blue) }\end{gathered} \quad[+$ heat energy $] \rightleftharpoons \underset{\text { (white) }}{\text { anhydrous copper sulphate }}+$ water
(a) To make the forward reaction work, the hydrated copper sulphate must be heated all the time.

What type of reaction is this?
\qquad
\qquad
(b) Anhydrous copper sulphate can be used in a test for water. What two things will happen when water is added to anhydrous copper sulphate?

1 \qquad
\qquad
2. \qquad
\qquad

Q6. (a) In industry ammonia is produced from nitrogen and hydrogen. The equation for the reaction is:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
(i) What does the symbol (g) represent?
\qquad
(ii) What does the symbol \rightleftharpoons represent?
\qquad
(iii) Nitrogen is used for the industrial production of ammonia. From what raw material does this nitrogen come?
\qquad
(iv) Hydrogen is used for the industrial production of ammonia. It is obtained from the reaction between methane and steam. The equation for this reaction is:
$\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{H}_{2}+\mathrm{CO}$

Explain how you can tell that this equation is balanced.
\qquad
\qquad
\qquad
\qquad
(b) Ammonia is used to make ammonium salts which can be used as fertilisers.
(i) Complete the names in the following sentence.

One example is ammonium which is made by reacting
ammonia with \qquad acid.
(ii) All ammonium salts are soluble in water. Why is this a useful property of a fertiliser?
\qquad
\qquad
(c) Ammonia is a covalent, chemical compound.
(i) Complete the following sentence to describe a chemical compound.

In a chemical compound, two or more \qquad
\qquad
\qquad
(ii) What is a covalent bond?
\qquad
\qquad

Q7. (a) The equation for the reaction that takes place when ammonium chloride is heated is:

The diagram shows how a teacher demonstrated this reaction. The demonstration was carried out in a fume cupboard.

(i) Apart from the gases normally in the atmosphere, which two gases would be at X ?
\qquad and \qquad
(ii) Name the white solid that has formed at \mathbf{Y}.
\qquad
(iii) Why was the demonstration carried out in a fume cupboard?
(iv) Complete the four spaces in the passage.

The chemical formula of ammonia is NH_{3}. This shows that there is one atom of
\qquad and three atoms of \qquad in each
\qquad of ammonia. These atoms are joined by bonds that are formed by sharing pairs of electrons. This type of bond is called a. \qquad bond.
(b) Electrons, neutrons and protons are sub-atomic particles.
(i) Complete the three spaces in the table.

Name of sub-atomic particle	Relative mass	Relative charge
$\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.	1	+1
$\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	1	0
$\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.	$\frac{1}{1840}$	-1

(ii) Which two sub-atomic particles are in the nucleus of an atom?
and \qquad

Ammonia is manufactured by the Haber Process, where nitrogen and hydrogen react together as follows:
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$

The reaction is reversible. A balance is eventually reached when ammonia is being formed at the same rate at which it is decomposing.

This point is called 'equilibrium'.

	PERCENTAGE OF AMMONIA AT EQUILIBRIUM		
PRESSURE (ATM)	$100^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$500^{\circ} \mathrm{C}$
25	91.7	27.4	2.9
100	96.7	52.5	10.6
400	99.4	79,7	31.9

(a) (i) What is meant by a 'reversible reaction'?
\qquad
\qquad
(ii) Which substances are present in the mixture at equilibrium?
\qquad
(b) (i) Under what conditions shown in the table is the maximum yield of ammonia obtained?
(ii) The Haber Process is usually carried out at a higher temperature than that which would produce the maximum yield. Suggest why.
\qquad
\qquad
\qquad
\qquad
(c) Ammonia can be converted into nitric acid in three stages:

Stage 1 Ammonia reacts with oxygen from the air to form nitrogen monoxide and water
$4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \longrightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$
Stage 2 On cooling, nitrogen monoxide reacts with oxygen from the air to form nitrogen dioxide.

Stage 3 Nitrogen dioxide reacts with water to form nitric acid and nitrogen monoxide.
(i) Describe the conditions under which the reaction in Stage 1 takes place.
\qquad
\qquad
\qquad
\qquad
(ii) Balance the equation for the reaction at Stage 2.

(iii) Balance the equation for the reaction at Stage 3.
$\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{HNO}_{3}+\mathrm{NO}$
(d) The chemical plant for manufacturing ammonia is often on the same site as plants manufacturing nitric acid and fertilisers.
(i) What advantages will this have for the manufacturing company?
\qquad
\qquad
\qquad
\qquad
(ii) Briefly describe two important ways in which it is possible to reduce the environmental impact of such plants on the surrounding area.

1 \qquad
\qquad

2 \qquad
\qquad

M1.(a) both water vapour and ethanol will condense allow steam for water vapour allow they both become liquids allow ethane condenses at a lower temperature allow some of the steam hasn't reacted allow it is a reversible reaction / equilibrium
(b) amount will decrease
because the equilibrium will move to the left
(c) more ethanol will be produced
because system moves to least / fewer molecules

M2. (a) (i) nitrogen-air accept atmosphere

> hydrogen - north sea gas / natural gas / methane / CH_{4}
> accept water / (crude) oil / coal / hydrocarbons / brine
(ii) allow converse throughout

- high temperature gives a low yield
- because reaction is exothermic
must be linked to first bullet point
- but at low temperatures the rate is (too) slow if no other marks awarded accept $450^{\circ} \mathrm{C}$ is a compromise between yield and rate
or
$450^{\circ} \mathrm{C}$ gives a reasonable yield in a reasonable time for 1 mark
(iii) nitric (acid)
accept HNO_{3}
(b) Ammonia / Haber process can be used to make fertiliser
eg raw materials for Haber process readily available eg transport costs are lower or no need to import eg Haber process is a continuous process
ignore employment / labour costs

M3. (a) same number of (gaseous) molecules / moles / volume on both sides of the equation
allow particles for molecules
do not accept atoms
ignore amount
(b) (forward) reaction is exothermic accept reverse answer
(c) any three from:

- particles gain energy
- particles move faster
allow particles collide faster / quicker
ignore move more / vibrate more
- particles collide more or more collisions
- more of the collisions are successful or more of the particles have the activation energy or particles collide with more force / energy
(d) any two from:
- more product (obtained in shorter time) accept better yield (of product)
- less fuel needed
accept less energy / heat / electricity needed
or
lower fuel costs ignore cheaper unqualified
- less pollution caused by burning fuels
or
less specified type of pollution caused by producing heat / burning fuels allow correct specified pollutants caused by burning fossil fuels eg CO_{2} / greenhouse gases or correct effect of burning fossil fuels eg global warming accept thermal / heat pollution
- using less fuel conserves resources
accept sustainable
accept fossil fuels are non-renewable

M4. (a) fewer product molecules than reactant molecules (owtte) or accept forward reaction produces fewer molecules accept left hand side for reactants and right hand side for products

3 reactant molecules and 1 product
or 3 volumes of gas becomes 1 volume of gas
accept high pressure favours the side with fewer molecules ignore references to reaction rate
(b) any three from:

- low temperature gives best yield accept add heat as increased temperature or 'less' as poor yield or high temperature gives poor yield
- because the reaction is exothermic accept reverse argument if clearly expressed
- reaction too slow at low temperature or reaction faster at high temperature
accept add heat and reaction goes faster
- temperature used gives a reasonable yield at a fast rate / compromise explained
allow get less product but it takes less time for 2 marks

M5. (a) (i) any one from:

- they are positive / cations
- they are H^{+}
- opposite charges attract
ignore atom
(ii) potassium is more reactive (or reverse)
assume 'it' refers to hydrogen
allow potassium reacts with water
allow potassium is very reactive or most reactive metal / element allow hydrogen gains electrons more easily/ is reduced more easily
accept potassium is higher up the reactivity series
(b) 6 and 2
accept correct multiples and fractions
1
(c) (i) the reaction / it is reversible or a description of a reversible reaction allow 'it is an equilibrium' allow reversible symbol drawn correctly allow 'the reverse / back reaction'
(ii) lithium nitride
assume that 'it' or if they do not specify means lithium nitride assume lithium / lithium nitrate refers to lithium nitride
- hydrogen is bonded / held / absorbed / has formed a compound / reacted with lithium nitride
plus one of:
- does not explode / cause a fire
- is not free / less hydrogen
- is not under pressure
- does not leak
- is only released slowly
- compound of hydrogen with lithium nitride / product is (more) stable / less reactive / less chance of a reaction accept converse for hydrogen as below assume that gas / hydrogen means gas in the cylinder
- hydrogen (in cylinder) / gas is not bonded / held absorbed / in a compound / reacted with lithium nitride
plus one of:
- can explode / cause a fire
- is free
- is under pressure
- can leak
- releases quickly
(d) (i) loss of an electron or loses electrons do not accept any ref. to oxygen
(ii) full outer shell of 8 electrons on circle need not be paired can be x, dot or e do not accept if extra electrons added to inner shell

M6.
(a) (i) high temperature accept temperature given if $\geq 400^{\circ} \mathrm{C}$ ignore value if "high" stated, unless silly value
endothermic or reaction takes in energy or $\Delta \mathrm{H}$ is +ve
independent marks
(ii) low pressure
or up to and including 10 atmospheres
(low pressure) favours a reaction in which more molecules are formed

2 moles $\rightarrow 4$ moles
(2 molecules $\rightarrow 4$ molecules)
independent marks
(iii) nickel and it is a transition / transitional element / metal (owtte) or nickel and variable oxidation state / number or it is similar to other named transition elements e.g. iron
(b) (i) (bonds broken =) $2005(\mathrm{~kJ})$
(bonds formed =) 2046 (kJ)
energy change $=2005-2046=(-) 41$
for correct subtraction ignore sign
(ii) (exothermic)
if in part (b)(i) answer is not 41
answer is consequential on endothermic or exothermic shown accept correct reasoning for incorrect answer from (b)(i)
energy given out forming new bonds
do not accept energy needed to form new bonds
greater than energy put in to break old bonds accept exothermic and more energy given out than taken in for 1 mark accept negative value for energy change or energy in products less than energy in reactants for 1 mark

M7. (a) $\mathbf{2}$ marks for comments related to temperature
low / lower / lowest temperature (or $100^{\circ} \mathrm{C}$ from graph) ignore references to catalyst
any one from:

- (forward) reaction exothermic or reverse reaction endothermic
- if the temperature is increased the yield of product will decrease or reaction right to left
high temperature favours reverse reaction or reverse argument the lower the temperature the greater the yield = $\mathbf{2}$ marks $\mathbf{2}$ marks for comments related to pressure
high / higher / highest pressure (or greater than 200 atm. from graph)
any one from:
- four reactant molecules but only two product molecules (owtte) reverse reaction goes from 2 molecules / moles / volumes to 4 molecules / moles / volumes
- increase in pressure favours the reaction which produces the least number of molecules
decrease in pressure favours the back reaction because it produces the most molecules
(b) any three from:
- at low temperatures the reaction is too slow
- $\quad 450^{\circ} \mathrm{C}$ gives a reasonable yield at a fast rate /
compromise between yield and rate (*)
- 200 atm . gives a reasonable yield at a reasonable cost / safely / compromise between yield and cost / safety (*)
(*) or $450^{\circ} \mathrm{C}$ and $200 \mathrm{~atm} /$ these are compromise conditions for 1 mark
- catalyst works better at higher temperature
- (very) high pressures could be dangerous (owtte) safety factor
- (very) high pressures are expensive (owtte)
- (yield is not too important because) unreacted gases can be recycled

M8. (i) a reaction in which the products can be changed back to reactants accept a reaction that can go forwards or backwards
under certain conditions
(ii) $\mathrm{M}_{\mathrm{r}} \mathrm{CaCO}_{3}=100$
$\mathrm{M}_{\mathrm{r}} \mathrm{CaO}=56$
mass of $\mathrm{CaO}=140$ (tonnes) mark consequentially

Q1.In industry ethanol is produced by the reaction of ethene and steam at $300^{\circ} \mathrm{C}$ and 60 atmospheres pressure using a catalyst.

The equation for the reaction is:

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \rightleftharpoons \quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{~g})
$$

The figure below shows a flow diagram of the process.

(a) Why does the mixture from the separator contain ethanol and water?
\qquad
\qquad
(b) The forward reaction is exothermic.

Use Le Chatelier's Principle to predict the effect of increasing temperature on the amount of ethanol produced at equilibrium.

Give a reason for your prediction.
\qquad
\qquad
\qquad
\qquad
(c) Explain how increasing the pressure of the reactants will affect the amount of ethanol produced at equilibrium.
\qquad
\qquad
\qquad
\qquad

Q2. Humberstone was a town in the desert of Northern Chile in South America. It was built for the people who worked in the nearby sodium nitrate mines.

The sodium nitrate was used as a fertiliser.
The sodium nitrate was exported by ship to countries all around the world.
Today the mines have closed and nobody lives in Humberstone.
One of the reasons for the mines closing was the invention of the Haber process.

By Sznegra (Own work) [CC-BY-SA-3.0], via Wikimedia Commons
(a) The Haber process is used to make ammonia $\left(\mathrm{NH}_{3}\right)$.
$\mathrm{N}_{2}(\mathrm{~g}) \quad+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$

The forward reaction is exothermic.
(i) Name the raw materials that are used to supply the nitrogen and hydrogen.

Nitrogen \qquad

Hydrogen \qquad
(ii) The Haber process uses a temperature of $450^{\circ} \mathrm{C}$.

Explain, as fully as you can, why a temperature of $450^{\circ} \mathrm{C}$ is used rather than a much higher temperature or a much lower temperature.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) Ammonia can be converted to ammonium nitrate by adding an acid.

Name this acid.
\qquad
(b) Suggest and explain why the invention of the Haber process caused the closure of the Humberstone mines in Chile.
\qquad
\qquad
\qquad
\qquad
\qquad

Q3. The equation for a reaction to produce hydrogen is:

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

(a) Explain why changing the pressure does not affect the yield of hydrogen at equilibrium.
\qquad
\qquad
(b) Suggest why the best yield of hydrogen at equilibrium is obtained at low temperatures.
\qquad
\qquad
(c) The temperature used in industry needs to be high enough for the reaction to take place quickly. Explain, in terms of particles, why the rate of reaction increases when the temperature is increased.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Scientists have developed catalysts which allow the reaction to take place quickly at lower temperatures. How could this be good for the manufacturer and for the environment?
\qquad
\qquad
\qquad
\qquad

Q4. Methanol is a fuel that is used in some racing cars instead of petrol.
Methanol can be made from carbon monoxide and hydrogen. The equation for this reaction is shown below.

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

The forward reaction is exothermic.
(a) A high pressure (between 50 and 100 atmospheres) is used in this process.

Explain why the highest equilibrium yield of methanol is obtained at high pressure.
\qquad
\qquad
(b) The temperature used in this process is about $250^{\circ} \mathrm{C}$.

It has been stated that, 'the use of this temperature is a compromise between the equilibrium yield of product and the rate of reaction'.

Explain this statement.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q5. Read the article and then answer the questions that follow.
Hydrogen is an excellent fuel. It can be made by the electrolysis of potassium hydroxide
solution.
Hydrogen gas can be stored under pressure in a cylinder but a leak of the gas could
cause an explosion.
It has been found that lithium nitride can absorb and then release large volumes of
hydrogen. A chemical reaction takes place between the hydrogen and the lithium
nitride. The hydrogen is held in the resulting compounds by chemical bonds.
The problem is that the rate at which hydrogen is absorbed and then released from
normal sized particles of lithium nitride is slow.
Recently scientists have made 'nanosized' particles of lithium nitride. These particles
absorb hydrogen in the same way as normal sized lithium nitride particles. The
'nanosized' particles have the advantage that they absorb and release the hydrogen
much faster when needed in the fuel cell.
It is hoped that 'nanosized' particles of lithium nitride may provide a safe method of
storing hydrogen in the future.
(a) Hydrogen is produced at the negative electrode during the electrolysis of potassium hydroxide solution.
(i) Why are hydrogen ions attracted to the negative electrode?
\qquad
\qquad
\qquad
(ii) Potassium ions are also attracted to the negative electrode.

Explain why hydrogen gas is formed but not potassium.
\qquad
\qquad
\qquad
(b) Lithium nitride is made by reacting lithium with nitrogen.

Balance the equation for this reaction.

$$
\mathrm{Li}+\mathrm{N}_{2} \rightarrow \ldots \ldots \ldots . \mathrm{Li}_{3} \mathrm{~N}
$$

(c) (i) The equation for the reaction of lithium nitride with hydrogen is:

$$
\mathrm{Li}_{3} \mathrm{~N}+2 \mathrm{H}_{2} \rightleftharpoons \mathrm{LiNH}_{2}+2 \mathrm{LiH}
$$

What feature of this reaction allows the hydrogen to be released?
\qquad
\qquad
(ii) Hydrogen stored in a fuel tank filled with lithium nitride would be safer in an accident than a cylinder full of hydrogen.

Suggest and explain why.
\qquad
\qquad
\qquad
\qquad
(d) Lithium nitride is an ionic compound which contains lithium ions (Li^{+}) and nitride ions (N^{3}).
(i) The formation of a lithium ion from a lithium atom is an oxidation reaction.

Explain why.
\qquad
\qquad
(ii) The diagram shows the electronic structure of a nitrogen atom.

Complete the diagram below to show the electronic structure of a nitride ion (N^{3}).

Q6. The reaction of methane with steam is used in industry to make hydrogen.
(a) One of the reactions in this process is represented by this equation.
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$

The forward reaction is endothermic.

State the conditions of temperature and pressure that would give the maximum yield of hydrogen.

Explain your answers.
(i) Temperature
\qquad
\qquad
\qquad
\qquad
(ii) Pressure
\qquad
\qquad
\qquad
\qquad
(iii) Which one of the following metals is most likely to be a catalyst for this process? Draw a ring around your answer.
aluminium lead magnesium nickel sodium

Give a reason for your choice.
(b) A second stage in this process is represented by this equation.

$$
\mathrm{C} \equiv \mathrm{O}+\mathrm{H}^{\mathrm{O}}>\mathrm{H} \rightarrow \mathrm{O}=\mathrm{C}=\mathrm{O}+\mathrm{H}-\mathrm{H}
$$

(i) Use the bond energies given in the table to help you to calculate the nett energy transfer (energy change) for this reaction.

Bond	Bond energy in kJ/mol
C ? O	1077
$\mathrm{C}=\mathrm{O}$	805
$\mathrm{H}-\mathrm{H}$	436
$\mathrm{O}-\mathrm{H}$	464

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Nett energy transfer = kJ/mol
(ii) State whether this reaction is exothermic or endothermic. \qquad

Explain, by reference to your calculation, how you know.
\qquad
\qquad
\qquad
\qquad

Q7. Ammonia is made from nitrogen and hydrogen in the Haber process.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})(+ \text { heat })
$$

Flow Chart for the Haber Process

Effect of temperature and pressure on the amount of ammonia at equilibrium

(a) Use the information given above and your knowledge of the Haber process and reversible reactions to help you to answer this question.

State which conditions of temperature and pressure would give the highest percentage of ammonia at equilibrium. Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The Haber process uses a temperature of $450^{\circ} \mathrm{C}$ and a pressure of 200 atmospheres. Explain why these conditions are chosen.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q8. Limestone is a useful mineral. Every day, large amounts of limestone are heated in limekilns to produce lime. Lime is used in the manufacture of iron, cement and glass and for neutralising acidic soils.

(i) The decomposition of limestone is a reversible reaction. Explain what this means.
\qquad
\qquad
\qquad
\qquad
(ii) Calculate the mass of lime, CaO , that would be produced from 250 tonnes of limestone, CaCO_{3}.

Relative atomic masses: C 12; O 16; Ca 40.
\qquad
\qquad
\qquad

Mass of lime = tonnes

[^0]: activation energy.

