M1.
(a) D
(b) C
(c) $\mathrm{W}=300 \times 45$

$$
W=13500
$$

allow 13500 with no working shown for 2 marks
(d) straight line drawn from $13 \mathrm{~m} / \mathrm{s}$ to $0 \mathrm{~m} / \mathrm{s}$

M2. (a) distance travelled under the braking force accept braking (distance)
(b) (directly) proportional accept a correct description using figures
or increase in the same ratio eg if speed doubles then thinking distance doubles accept for 1 mark positive correlation accept for 1 mark as speed increases so does thinking distance accept as one increases the other increases accept as thinking distance increases speed increases
(c) (i) control variable
(ii) experiment done, student listens to music / ipod (etc)
experiment (repeated), student not listening to music for both marks to be awarded there must be a comparison
(d) increase it accept an answer which implies reactions are slower do not accept answers in terms of thinking distance only
(e) \mathbf{Y}

M3. (a) MN
accept 5.8 , 8 seconds must include unit
(b) LM
accept $0.8,5.8$ seconds must include unit
(c) (i) 0.8
(ii) drinking alcohol
(d) straight (by eye) line starting at 0.8 seconds
line drawn steeper than LM starting before L
ignore lines going beyond 2 seconds but line must exceed 2.5 metres per second before terminating

M4. (a) terminal
(b) $\quad 5.4(\mathrm{~kg})$
correct substitution of $54=m \times 10$ gains 1 mark
(c) (i) $0<$ a <10
some upward force
accept some drag / air resistance
reduced resultant force
(ii) 0
upward force = weight (gravity)
resultant force zero

M5. (a) (i) 12
(ii) 0.2
allow 1 mark for their (a)(i) $\div 60$ and correctly calculated
$\mathrm{m} / \mathrm{s}^{2}$
accept correct unit circled in list accept ms^{-2}
do not accept mps ${ }^{2}$
(b) B

Q1.Figure 1 shows a skier using a drag lift.
The drag lift pulls the skier from the bottom to the top of a ski slope.
The arrows, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} represent the forces acting on the skier and her skis.
Figure 1

(a) Which arrow represents the force pulling the skier up the slope?

Tick one box.

A

B

C

D

(b) Which arrow represents the normal contact force?

Tick one box.

A

B \square

C \square

D

(c) The drag lift pulls the skier with a constant resultant force of 300 N for a distance of 45 m .

Use the following equation to calculate the work done to pull the skier up the slope. work done $=$ force \times distance
\qquad
\qquad
Work done = ... J
(d) At the top of the slope the skier leaves the drag lift and skis back to the bottom of the slope.

Figure 2 shows how the velocity of the skier changes with time as the skier moves down the slope.

Figure 2

After 50 seconds the skier starts to slow down.
The skier decelerates at a constant rate coming to a stop in 15 seconds.
Draw a line on Figure 2 to show the change in velocity of the skier as she slows down and comes to a stop.

Q2. (a) The total stopping distance of a car has two parts. One part is the distance the car travels during the driver's reaction time. This distance is often called the 'thinking distance'.

What distance is added to the 'thinking distance' to give the total stopping distance?
\qquad
\qquad
(b) The graph shows the relationship between the speed of a car and the thinking distance.

Describe the relationship between speed and thinking distance.
\qquad
\qquad
(c) The diagram shows two students investigating reaction time.

One student holds a 30 cm ruler, then lets go. As soon as the second student sees the ruler fall, she closes her hand, stopping the ruler. The further the ruler falls before being stopped, the slower her reaction time.
(i) One student always holds the ruler the same distance above the other student's hand.
In this experiment, what type of variable is this?
Put a tick (\checkmark) in the box next to your answer.
\square

(ii) Describe how this experiment could be used to find out whether listening to music affects reaction time.
\qquad
\qquad
\qquad
\qquad
(d) The following information is written on the label of some cough medicine.

WARNING: Causes drowsiness.
Do not drive or operate machinery.

How is feeling drowsy (sleepy) likely to affect a driver's reaction time?
\qquad
\qquad
(e) Three cars, \mathbf{X}, \mathbf{Y} and \mathbf{Z}, are being driven along a straight road towards a set of traffic lights.
The graphs show how the velocity of each car changes once the driver sees that the traffic light has turned to red.

Which one of the cars, \mathbf{X}, \mathbf{Y} or \mathbf{Z}, stops in the shortest distance?
\qquad
(Total 8 marks)

Q3. A car and a bicycle are travelling along a straight road. They have stopped at road works.

The graph shows how the velocity of the car changes after the sign is changed to GO.

(a) Between which two points on the graph is the car moving at constant velocity?
\qquad
(b) Between which two points on the graph is the car accelerating?
\qquad
(c) Between the sign changing to GO and the car starting to move, there is a time delay. This is called the reaction time.
(i) What is the reaction time of the car driver?
Reaction time = seconds
(ii) Which one of the following could increase the reaction time of a car driver? Tick the box next to your choice.

Drinking alcohol

Wet roads

Worn car brakes

(d) The cyclist starts to move at the same time as the car. For the first 2 seconds the cyclist's acceleration is constant and is greater than that of the car.

Draw a line on the graph to show how the velocity of the cyclist might change during the first 2 seconds of its motion.

Q4.On 14 October 2012, a skydiver set a world record for the highest free fall from an aircraft.
After falling from the aircraft, he reached a maximum steady velocity of $373 \mathrm{~m} / \mathrm{s}$ after 632 seconds.
(a) Draw a ring around the correct answer to complete the sentence.

This maximum steady velocity is called the | frictional |
| :--- |
| initial |
| terminal |

(b) The skydiver wore a chest pack containing monitoring and tracking equipment. The weight of the chest pack was 54 N .

The gravitational field strength is $10 \mathrm{~N} / \mathrm{kg}$.
Calculate the mass of the chest pack.
\qquad
\qquad
Mass of chest pack = ... kg
(c) During his fall, the skydiver's acceleration was not uniform.

Immediately after leaving the aircraft, the skydiver's acceleration was $10 \mathrm{~m} / \mathrm{s}^{2}$.
(i) Without any calculation, estimate his acceleration a few seconds after leaving the aircraft.

Explain your value of acceleration in terms of forces.
Estimate \qquad
Explanation \qquad
\qquad
\qquad
\qquad
\qquad
(ii) Without any calculation, estimate his acceleration 632 seconds after leaving the aircraft.

Explain your value of acceleration in terms of forces.
Estimate
Explanation \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q5. A high-speed train accelerates at a constant rate in a straight line.
The velocity of the train increases from $30 \mathrm{~m} / \mathrm{s}$ to $42 \mathrm{~m} / \mathrm{s}$ in 60 seconds.
(a) (i) Calculate the change in the velocity of the train.
\qquad
Change in velocity $=\ldots \ldots . ~ m / s ~$
(ii) Use the equation in the box to calculate the acceleration of the train.

$$
\text { acceleration }=\frac{\text { change in velocity }}{\text { time taken for change }}
$$

Show clearly how you work out your answer and give the unit. Choose the unit from the list below.
m/s
$\mathrm{m} / \mathbf{s}^{2}$
N/kg
Nm
\qquad
\qquad
Acceleration $=$
(b) Which one of the graphs, \mathbf{A}, \mathbf{B} or \mathbf{C}, shows how the velocity of the train changes as it accelerates?

Write your answer, \mathbf{A}, \mathbf{B} or \mathbf{C}, in the box.

Graph

M1. (a) It will have a constant speed.
(b) distance travelled $=$ speed \times time
(c) $a=\underline{18-9}$

6

$$
a=1.5
$$

allow 1.5 with no working shown for 2 marks
(d) resultant force $=$ mass \times acceleration
(e) $F=(1120+80) \times 1.5$

$$
F=1800(N)
$$

allow 1800 with no working shown for 2 marks
accept their 10.3×1200 correctly calculated for 2 marks
(f) $18^{2}-9^{2}=2 \times 1.5 \times \mathrm{s}$

$$
s=18^{2}-9^{2} / 2 \times 1.5
$$

$$
\mathrm{s}=81(\mathrm{~m})
$$

allow 81 (m) with no working shown for 3 marks accept answer using their 10.3 (if not 1.5) correctly calculated for 3 marks
(g) Level 2 (3-4 marks):

A detailed and coherent explanation is provided. The response makes logical links between clearly identified, relevant points that include references to the numerical factor.

Level 1 (1-2 marks):
Simple statements are made. The response may fail to make logical links between the points raised.

0 marks:

No relevant content.

Indicative content

- doubling speed increase the kinetic energy
- kinetic energy increases by a factor of 4
- work done (by brakes) to stop the car increases
- work done increases by a factor of 4
- work done is force \times distance and braking force is constant
- \quad so if work done increases by 4 then the braking distance must increase by 4

M2. (a) gravity

> accept weight
> do not accept mass
> accept gravitational pull
(b) (i) Initially force L greater than force M
accept there is a resultant force downwards
(as speed increases) force M increases
accept the resultant force decreases
when $\mathrm{M}=\mathrm{L}$, (speed is constant)
accept resultant force is 0
accept gravity/weighty for L
accept drag/ upthrust/resistance/friction for M do not accept air resistance for M but penalise only once
(ii) terminal velocity
(iii) 0.15
accept an answer between $0.14-0.16$ an answer of 0.1 gains no credit allow 1 mark for showing correct use of the graph

M3. (a) (i) 4.5
allow 1 mark for correct substitution i.e. $9 \div 2$
(ii) $\mathrm{m} / \mathrm{s}^{2}$
accept answer given in (a)(i) if not contradicted here
(iii) speed
(iv) straight line from the origin passing through ($2 \mathrm{~s}, 9 \mathrm{~m} / \mathrm{s}$)
allow 1 mark for straight line from the origin passing through to $t=2$ seconds
allow 1 mark for an attempt to draw a straight line from the origin passing through $(2,9)$
allow 1 mark for a minimum of 3 points plotted with no line provided if joined up would give correct answer. Points must include(0,0) and $(2,9)$

1
(b) (i) B
if \boldsymbol{A} or \boldsymbol{C} given scores $\mathbf{0}$ marks in total
smallest (impact) force
on all/ every/ any surfaces
these marks are awarded for comparative answers
(ii) (conditions) can be repeated or
difficult to measure forces with human athletes accept answers in terms of variations in human athletes e.g. athletes may have different weights area / size of feet may be different difficult to measure forces athletes run at different speeds
accept any answer that states or implies that with humans the conditions needed to repeat tests may not be constant
e.g.
athletes unable to maintain constant speed during tests (or during repeat tests)
do not accept the robots are more accurate removes human error is insufficient fair test is insufficient

M4. (a) 750

allow 1 mark for correct substitution, ie 75×10 provided no subsequent step shown

```
newton(s) / N
do not accept n
```

(b) Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also refer to the Marking Guidance, and apply a 'best-fit' approach to the marking.

0 marks

No relevant content.

Level 1 (1-2 marks)

There is a brief attempt to explain why the velocity / speed of the parachutist changes.
or
the effect of opening the parachute on velocity/speed is given.
Level 2 (3-4 marks)
The change in velocity / speed is clearly explained in terms of force(s)
or
a reasoned argument for the open parachute producing a lower speed.

Level 3 (5-6 marks)

There is a clear and detailed explanation as to why the parachutist reaches terminal velocity and a reasoned argument for the open parachute producing a lower speed

examples of the physics points made in the response to explain first terminal velocity

- on leaving the plane the only force acting is weight (downwards)
accept gravity for weight throughout
- as parachutist falls air resistance acts (upwards) accept drag / friction for air resistance
- weight greater than air resistance orresultant force downwards
- (resultant force downwards) so parachutist accelerates
- as velocity / speed increases so does air resistance
- terminal velocity reached when air resistance = weight
accept terminal velocity reached when forces are balanced

to explain second lower terminal velocity

- opening parachute increases surface area
- opening parachute increases air resistance
- air resistance is greater than weight
- resultant force acts upwards / opposite direction to motion
- parachutist decelerates / slows down
- the lower velocity means a reduced air resistance
air resistance and weight become equal but at a lower (terminal) velocity

6

(c) (i) any one from:

- mass of the (modelling) clay accept size/shape of clay size/amount/volume/shape of clay accept plasticine for (modelling)clay
- material parachute made from accept same (plastic) bag
- number / length of strings
(ii) C reason only scores if \mathbf{C} is chosen
smallest (area) so falls fastest (so taking least time) accept quickest/quicker for fastest if \boldsymbol{A} is chosen with the reason given as 'the largest area so falls slowest' this gains 1 mark

M5. (a) 96
allow 1 mark for correct substitution ie 80×1.2
newton or N
allow Newton do not allow n
(b) (i) direction
(ii) velocity and time are continuous (variables) answers must refer to both variables
accept the variables are continuous / not categoric accept the data / 'it' is continuous
accept the data / 'it' is not categoric
(iii) C
velocity is not changing
the $\mathbf{2}$ marks for reason may be scored even if \boldsymbol{A} or \boldsymbol{B} are chosen
accept speed for velocity
accept speed is constant ($9 \mathrm{~m} / \mathrm{s}$)
accept not decelerating
accept not accelerating
accept reached terminal velocity
forces must be balanced
accept forces are equal
accept arrows are the same length / size
or
resultant force is zero
do not accept the arrows are equal

M6. (a) 2.75
allow 1 mark for correct substitution, ie $\frac{11}{4}$
or $\frac{23-12}{4}$
provided no subsequent step shown
$\mathrm{m} / \mathrm{s}^{2}$
(b) driving force increases
frictional force increases
accept air resistance / drag for frictional force
driving force $>$ frictional force
1
[6]

Q1.The figure below shows the horizontal forces acting on a car.

(a) Which one of the statements describes the motion of the car?

Tick one box.

It will be slowing down. \square

It will be stationary.

It will have a constant speed. \square

It will be speeding up.

(b) During part of the journey the car is driven at a constant speed for five minutes. Which one of the equations links distance travelled, speed and time?

Tick one box.
distance travelled $=$ speed + time \square
distance travelled $=$ speed \times time \square
distance travelled $=$ speed - time \square
distance travelled $=$ speed \div time \square
(c) During a different part of the journey the car accelerates from $9 \mathrm{~m} / \mathrm{s}$ to $18 \mathrm{~m} / \mathrm{s}$ in 6 s.

Use the following equation to calculate the acceleration of the car.
acceleration= $=\frac{\text { change in velociy }}{\text { time taken }}$
acceleration $=$ $\mathrm{m} / \mathrm{s}^{2}$
(d) Which equation links acceleration, mass and resultant force?

Tick one box.

(e) The mass of the car is 1120 kg . The mass of the driver is 80 kg . Calculate the resultant force acting on the car and driver while accelerating.
\qquad
\qquad
\qquad
(f) Calculate the distance travelled while the car is accelerating.

Use the correct equation from the Physics Equation Sheet.
\qquad
\qquad
\qquad
Distance = ... m
(g) A car driver sees a fallen tree lying across the road ahead and makes an emergency stop.

The braking distance of the car depends on the speed of the car.
For the same braking force, explain what happens to the braking distance if the speed doubles.

You should refer to kinetic energy in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q2. (a) The diagram shows a steel ball-bearing falling through a tube of oil. The forces, \mathbf{L} and \mathbf{M}, act on the ball-bearing.

What causes force \mathbf{L} ?
\qquad
(b) The distance - time graph represents the motion of the ball-bearing as it falls through the oil.

(i) Explain, in terms of the forces, \mathbf{L} and \mathbf{M}, why the ball-bearing accelerates at first but then falls at constant speed.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) What name is given to the constant speed reached by the falling ball-bearing?
\qquad
(iii) Calculate the constant speed reached by the ball-bearing.

Show clearly how you use the graph to work out your answer.
Speed = ... m/s

Q3. (a) The diagram shows an athlete at the start of a race. The race is along a straight track.

In the first 2 seconds, the athlete accelerates constantly and reaches a speed of 9 m / s.
(i) Calculate the acceleration of the athlete.

Show clearly how you work out your answer.
\qquad
\qquad
\qquad
Acceleration $=$ \qquad
(ii) Which one of the following is the unit for acceleration?

Draw a ring around your answer.
J/s
m/s
$\mathbf{m} / \mathbf{s}^{2}$
Nm
(iii) Complete the following sentence.

The velocity of the athlete is the of the
athlete in a given direction.
(iv) Complete the graph to show how the velocity of the athlete changes during the first 2 seconds of the race.

(b) Many running shoes have a cushioning system. This reduces the impact force on the athlete as the heel of the running shoe hits the ground.

The bar chart shows the maximum impact force for three different makes of running shoe used on three different types of surface.

(i) Which one of the three makes of running shoe, \mathbf{A}, \mathbf{B} or \mathbf{C}, has the best cushioning system?
\qquad
Explain the reason for your answer.
\qquad
\qquad
\qquad
\qquad
(ii) The data needed to draw the bar chart was obtained using a robotic athlete fitted with electronic sensors.

Why is this data likely to be more reliable than data obtained using human athletes?
\qquad
\qquad

Q4. (a) The diagram shows the forces acting on a parachutist in free fall.

The parachutist has a mass of 75 kg .

Calculate the weight of the parachutist.

$$
\text { gravitational field strength }=10 \mathrm{~N} / \mathrm{kg}
$$

Show clearly how you work out your answer and give the unit.
\qquad
\qquad
Weight $=$
(b) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

The graph shows how the vertical velocity of a parachutist changes from the moment the parachutist jumps from the aircraft until landing on the ground.

Using the idea of forces, explain why the parachutist reaches a terminal velocity and why opening the parachute reduces the terminal velocity.
\qquad
(c) A student wrote the following hypothesis.
'The larger the area of a parachute, the slower a parachutist falls.'
To test this hypothesis the student made three model parachutes, \mathbf{A}, \mathbf{B} and \mathbf{C}, from one large plastic bag. The student dropped each parachute from the same height and timed how long each parachute took to fall to the ground.

(i) The height that the student dropped the parachute from was a control variable.

Name one other control variable in this experiment.
\qquad
(ii) Use the student's hypothesis to predict which parachute, A, B or C, will hit the ground first.

Write your answer in the box.

Give a reason for your answer.
\qquad
\qquad
\qquad

Q5. A cyclist travelling along a straight level road accelerates at $1.2 \mathrm{~m} / \mathrm{s}^{2}$ for 5 seconds. The mass of the cyclist and the bicycle is 80 kg .
(a) Calculate the resultant force needed to produce this acceleration.

Show clearly how you work out your answer and give the unit.
\qquad
\qquad
Resultant force $=$ \qquad
(b) The graph shows how the velocity of the cyclist changes with time.

(i) Complete the following sentence.

The velocity includes both the speed and the \qquad of the cyclist.
(ii) Why has the data for the cyclist been shown as a line graph instead of a bar chart?
\qquad
\qquad
(iii) The diagrams show the horizontal forces acting on the cyclist at three different speeds. The length of an arrow represents the size of the force.

Which one of the diagrams, \mathbf{A}, \mathbf{B} or \mathbf{C}, represents the forces acting when the cyclist is travelling at a constant $9 \mathrm{~m} / \mathrm{s}$?
\qquad
Explain the reason for your choice.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q6.The diagram shows the forces acting on a car. The car is being driven along a straight, level road at a constant speed of $12 \mathrm{~m} / \mathrm{s}$.

(a) The driver then accelerates the car to $23 \mathrm{~m} / \mathrm{s}$ in 4 seconds.

Use the equation in the box to calculate the acceleration of the car.

$$
\text { acceleration }=\frac{\text { change in velocity }}{\text { time taken for change }}
$$

Show clearly how you work out your answer and give the unit.
\qquad
\qquad
Acceleration $=$ \qquad
(b) Describe how the horizontal forces acting on the car change during the first two seconds of the acceleration.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

M1. (a) distance is a scalar and displacement is a vector

or

distance has magnitude only, displacement has magnitude and direction
(b) 37.5 km
accept any value between 37.0 and 38.0 inclusive
062° or $\mathrm{N} 62^{\circ} \mathrm{E}$
accept 62° to the right of the vertical
accept an angle in the range $60^{\circ}-64^{\circ}$
accept the angle correctly measured and marked on the diagram
(c) train changes direction so velocity changes
acceleration is the rate of change of velocity
(d) number of squares below line $=17$
accept any number between 16 and 18 inclusive
each square represents 500 m
distance $=$ number of squares \times value of each square correctly calculated -8500 m

M2. (a) 4
allow 1 mark for extracting correct information 12
$\mathrm{m} / \mathrm{s}^{2}$
ignore negative sign
(b) $9(\mathrm{~s})$

M3. (a) (i) velocity includes direction accept velocity is a vector
(ii) 64
allow 1 mark for obtaining values of 16 and 4 from the graph or marking correct area or correct attempt to calculate an area
(iii) any two from:

- velocity zero from 0 to 4 seconds
- increasing in 0.2 s (or very rapidly) to $8 \mathrm{~m} / \mathrm{s}$
- decreasing to zero over the next 8 seconds
(iv) momentum before does not equal momentum after ignore reference to energy or total momentum changes or an external force was applied
(b) to reduce the momentum of the driver
a smaller (constant) force would be needed
do not accept reduces the impact / impulse on the driver

> M4. (a) (i) a single force that has the same effect as all the forces combined accept all the forces added / the sum of the forces / overall force
(ii) constant speed (in a straight line) do not accept stationary or constant velocity
(b) 3
allow 1 mark for correct substitution into transformed equation accept answer 0.003 gains 1 mark answer $=0.75$ gains 1 mark $\mathrm{m} / \mathrm{s}^{2}$
(c) as speed increases air resistance increases
accept drag / friction for air resistance
reducing the resultant force

M5. (a) (i) longer reaction time
accept slower reactions
do not accept slower reaction time unless qualified
or
greater thinking distance
accept greater thinking time
or
greater stopping distance
accept greater stopping time
greater braking distance negates answer
(ii) lines / slopes have the same gradient accept slopes are the same
or
velocity decreases to zero in same time / in 2.6 seconds
accept any time between 2.3 and 2.8
accept braking distances are the same
(iii) 12
accept extracting both reaction times correctly for 1 mark (0.6 and 1.4) or time $=0.8(\mathrm{~s})$ for 1 mark accept 0.8×15 for 2 marks accept calculating the distance travelled by car \boldsymbol{A} as 28.5 m or the distance travelled by car B as 40.5 m for $\mathbf{2}$ marks
(b) \mathbf{Z}
different force values give a unique / different resistance
only scores if \mathbf{Z} chosen
do not accept force andresistance are (directly) proportional accept answers in terms of why
either \boldsymbol{X} or \boldsymbol{Y} would not be the best eg
\boldsymbol{X} - same resistance value is obtained for 2 different force values
\boldsymbol{Y} - all force values give the same resistance

M6. (a) 48
allow for 1 mark correct method shown, ie 6×8 or correct area indicated on the graph
(b) diagonal line from $(0,0)$ to $(6,48) /(6$, their (a)) if answer to (a) is greater than 50, scale must be changed to gain this mark
horizontal line at 48 m between 6 and 10 seconds
accept horizontal line drawn at their (a) between 6 and 10 seconds

1

M7.
(a) any two from:

- (acceleration occurs when) the direction (of each capsule) changes
- velocity has direction
- acceleration is (rate of) change of velocity
(b) to(wards) the centre (of the wheel)
(c) the greater the radius / diameter / circumference (of the wheel) the smaller the (resultant) force (required)
accept 'the size' for radiusboth parts required for the mark

M8.
(a) more streamlined
accept decrease surface area
air resistance is smaller (for same speed)
accept drag for air resistance friction is insufficient
so reaches a higher speed (before resultant force is 0) ignore reference to mass
(b) (i) 1.7
allow 1 mark for correct method, ie $\frac{5}{3}$
or allow 1 mark for an answer with more than 2 sig figs that rounds to 1.7 or allow 1 mark for an answer of 17
(ii) 7.5
allow 1 mark for correct use of graph, eg $\frac{1}{2} \times 5 \times 3$
(iii) air (resistance)
accept wind (resistance)
drag is insufficient
friction is insufficient

M9.

> (a) (i) longer reaction time accept slower reactions do not accept slower reaction time unless qualified orgreater thinking distance accept greater thinking time orgreater stopping distance accept greater stopping time greater braking distance negates answer
(b) \mathbf{Z}
accept extracting both reaction times correctly for 1 mark(0.6 and 1.4)
or time $=0.8$ (s) for 1 mark accept 0.8×15 for 2 marks accept calculating the distance travelled by car A as 28.5 m or the distance travelled by car B as 40.5 m for $\mathbf{2}$ marks
different force values give a unique / different resistance only scores if \boldsymbol{Z} chosen do not accept force and resistance are (directly) proportional accept answers in terms of why either \boldsymbol{X} or \boldsymbol{Y} would not be best eg
\boldsymbol{X} - same resistance value is obtained for 2 different force values

Q1.A train travels from town \mathbf{A} to town \mathbf{B}.
Figure 1 shows the route taken by the train.
Figure 1 has been drawn to scale.
Figure 1

(a) The distance the train travels between \mathbf{A} and \mathbf{B} is not the same as the displacement of the train.

What is the difference between distance and displacement?
\qquad
\qquad
\qquad
(b) Use Figure $\mathbf{1}$ to determine the displacement of the train in travelling from \mathbf{A} to \mathbf{B}. Show how you obtain your answer.
\qquad
\qquad
\qquad km

Direction $=$
(c) There are places on the journey where the train accelerates without changing

Page 2

speed.
Explain how this can happen.
\qquad
\qquad
\qquad
\qquad
(d) Figure 2 shows how the velocity of the train changes with time as the train travels along a straight section of the journey.

Figure 2

Estimate the distance travelled by the train along the section of the journey shown in Figure 2.

To gain full marks you must show how you worked out your answer.
\qquad
\qquad
\qquad
\qquad
Distance $=$ m

Q2. A car is driven along a straight road. The graph shows how the velocity of the car changes during part of the journey.

Time in seconds
(a) Use the graph to calculate the deceleration of the car between 6 and 9 seconds. Show clearly how you work out your answer and give the unit.
\qquad
\qquad
\qquad
Deceleration =
\qquad
(b) At what time did the car change direction?
\qquad

Q3. In an experiment at an accident research laboratory, a car driven by remote control was crashed into the back of an identical stationary car. On impact the two cars joined together and moved in a straight line.
(a) The graph shows how the velocity of the remote-controlled car changed during the experiment.

(i) How is the velocity of a car different from the speed of a car?
\qquad
(ii) Use the graph to calculate the distance travelled by the remote-controlled car before the collision.

Show clearly how you work out your answer.
\qquad
\qquad
Distance $=$ \qquad m
(iii) Draw, on the grid below, a graph to show how the velocity of the second car changed during the experiment.

(iv) The total momentum of the two cars was not conserved.

What does this statement mean?
\qquad
\qquad
(b) The graph line shows how the force from a seat belt on a car driver changes during a collision.

Scientists at the accident research laboratory want to develop a seat belt that produces a constant force throughout a collision.

Use the idea of momentum to explain why this type of seat belt would be better for a car driver.
\qquad
\qquad
\qquad
\qquad

Q4. (a) The diagram shows an aircraft and the horizontal forces acting on it as it moves along a runway. The resultant force on the aircraft is zero.

(i) What is meant by the term resultant force?
\qquad
\qquad
(ii) Describe the movement of the aircraft when the resultant force is zero.
\qquad
\qquad
(b) The aircraft has a take-off mass of 320000 kg . Each of the 4 engines can produce a maximum force of 240 kN .

Calculate the maximum acceleration of the aircraft.
Show clearly how you work out your answer and give the unit.
\qquad
\qquad
\qquad
Acceleration =
\qquad
(c) As the aircraft moves along the runway to take off, its acceleration decreases even though the force from the engines is constant.

Explain why.
\qquad
\qquad
\qquad
\qquad

Q5. (a) The graphs show how the velocity of two cars, \mathbf{A} and \mathbf{B}, change from the moment the car drivers see an obstacle blocking the road.

One of the car drivers has been drinking alcohol. The other driver is wide awake and alert.
(i) How does a comparison of the two graphs suggest that the driver of car \mathbf{B} is the one who has been drinking alcohol?
\qquad
\qquad
(ii) How do the graphs show that the two cars have the same deceleration?
\qquad
\qquad
(iii) Use the graphs to calculate how much further car \mathbf{B} travels before stopping compared to car \mathbf{A}.

Show clearly how you work out your answer.
\qquad
\qquad
Additional stopping distance = ... m
(b) In a crash test laboratory, scientists use sensors to measure the forces exerted in collisions. The graphs show how the electrical resistance of 3 experimental types of sensor, \mathbf{X}, \mathbf{Y} and \mathbf{Z}, change with the force applied to the sensor.

Which of the sensors, \mathbf{X}, \mathbf{Y} or \mathbf{Z}, would be the best one to use as a force sensor?

Give a reason for your answer.
\qquad
\qquad
\qquad
\qquad

Q6. The diagram shows the velocity-time graph for an object over a 10 second period.

(a) Use the graph to calculate the distance travelled by the object in 10 seconds. Show clearly how you work out your answer.
\qquad
\qquad
\qquad
(b) Complete the distance-time graph for the object over the same 10 seconds.

(2)
(Total 4 marks)

Q7.The London Eye is one of the largest observation wheels in the world.

© Angelo Ferraris/Shutterstock
The passengers ride in capsules. Each capsule moves in a circular path and accelerates.
(a) Explain how the wheel can move at a steady speed and the capsules accelerate at the same time.
\qquad
\qquad
\qquad
(b) In which direction is the resultant force on each capsule?
\qquad
(c) The designers of the London Eye had to consider three factors which affect the resultant force described in part (b).

Two factors that increase the resultant force are:

- \quad an increase in the speed of rotation
- an increase in the total mass of the wheel, the capsules and the passengers.

Name the other factor that affects the resultant force and state what effect it has on the resultant force.
\qquad
\qquad

Q8.(a) Some students have designed and built an electric-powered go-kart. After testing, the students decided to make changes to the design of their go-kart.

Final design \mathbf{Y}

The go-kart always had the same mass and used the same motor.
The change in shape from the first design (\mathbf{X}) to the final design (\mathbf{Y}) will affect the top speed of the go-kart.

Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The final design go-kart, \mathbf{Y}, is entered into a race.

The graph shows how the velocity of the go-kart changes during the first 40 seconds of the race.

Time in seconds

(i) Use the graph to calculate the acceleration of the go-kart between points J and \mathbf{K}.

Give your answer to two significant figures.
\qquad
\qquad
\qquad
Acceleration $=$
$\mathrm{m} / \mathrm{s}^{2}$
(ii) Use the graph to calculate the distance the go-kart travels between points \mathbf{J} and \mathbf{K}.
\qquad
\qquad
\qquad
Distance $=$
m
(iii) What causes most of the resistive forces acting on the go-kart?
\qquad

Q9.(a) The graphs show how the velocity of two cars, \mathbf{A} and \mathbf{B}, change from the moment the car drivers see an obstacle blocking the road.

Car A

Car B

One of the car drivers has been drinking alcohol. The other driver is wide awake and alert.
(i) How does a comparison of the two graphs suggest that the driver of car \mathbf{B} is the one who has been drinking alcohol?
\qquad
\qquad
(ii) How do the graphs show that the two cars have the same deceleration?
\qquad
\qquad
(iii) Use the graphs to calculate how much further car \mathbf{B} travels before stopping compared to car \mathbf{A}.

Show clearly how you work out your answer.
\qquad
\qquad

Additional stopping distance $=$ \qquad m
(b) In a crash-test laboratory, scientists use sensors to measure the forces exerted in collisions. The graphs show how the electrical resistance of 3 experimental types of sensor, \mathbf{X}, \mathbf{Y}, and \mathbf{Z}, change with the force applied to the sensor.

Which of the sensors, \mathbf{X}, \mathbf{Y} or \mathbf{Z}, would be the best one to use as a force sensor?

Give a reason for your answer.
\qquad
\qquad
\qquad
\qquad

M1. (a) distance is a scalar and displacement is a vector
or
distance has magnitude only, displacement has magnitude and direction
(b) 37.5 km
accept any value between 37.0 and 38.0 inclusive
062° or $\mathrm{N} 62^{\circ} \mathrm{E}$
accept 62° to the right of the vertical
accept an angle in the range $60^{\circ}-64^{\circ}$
accept the angle correctly measured and marked on the diagram
(c) train changes direction so velocity changes
acceleration is the rate of change of velocity
(d) number of squares below line $=17$
accept any number between 16 and 18 inclusive
each square represents 500 m
distance $=$ number of squares \times value of each square correctly calculated -8500 m

M2.(a) (i) 9.5 accept $\pm 1 \mathrm{~mm}$
10.5
(ii) 9.5
ecf from (a)(i)
(iii) 190
$20 \times$ (a)(ii) ecf
(iv) medium
ecf from (a)(iii)
(b) (i) any two from:

- position of ball before release
- same angle or height of runway
- same ball
- same strip of grass
(ii) long
or
longer than in part (a)
or
uneven
do not allow reference to speed
(c) (i) as humidity increases mean distance decreases accept speed for distance
(ii) $71 \times 180=12780$
$79 \times 162=12798$
$87 \times 147=12789$
all three calculations correct with a valid conclusion gains 3 marks

or

find k from $R=k / d$
all three calculations correct gains $\mathbf{2}$ marks
or
$87 / 71 \times 147=180.1 \sim 180$
$87 / 79 \times 147=161.9 \sim 162$
two calculations correct with a valid conclusion gains 2 marks
conclusion based on calculation
one correct calculation of k gains 1 mark
(iii) only three readings or small range for humidity accept not enough readings accept data from Internet could be unreliable ignore reference to repeats
(d) distance is a scalar or has no direction or has magnitude only allow measurements from diagram of distance and displacement
displacement is a vector or has direction

M3. (a) acceleration = time taken
or $\frac{10}{4}$
gains 1 mark
do not penalise if both of these present but 'change in' omitted from formula
but
2.5
gains 2 marks
unit $\mathrm{m} / \mathrm{s}^{2}$ or metres per second squared
or metres per second per second
or ms-*
for 1 mark
(b) evidence of using area under graph or distance average speed \times time or
$10 \times 4 \times \frac{1}{2}$
gains 1 mark
but
20
gains 2 marks
units metres $/ \mathrm{m}^{-2^{*}}$
for 1 mark
(c) force $=$ mass \times acceleration or 75×25
gains 1 mark
but
1875
gains 2 marks
*NB Correct unit to be credited even if numerical answer wrong or absent.

Q1.A train travels from town \mathbf{A} to town \mathbf{B}.
Figure 1 shows the route taken by the train.
Figure 1 has been drawn to scale.
Figure 1

(a) The distance the train travels between \mathbf{A} and \mathbf{B} is not the same as the displacement of the train.

What is the difference between distance and displacement?
\qquad
\qquad
\qquad
(b) Use Figure 1 to determine the displacement of the train in travelling from \mathbf{A} to \mathbf{B}. Show how you obtain your answer.
\qquad
\qquad

$$
\begin{aligned}
& \text { Displacement = km } \\
& \text { Direction = .. }
\end{aligned}
$$

(c) There are places on the journey where the train accelerates without changing

Page 2

speed.
Explain how this can happen.
\qquad
\qquad
\qquad
\qquad
(d) Figure 2 shows how the velocity of the train changes with time as the train travels along a straight section of the journey.

Figure 2

Estimate the distance travelled by the train along the section of the journey shown in Figure 2.

To gain full marks you must show how you worked out your answer.
\qquad
\qquad
\qquad
\qquad
Distance = m

Q2.Figure 1 shows a golfer using a runway for testing how far a golf ball travels on grass. One end of the runway is placed on the grass surface.
The other end of the runway is lifted up and a golf ball is put at the top.
The golf ball goes down the runway and along the grass surface.
Figure 1

(a) A test was done three times with the same golf ball.

The results are shown in Figure 2.
Figure 2

(i) Make measurements on Figure 2 to complete Table 1.

Table 1

Test	Distance measured in centimetres
1	8.5
2	
3	

(ii) Calculate the mean distance, in centimetres, between the ball and the edge of the runway in Figure 2.
\qquad
Mean distance $=$ \qquad cm
(iii) Figure 2 is drawn to scale.

Scale: $1 \mathrm{~cm}=20 \mathrm{~cm}$ on the grass.
Calculate the mean distance, in centimetres, the golf ball travels on the grass surface.
\qquad
Mean distance on the grass surface =
\qquad cm
(iv) The distance the ball travels along the grass surface is used to estimate the 'speed' of the grass surface.

The words used to describe the 'speed' of a grass surface are given in Table 2.

Table 2

'Speed' of grass surface	Mean distance the golf ball travels in centimetres
Fast	250
Medium fast	220
Medium	190
Medium Slow	160
Slow	130

Use Table 2 and your answer in part (iii) to describe the 'speed' of the grass surface.
\qquad
(b) The shorter the grass, the greater the distance the golf ball will travel. A student uses the runway on the grass in her local park to measure the distance the golf ball travels.
(i) Suggest two variables the student should control.
\qquad
\qquad
\qquad
(ii) She carried out the test five times.

Her measurements, in centimetres, are shown below.
$\begin{array}{lllll}75 & 95 & 84 & 74 & 79\end{array}$

What can she conclude about the length of the grass in the park?
\qquad
\qquad
(c) Another student suggests that the 'speed' of a grass surface depends on factors other than grass length.

She wants to test the hypothesis that 'speed' depends on relative humidity.
Relative humidity is the percentage of water in the air compared to the maximum amount of water the air can hold. Relative humidity can have values between 1\% and 100\%.

The student obtains the data in Table 3 from the Internet.
Table 3

Relative humidity expressed as a percentage	Mean distance the golf ball travels in centimetres
71	180

79	162
87	147

(i) Describe the pattern shown in Table 3.
\qquad
\qquad
(ii) The student writes the following hypothesis:
'The mean distance the golf ball travels is inversely proportional to relative humidity.'

Use calculations to test this hypothesis and state your conclusion.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) The data in Table 3 does not allow a conclusion to be made with confidence.

Give a reason why.
\qquad
\qquad
(d) In a test, a golf ball hits a flag pole on the golf course and travels back towards the edge of the runway as shown in Figure 3.

Figure 3

Page 8

The distance the ball travels and the displacement of the ball are not the same. What is the difference between distance and displacement?
\qquad
\qquad
\qquad
\qquad

Q3. The graph shows the speed of a runner during an indoor 60 metres race.

(a) Calculate the acceleration of the runner during the first four seconds. (Show your working.)
\qquad
\qquad
\qquad
(b) How far does the runner travel during the first four seconds?
(Show your working.)
\qquad
\qquad
\qquad
(c) At the finish, a thick wall of rubber foam slows the runner down at a rate of $25 \mathrm{~m} / \mathrm{s}^{2}$. The runner has a mass of 75 kg .
Calculate the average force of the rubber foam on the runner.
(Show your working.)

Answer
 newtons (N)

M1. (a) (i) not moving
(b) 35000
allow 1 mark for correct substitution, ie 14000×2.5 provided no subsequent step an answer of 87500 indicates acceleration (2.5) has been squared and so scores zero

M2. (a) (i) E-F (ticked)
(ii) B-C or D-E
accept both answers
(b) fast(er)
accept downhill
slow(er)
force
do not accept distance

M3. (a) (i) walking at constant speed
(ii) standing still
(b) is higher or faster
accept less time to walk more distance (both time and distance must be mentioned)
the slope of graph is steeper
accept slope is more
(c) speed $=\frac{\text { distance }}{\text { time }}$
accept suitable symbols used in correct formula do not accept a triangle
(b) $5^{\frac{1}{2}}$ hours must include unit
(c) 30
(d) 30 minutes or

must include unit
(e) D and E
accept finish for E accept correct numbers from axes with units
least steep part of the graph accept covers smallest distance in a set time accept only moves 5 km in $1 \frac{1}{2}$ hours (accept anything between 5 and 6)
ignore horse is tired

M5. (a) (i) 12
(ii) 0.2
allow 1 mark for their (a)(i) $\div 60$ and correctly calculated
$\mathrm{m} / \mathrm{s}^{2}$
accept correct unit circled in list accept ms^{-2}
do not accept mps ${ }^{2}$
(b) B

B

M6. (a) shallowest slope/ gradient
accept smallest distance in biggest time accept longest time to travel the same distance accept the line is not as steep accept it is a less steep line do not accept the line is not steep
(b) $\mathrm{A}-\mathrm{B}$

If 2 or 3 boxes are ticked no mark
(c) (i) 200 m
(ii) 20 s
allow 1 mark for correctly identifying 60 s or 40 s from the graph
(d) (i) straight line starting at origin

> accept within one small square of the origin
passing through $t=200$ and $d=500$
(ii) 166
accept any value between 162 and 168 accept where their line intersects given graph line correctly read $\pm 3 \mathrm{~s}$

Q1.(a) Figure 1 shows the distance-time graph for a person walking to a bus stop.
Figure 1

(i) Which one of the following statements describes the motion of the person between points \mathbf{R} and \mathbf{S} on the graph?

Tick (\checkmark) one box.
Not moving \square

Moving at constant speed \square

Moving with increasing speed \square
(ii) Another person, walking at constant speed, travels the same distance to the bus stop in 200 seconds.

Complete Figure 2 to show a distance-time graph for this person.
Figure 2

(b) A bus accelerates away from the bus stop at $2.5 \mathrm{~m} / \mathrm{s}^{2}$.

The total mass of the bus and passengers is 14000 kg .
Calculate the resultant force needed to accelerate the bus and passengers.
\qquad
\qquad
\qquad
\qquad

Q2. This question is about a car travelling through a town.
(a) The graph shows how far the car travelled and how long it took.

(i) Between which points was the car travelling fastest? Tick (\checkmark^{\prime}) your answer.

Points	Tick (V)
A - B	
B - C	
C - D	
D - E	
$E-F$	

(ii) Between which points was the car stationary?
(b) Complete the sentences by writing the correct words in the spaces.

When a car has to stop, the overall stopping distance is greater if:

- the car is poorly maintained;
- there are adverse weather conditions;
- the car is travelling \qquad ;
- the driver's reactions are

Also, the greater the speed of the car, then the greater the braking needed to stop in a certain time.

Q3. The graph shows the distance a person walked on a short journey.

(a) Choose from the phrases listed to complete the statements which follow. You may use each statement once, more than once or not at all.
standing still
walking at constant speed
walking with an increasing speed
walking with a decreasing speed
(i) Between points \mathbf{A} and \mathbf{B} the person is
\qquad
(ii) Between points \mathbf{B} and \mathbf{C} the person is
\qquad
(b) Complete the sentence.

You can tell that the speed of the person between points \mathbf{A} and \mathbf{B} is \qquad than the speed between points \mathbf{C} and \mathbf{D} because \qquad
(c) Write the equation which relates distance, speed and time.
\qquad

Q4. A horse and rider take part in a long distance race. The graph shows how far the horse and rider travel during the race.

(a) What was the distance of the race?
distance = ... km
(b) How long did it take the horse and rider to complete the race?
\qquad
(c) What distance did the horse and rider travel in the first 2 hours of the race?
\qquad
distance = km
(d) How long did the horse and rider stop and rest during the race?
\qquad
(e) Not counting the time it was resting, between which two points was the horse moving the slowest?
and
Give a reason for your answer.
\qquad
\qquad

Q5. A high-speed train accelerates at a constant rate in a straight line.
The velocity of the train increases from $30 \mathrm{~m} / \mathrm{s}$ to $42 \mathrm{~m} / \mathrm{s}$ in 60 seconds.
(a) (i) Calculate the change in the velocity of the train.
\qquad
Change in velocity $=\ldots . ~ m / s ~$
(ii) Use the equation in the box to calculate the acceleration of the train.

$$
\text { acceleration }=\frac{\text { change in velocity }}{\text { time taken for change }}
$$

Show clearly how you work out your answer and give the unit. Choose the unit from the list below.
m / s
$\mathrm{m} / \mathbf{s}^{2}$
N/kg
Nm
\qquad
\qquad
Acceleration $=$
(b) Which one of the graphs, \mathbf{A}, \mathbf{B} or \mathbf{C}, shows how the velocity of the train changes as it accelerates?

Write your answer, \mathbf{A}, \mathbf{B} or \mathbf{C}, in the box.

Graph

Q6. Part of a bus route is along a high street.
The distance - time graph shows how far the bus travelled along the high street and how long it took.

(a) The bus travels the slowest between points \mathbf{D} and \mathbf{E}.

How can you tell this from the graph?
\qquad
\qquad
(b) Between which two points was the bus travelling the fastest?

Put a tick $\left(v^{\prime}\right)$ in the box next to your answer.

Points	
A-B	

$\mathbf{B}-\mathbf{C}$	
$\mathbf{C}-\mathbf{D}$	

(c) There is a bus stop in the high street.

This is marked as point \mathbf{B} on the graph.
(i) What is the distance between point \mathbf{A} on the graph and the bus stop?

Distance metres
(ii) How long did the bus stop at the bus stop?

Show clearly how you work out your answer.
\qquad
Time $=$ \qquad seconds
(d) A cyclist made the same journey along the high street.

The cyclist started at the same time as the bus and completed the journey in 200 seconds. The cyclist travelled the whole distance at a constant speed.
(i) Draw a line on the graph to show the cyclist's journey.
(ii) After how many seconds did the cyclist overtake the bus?

The cyclist overtook the bus after \qquad seconds.

M1. (a) (sound waves) which have a frequency higher than the upper limit of hearing for humans
or
a (sound) wave (of frequency) above 20000 Hz
sound waves that cannot be heard is insufficient a wave of frequency 20000 Hz is insufficient
(b) 640
an answer of 1280 gains 2 marks
allow 2 marks for the correct substitution
ie 1600×0.40 provided no subsequent step allow 2 marks for the substitution $\frac{1600 \times 0.80}{2}$ provided no subsequent step allow 1 mark for the substitution 1600×0.80 provided no subsequent step
allow 1 mark for the identification that time (boat to bed) is 0.4
(c) any one from:

- pre-natal scanning / imaging
- imaging of a named organ (that is not surrounded by bone), eg stomach, bladder, testicles
accept heart
do not allow brain or lungs (either of these negates a correct answer)
- Doppler scanning blood flow
(d) advantage
any one from:
- (images are) high quality or detailed or high resolution clearer / better image is sufficient
- (scan) produces a slice through the body
- image can be viewed from any direction
allow images are (always) $3 \mathrm{D} / 360^{\circ}$
- an image can be made of any part (inside the body) allow whole body can be scanned
- easier to diagnose or see a problem (on the image)
disadvantage
any one from:
- (the X-rays used or scans) are ionising allow a description of what ionising is

Page 2

- mutate cells or cause mutations or increase chances of mutations allow for cells:
DNA / genes / chromosomes / nucleus / tissue
- turn cells cancerous or produce abnormal growths or produce rapidly growing cells
- kill cells
damage cells is insufficient
- shielding is needed
can be dangerous (to human health) unqualified, is insufficient
M2. (a) (i) air resistance/drag/friction (or upthrust)weight/gravitational pull/gravity
for 1 mark each
(ii) air resistance/friction acts in opposite direction to motion
(iii) Y
(iv) the sky-diver accelerates/his speed increases in downward direction/towards the Earth/falls for 1 mark each
(b) force X has increased force Y has stayed the same the speed of the sky-diver will stay the same
for 1 mark each
(c) (i) CD
(11) 500
(iii) 50$\}$ (but apply e.c.f. from (i))
(iv) 10 (but apply e.c.f. from (ii) and (iii)) gets 2 marks
or $500 / 50$ or d / t
gets 1 mark

M3. (a) (i) 3 km [allow 2.9 to 3.1]
for 1 mark
(ii) 6.6 min [allow 6.5 to 6.8] for 1 mark
(b) can be in any units, $1.5 \mathrm{~km} / \mathrm{min}, 1500 \mathrm{~m} / \mathrm{min}, 25 \mathrm{~m} / \mathrm{s}, 90 \mathrm{~km} / \mathrm{h}$ $\mathrm{Sp}=\mathrm{d} / \mathrm{t}$
$=12 / 8$
$=1.5$
km/min
for 1 mark each (see marking of calculations)

M4. (a) (i) Constant speed
(ii) Accelerates to higher constant speed
(b) (i) Points correct (allow one major or two minor mistakes) Line correct (for their points)
(ii) $5 \mathrm{~m} / \mathrm{s}$
or 5
gets 2 marks
or correct unit
gets 1 mark mark
(c) (i) 50 s or 50
gets 2 marks
or $t=d / v$
gets 1 mark
(ii) Line correct (of gradient 4 and spans 30 consecutive seconds)
(d) (i) 0.04 or $6 / 15$
gets 2 marks or $\mathrm{a}=\mathrm{v} / \mathrm{t}$
gets 1 mark

M5. (i) C and D or D and C accept CD accept DC accept answers in terms of time
(ii) any one from:
streamline position streamline clothes
accept crouched position
accept tight clothes
accept design of cycle
accept cycle slower
(iii) 0.5 hours or 30 minutes or 1800 seconds must have unit
(iv) speed $=\frac{\text { distance }}{\text { time (taken) }}$
accept any correct rearrangement
accept $s=d / t$ or $v s / t$
accept velocity for speed

(v) 16
allow for mark for each of time $=3.5$ hours
distance $=56 \mathrm{~km}$
allow e.c.f. from part (a)(iii) if correctly used an answer of 14 gains 2 marks
allow 1 mark for correct attempt to average the three sections

M6. (a) 96
allow 1 mark for correct substitution ie 80×1.2
newton or N
allow Newton do not allow n
(b) (i) direction
(ii) velocity and time are continuous (variables)
answers must refer to both variables accept the variables are continuous / not categoric accept the data / 'it' is continuous accept the data / 'it' is not categoric
(iii) C
velocity is not changing
the $\mathbf{2}$ marks for reason may be scored even if \boldsymbol{A} or \boldsymbol{B} are chosen
accept speed for velocity
accept speed is constant ($9 \mathrm{~m} / \mathrm{s}$)
accept not decelerating
accept not accelerating
accept reached terminal velocity
forces must be balanced
accept forces are equal
Page 8
accept arrows are the same length / size
or
resultant force is zero do not accept the arrows are equal

M7. (a) B
reason only scores if B is chosen
gradient / slope is the steepest / steeper answers must be comparative accept steepest line ignore greatest speed
(b) (velocity includes) direction 'it' refers to velocity

Q1.(a) What is ultrasound?
\qquad
\qquad
(b) Figure 1 shows how ultrasound is used to measure the depth of water below a ship.

Figure 1

A pulse of ultrasound is sent out from an electronic system on-board the ship. It takes 0.80 seconds for the emitted ultrasound to be received back at the ship.

Calculate the depth of the water.
Speed of ultrasound in water $=1600 \mathrm{~m} / \mathrm{s}$
\qquad
\qquad
\qquad
\qquad
Depth of water $=$ \qquad metres
(c) Ultrasound can be used in medicine for scanning.

Page 2

State one medical use of ultrasound scanning.
\qquad
(d) Images of the inside of the human body can be made using a Computerised Tomography (CT) scanner. The CT scanner in Figure 2 uses X-rays to produce these images.

Figure 2

State one advantage and one disadvantage of using a CT scanner, compared with ultrasound scanning, for forming images of the inside of the human body.

Advantage of CT scanning \qquad
\qquad
\qquad
Disadvantage of CT scanning \qquad
\qquad
\qquad

Q2. A sky-diver jumps from a plane.
The sky-diver is shown in the diagram below.

(a) Arrows \mathbf{X} and \mathbf{Y} show two forces acting on the sky-diver as he falls.
(i) \quad Name the forces \mathbf{X} and \mathbf{Y}.
\qquad
X
Y \qquad
(ii) Explain why force \mathbf{X} acts in an upward direction.
\qquad
\qquad
(iii) At first forces \mathbf{X} and \mathbf{Y} are unbalanced.

Which of the forces will be bigger? \qquad
(iv) How does this unbalanced force affect the sky-diver?
\qquad
\qquad
(b) After some time the sky-diver pulls the rip cord and the parachute opens.

The sky-diver and parachute are shown in the diagram below.

After a while forces \mathbf{X} and \mathbf{Y} are balanced.
Underline the correct answer in each line below.
Force \mathbf{X} has
increased / stayed the same / decreased.
Force \mathbf{Y} has
increased / stayed the same / decreased.
The speed of the sky-diver will
increase / stay the same / decrease.
(c) The graph below shows how the height of the sky-diver changes with time.

(i) Which part of the graph, $\mathbf{A B}, \mathbf{B C}$ or $\mathbf{C D}$ shows the sky-diver falling at a constant speed?
(ii) What distance does the sky-diver fall at a constant speed?

Distance
m
(iii) How long does he fall at this speed?

Page 6

(iv) Calculate this speed.

> Speed m/s

Q3. Below is a distance-time graph for part of a train journey. The train is travelling at a constant speed.

(a) Use the graph to find
(i) how far the train travels in 2 minutes km .
(ii) how long it takes the train to travel a distance of 10 kilometres minutes.
(b) Calculate the speed of the train.
\qquad
\qquad
\qquad
\qquad

Q4. (a) The diagram below shows a moving tractor. The forward force from the engine exactly balances the resisting forces on the tractor.

(i) Describe the motion of the tractor.
(ii) The tractor comes to a drier part of the field where the resisting forces are less. If the forward force from the engine is unchanged how, if at all, will the motion of the tractor be affected?
\qquad
\qquad
(b) Two pupils are given the task of finding out how fast a tractor moves across a field. As the tractor starts a straight run across the field the pupils time how long it takes to pass a series of posts which are forty metres apart. The results obtained are shown in the table below.

Distancetravelled (m)	0	40	80	120	160	200
Timetaken (s)	0	8	16	24	32	40

(i) Draw a graph of distance travelled against time taken using the axes on the graph below. Label your graph line A.

(ii) Calculate the speed of the tractor.
\qquad
\qquad
(c) In another, wetter field there is more resistance to the movement of the tractor. It now travels at $4 \mathrm{~m} / \mathrm{s}$.
(i) Calculate the time needed to travel 200 m .
\qquad
\qquad
\qquad
(ii) On the graph in part (b) draw a line to represent the motion of the tractor across the second field. Label this line B.
(d) On a road the tractor accelerates from rest up to a speed of $6 \mathrm{~m} / \mathrm{s}$ in 15 seconds. Calculate the acceleration of the tractor.
\qquad
\qquad
\qquad
\qquad

Q5. A cyclist goes on a long ride. The graph shows how the distance travelled changes with time during the ride.

(i) Between which two points on the graph was the cyclist moving at the fastest speed?
\qquad
(ii) State one way cyclists can reduce the air resistance acting on them.
\qquad
\qquad
(iii) How long did the cyclist stop and rest?
\qquad
(iv) Write down the equation which links distance, speed and time.
\qquad
(v) Calculate, in $\mathrm{km} / \mathrm{hr}$, the average speed of the cyclist while moving.
\qquad
\qquad
\qquad
\qquad

Q6. A cyclist travelling along a straight level road accelerates at $1.2 \mathrm{~m} / \mathrm{s}^{2}$ for 5 seconds. The mass of the cyclist and the bicycle is 80 kg .
(a) Calculate the resultant force needed to produce this acceleration. Show clearly how you work out your answer and give the unit.
\qquad
\qquad
Resultant force $=$ \qquad
(b) The graph shows how the velocity of the cyclist changes with time.

(i) Complete the following sentence.

The velocity includes both the speed and the \qquad .of the cyclist.
(ii) Why has the data for the cyclist been shown as a line graph instead of a bar chart?
\qquad
\qquad
(iii) The diagrams show the horizontal forces acting on the cyclist at three different speeds. The length of an arrow represents the size of the force.

Which one of the diagrams, A, B or \mathbf{C}, represents the forces acting when the cyclist is travelling at a constant $9 \mathrm{~m} / \mathrm{s}$?
\qquad
Explain the reason for your choice.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q7. (a) A person takes their dog for a walk.
The graph shows how the distance from their home changes with time.

Which part of the graph, A, B, C or \mathbf{D}, shows them walking the fastest?

Write your answer in the box. \square

Give the reason for your answer.
\qquad
\qquad
(b) During the walk, both the speed and the velocity of the person and the dog change. How is velocity different from speed?
\qquad
\qquad

M1. (a) distance is a scalar and displacement is a vector
or
distance has magnitude only, displacement has magnitude and direction
(b) 37.5 km
accept any value between 37.0 and 38.0 inclusive
062° or $\mathrm{N} 62^{\circ} \mathrm{E}$
accept 62° to the right of the vertical
accept an angle in the range $60^{\circ}-64^{\circ}$
accept the angle correctly measured and marked on the diagram
(c) train changes direction so velocity changes
acceleration is the rate of change of velocity
(d) number of squares below line $=17$
accept any number between 16 and 18 inclusive
each square represents 500 m
distance $=$ number of squares \times value of each square correctly calculated -8500 m

M2.(a) (i) 9.5 accept $\pm 1 \mathrm{~mm}$
10.5
(ii) 9.5
ecf from (a)(i)
(iii) 190
$20 \times$ (a)(ii) ecf
(iv) medium
ecf from (a)(iii)
(b) (i) any two from:

- position of ball before release
- same angle or height of runway
- same ball
- same strip of grass
(ii) long
or
longer than in part (a)
or
uneven
do not allow reference to speed
(c) (i) as humidity increases mean distance decreases accept speed for distance
(ii) $71 \times 180=12780$
$79 \times 162=12798$
$87 \times 147=12789$
all three calculations correct with a valid conclusion gains 3 marks

or

find k from $R=k / d$
all three calculations correct gains $\mathbf{2}$ marks
or
$87 / 71 \times 147=180.1 \sim 180$
$87 / 79 \times 147=161.9 \sim 162$
two calculations correct with a valid conclusion gains 2 marks
conclusion based on calculation
one correct calculation of k gains 1 mark
(iii) only three readings or small range for humidity accept not enough readings accept data from Internet could be unreliable ignore reference to repeats
(d) distance is a scalar or has no direction or has magnitude only allow measurements from diagram of distance and displacement
displacement is a vector or has direction

M3. (a) acceleration = time taken
or $\frac{10}{4}$
gains 1 mark
do not penalise if both of these present but 'change in' omitted from formula
but
2.5
gains 2 marks
unit $\mathrm{m} / \mathrm{s}^{2}$ or metres per second squared
or metres per second per second
or ms-*
for 1 mark
(b) evidence of using area under graph or distance average speed \times time or
$10 \times 4 \times \frac{1}{2}$
gains 1 mark
but
20
gains 2 marks
units metres $/ \mathrm{m}^{-2^{*}}$
for 1 mark
(c) force $=$ mass \times acceleration or 75×25
gains 1 mark
but
1875
gains 2 marks
*NB Correct unit to be credited even if numerical answer wrong or absent.

Q1.A train travels from town \mathbf{A} to town \mathbf{B}.
Figure 1 shows the route taken by the train.
Figure 1 has been drawn to scale.
Figure 1

(a) The distance the train travels between \mathbf{A} and \mathbf{B} is not the same as the displacement of the train.

What is the difference between distance and displacement?
\qquad
\qquad
\qquad
(b) Use Figure 1 to determine the displacement of the train in travelling from \mathbf{A} to \mathbf{B}. Show how you obtain your answer.
\qquad
\qquad
\qquad km

Direction $=$
(c) There are places on the journey where the train accelerates without changing

Page 2

speed.
Explain how this can happen.
\qquad
\qquad
\qquad
\qquad
(d) Figure 2 shows how the velocity of the train changes with time as the train travels along a straight section of the journey.

Figure 2

Estimate the distance travelled by the train along the section of the journey shown in Figure 2.

To gain full marks you must show how you worked out your answer.
\qquad
\qquad
\qquad
\qquad
Distance = m

Q2. The graph shows how the distance travelled by a car changes with time during a short journey.

(i) Describe fully the motion of the car during the first two minutes of the journey.
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) During the last minute of the journey the velocity of the car changes although the speed remains constant. How is this possible?
\qquad
\qquad

Q3. The distance-time graph represents the motion of a car during a race.

(a) Describe the motion of the car between point \mathbf{A} and point \mathbf{D}. You should not carry out any calculations.

To gain full marks in this question you should write your ideas in good English. Put them into a sensible order and use the correct scientific words.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Calculate the gradient of the graph between point \mathbf{B} and point \mathbf{C}. Show clearly how you get your answer.
\qquad
\qquad
\qquad
gradient $=$ \qquad

Q4. The diagram shows the velocity-time graph for an object over a 10 second period.

(a) Use the graph to calculate the distance travelled by the object in 10 seconds. Show clearly how you work out your answer.
\qquad
\qquad
\qquad
(b) Complete the distance-time graph for the object over the same 10 seconds.

(2)
(Total 4 marks)

Page 9

Q5.Part of a bus route is along a high street.
The distance-time graph shows how far the bus travelled along the high street and how long it took.

(a) Between which two points was the bus travelling the slowest?

Put a tick (\checkmark) in the box next to your answer.

Points	Tick (\checkmark)
A - B	
C - D	
D - E	

Give a reason for your answer.
\qquad
\qquad
(b) The bus travels at $5 \mathrm{~m} / \mathrm{s}$ between points \mathbf{A} and \mathbf{B}. The bus and passengers have a total mass of 16000 kg .

Use the equation in the box to calculate the momentum of the bus and passengers between points \mathbf{A} and \mathbf{B}.

$$
\text { momentum }=\text { mass } x \text { velocity }
$$

Show clearly how you work out your answer.
\qquad
\qquad
Momentum $=$ \qquad $\mathrm{kg} \mathrm{m} / \mathrm{s}$
(c) A cyclist made the same journey along the high street.

The cyclist started at the same time as the bus and completed the journey in 220 seconds. The cyclist travelled the whole distance at a constant speed.
(i) Draw a line on the graph to show the cyclist's journey.
(ii) After how many seconds did the cyclist overtake the bus?

The cyclist overtook the bus after \qquad seconds.

Q6.A bus is taking some children to school.
(a) The bus has to stop a few times. The figure below shows the distance-time graph for part of the journey.

(i) How far has the bus travelled in the first 20 seconds?
Distance travelled = .. m
(ii) Describe the motion of the bus between 20 seconds and 30 seconds.
\qquad
\qquad
(iii) Describe the motion of the bus between 30 seconds and 60 seconds.

Tick (\checkmark) one box.

$$
\text { Tick }(\checkmark)
$$

Accelerating	
Reversing	
Travelling at constant speed	

(iv) What is the speed of the bus at 45 seconds?

Show clearly on the figure above how you obtained your answer.
\qquad
\qquad
\qquad
Speed =
\qquad m / s
(b) Later in the journey, the bus is moving and has 500000 J of kinetic energy. The brakes are applied and the bus stops.
(i) How much work is needed to stop the bus?
\qquad
Work = ... J
(ii) The bus stopped in a distance of 25 m .

Calculate the force that was needed to stop the bus.
\qquad
\qquad

> Force = N
(iii) What happens to the kinetic energy of the bus as it is braking?
\qquad
\qquad
\qquad
\qquad
M1. (a) (i) E-F (ticked)1(ii) B-C or D-Eaccept both answers1(b) fast(er)accept downhill1
slow(er)1forcedo not accept distance1

M2. (a) 53 (m)
(b) (i) Similar shape curve drawn above existing line going through (0,0) allow 1 mark for any upward smooth curve or straight upward line above existing line going through (0,0)
(ii) rain on road
car brakes in bad condition
(c) (i) all three lines correctly labelled
allow 1 mark for one correctly labelled
top line - C
accept 1.2
middle line - B
accept 0.9
bottom line - A
accept 0.7
(ii) any two from:

- (table has) both variables are together accept tired and music as named variables
- both (variables) could/ would affect the reaction time
- cannot tell original contribution accept cannot tell which variable is affecting the drive (the most)
- need to measure one (variable) on its own
accept need to test each separately
- need to control one of the variables

M3. (a) MN
accept $5.8,8$ seconds must include unit
(b) LM
accept $0.8,5.8$ seconds must include unit
(c) (i) 0.8
(ii) drinking alcohol
(d) straight (by eye) line starting at 0.8 seconds
line drawn steeper than LM starting before L
ignore lines going beyond 2 seconds but line must exceed 2.5 metres per second before terminating

M4. (a) time
force
(b) any three from

- driver's reactions are slow(er)
accept driver could have taken drugs or alcohol or due to tiredness or distractions
- poor weather conditions
accept raining or snowing or fog / mist (poor visibility)
- greater mass or weight
- poor road conditions
oil / gravel / mud / leaves / wet / icy going downhill
- poorly maintained brakes do not accept driver's weak foot force
- worn tyres

M5. (a) 96 (m)
(b) (i) similar shape curve drawn above existing line going through (0,0)
allow 1 mark for any upward smooth curve or straight upward line above existing line going through $(0,0)$
(ii) Rain on the road
(c) (i) all three lines correctly labelled
allow 1 mark for one correctly labelled
top line - C
accept 1.2
middle line - \mathbf{B}
accept 0.9
bottom line - A
accept 0.7
(ii) any two from:

- (table has) both variables are together accept tired and music as named variables
- both (variables) could / would affect the reaction time accept cannot tell which variable is affecting the drive (the most)
- cannot tell original contribution
- need to measure one (variable) on its own
accept need to test each separately
- need to control one of the variables fair test is insufficient

M6. (a) (i) constant
(ii) heat
(b) (i) 3 links correct

allow 1 mark for 1 correct link
if more than one line is drawn from a condition mark all lines from that condition incorrect
(ii) increased

M7. (a) distance travelled under the braking force accept braking (distance)
(b) (directly) proportional accept a correct description using figures
or increase in the same ratio eg if speed doubles then thinking distance doubles accept for 1 mark positive correlation accept for 1 mark as speed increases so does thinking distance accept as one increases the other increases accept as thinking distance increases speed increases
(c) (i) control variable
(ii) experiment done, student listens to music / ipod (etc)
experiment (repeated), student not listening to music for both marks to be awarded there must be a comparison
(d) increase it accept an answer which implies reactions are slower do not accept answers in terms of thinking distance only
(e) \mathbf{Y}

1

M8. (a) The driver has been drinking alcohol.
reason only scores if this box is ticked
driver's reaction time increases accept slower reactions accept slower reaction time orthinking distance / stopping distance increases do not accept braking distance increases
ordriver less alert
accept driver may fall asleep / be tired
(b) they are all variables that could affect outcome / results
accept specific effect of changing one of the variables accept to make the test valid ignore reliable
so data / barriers can be compared accept to see which is / works best / safest do not accept fair test on its own
(c) ticks in both the top and middle boxes

M9.
(a) time
force
(b) The car tyres being badly worn
(c) (i) braking distance increases with speed
accept positive correlation
do not accept stopping distance for braking distance
relevant further details, eg

- but not in direct proportion
- and increases more rapidly after $15 \mathrm{~m} / \mathrm{s}$
accept any speed between 10 and 20
accept numerical example
- double the speed, braking distance increases $\times 4$
(ii) line drawn above existing line starting at the origin as speed increases braking distance must increase each speed must have a single braking distance
(d) (i) reaction time / reaction (of driver) does not depend on speed (of car)
(ii) (on the reduced speed limit roads) over the same period of time accept a specific time, eg 1 year
monitor number of accidents before and after (speed limit reduced)
allow 1 mark only for record number of vehicles / cars using the (20 mph) roads or collect data on accidents on the (20 mph) roads
to score both marks the answer must refer to the roads with the reduced speed limit

Q1. This question is about a car travelling through a town.
(a) The graph shows how far the car travelled and how long it took.

(i) Between which points was the car travelling fastest? Tick (\checkmark^{\prime}) your answer.

Points	Tick (V)
A - B	
B - C	
C - D	
D - E	
$E-F$	

(ii) Between which points was the car stationary?
(b) Complete the sentences by writing the correct words in the spaces.

When a car has to stop, the overall stopping distance is greater if:

- the car is poorly maintained;
- there are adverse weather conditions;
- the car is travelling \qquad ;
- the driver's reactions are

Also, the greater the speed of the car, then the greater the braking needed to stop in a certain time.

Q2. (a) A car driver makes an emergency stop.
The chart shows the 'thinking distance' and the 'braking distance' needed to stop the car.

Calculate the total stopping distance of the car.
\qquad
Stopping distance $=$ \qquad m
(b) The graph shows how the braking distance of a car driven on a dry road changes with the car's speed.

The braking distance of the car on an icy road is longer than the braking distance of the car on a dry road.
(i) Draw a new line on the graph to show how the braking distance of the car on an icy road changes with speed.
(ii) Which two of the following would also increase the braking distance of the car?

Put a tick (\checkmark^{\prime}) next to each of your answers.
rain on the road \square
the driver having drunk alcohol

car brakes in bad condition
the driver having taken drugs \square
(c) The thinking distance depends on the driver's reaction time.

The table shows the reaction times of three people driving under different conditions.

Car driver	Condition	Reaction time in seconds
A	Wide awake with no distractions	0.7
B	Using a hands-free mobile phone	0.9
C	Very tired and listening to music	1.2

The graph lines show how the thinking distance for the three drivers, \mathbf{A}, \mathbf{B} and \mathbf{C}, depends on how fast they are driving the car.

Thinking

 distance in metres
(i) Match each graph line to the correct driver by writing \mathbf{A}, \mathbf{B} or \mathbf{C} in the box next to the correct line.
(ii) The information in the table cannot be used to tell if driver C's reaction time is increased by being tired or by listening to music.

Explain why.
\qquad
\qquad
\qquad
\qquad

Q3. A car and a bicycle are travelling along a straight road. They have stopped at road works.

The graph shows how the velocity of the car changes after the sign is changed to GO.

(a) Between which two points on the graph is the car moving at constant velocity?
\qquad
(b) Between which two points on the graph is the car accelerating?
\qquad
(c) Between the sign changing to GO and the car starting to move, there is a time delay. This is called the reaction time.
(i) What is the reaction time of the car driver?
Reaction time = seconds
(ii) Which one of the following could increase the reaction time of a car driver? Tick the box next to your choice.

Drinking alcohol

Wet roads

Worn car brakes

(d) The cyclist starts to move at the same time as the car. For the first 2 seconds the cyclist's acceleration is constant and is greater than that of the car.

Draw a line on the graph to show how the velocity of the cyclist might change during the first 2 seconds of its motion.

Q4. The diagram below shows the thinking distances, braking distances and total stopping distances at different speeds.

(a) Look at the total stopping distances at each speed.

Complete the sentence by choosing the correct words from the box.

distance	force	mass	time

The total stopping distance depends on the distance the car travels during the driver's reaction \qquad and under the braking \qquad
(b) Give three other factors that could cause the total stopping distance of a car to be greater. Do not give the factors in Figure 1.

1 \qquad
\qquad
2 \qquad
\qquad
\qquad

Q5.(a) A car driver makes an emergency stop.
The chart shows the 'thinking distance' and the 'braking distance' needed to stop the car.

Calculate the total stopping distance of the car.
\qquad
Stopping distance $=$ \qquad m
(b) The graph shows how the braking distance of a car driven on a dry road changes with the car's speed.

The braking distance of the car on an icy road is longer than the braking distance of the car on a dry road.
(i) Draw a new line on the graph to show how the braking distance of the car on an icy road changes with speed.
(ii) Which one of the following would also increase the braking distance of the car?

Put a tick (\checkmark) in the box next to your answer.

Rain on the road

The driver having drunk alcohol

The driver having taken drugs

(c) The thinking distance depends on the driver's reaction time.

The table shows the reaction times of three people driving under different conditions.

Car driver	Condition	Reaction time in second
A	Wide awake with no distractions	0.7
B	Using a hands-free mobile phone	0.9
C	Very tired and listening to music	1.2

The graph lines show how the thinking distance for the three drivers, \mathbf{A}, \mathbf{B}, and \mathbf{C}, depends on how fast they are driving the car.

(i) Match each graph line to the correct driver by writing A, B, or C in the box next to the correct line.
(ii) The information in the table cannot be used to tell if driver C's reaction time is increased by being tired or by listening to music. Explain why.
\qquad
\qquad
\qquad
\qquad

Q6. The diagram shows the horizontal forces acting on a car travelling along a straight road.

(a) Complete the following sentences by drawing a ring around the correct word in each box.
(i) When the driving force equals the drag force, the speed ofthe car is $\begin{aligned} & \text { decreasing } \\ & \text { constant } \\ & \text { increasing }\end{aligned}$,
(ii) Putting the brakes on transforms the car's kinetic energy mainly into $\begin{aligned} & \text { heat } \\ & \text { light } \\ & \text { sound }\end{aligned}$
(b) The charts, A, B and \mathbf{C} give the thinking distance and the braking distance for a car driven under different conditions.
(i) Draw straight lines to match each chart to the correct conditions.

Draw only three lines.

Conditions

$$
\text { Speed }=22 \mathrm{~m} / \mathrm{s}
$$ driver wide awake

Speed $=13 \mathrm{~m} / \mathrm{s}$ driver wide awake

```
Speed = 13 m/s
``` driver very tired

Charts

(2)
(ii) The three charts above all apply to dry road conditions.

How would the braking distances be different if the road were wet?
\(\qquad\)
\(\qquad\)

Q7. (a) The total stopping distance of a car has two parts. One part is the distance the car travels during the driver's reaction time. This distance is often called the 'thinking distance'.

What distance is added to the 'thinking distance' to give the total stopping distance?
\(\qquad\)
\(\qquad\)
(b) The graph shows the relationship between the speed of a car and the thinking distance.

Describe the relationship between speed and thinking distance.
\(\qquad\)
\(\qquad\)
(c) The diagram shows two students investigating reaction time.

One student holds a 30 cm ruler, then lets go. As soon as the second student sees the ruler fall, she closes her hand, stopping the ruler. The further the ruler falls before being stopped, the slower her reaction time.
(i) One student always holds the ruler the same distance above the other student's hand.
In this experiment, what type of variable is this?
Put a tick \((\checkmark)\) in the box next to your answer.
\(\square\)

(ii) Describe how this experiment could be used to find out whether listening to music affects reaction time.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
(d) The following information is written on the label of some cough medicine.

WARNING: Causes drowsiness.
Do not drive or operate machinery.

How is feeling drowsy (sleepy) likely to affect a driver's reaction time?
\(\qquad\)
\(\qquad\)
(e) Three cars, \(\mathbf{X}, \mathbf{Y}\) and \(\mathbf{Z}\), are being driven along a straight road towards a set of traffic lights.
The graphs show how the velocity of each car changes once the driver sees that the traffic light has turned to red.

Which one of the cars, \(\mathbf{X}, \mathbf{Y}\) or \(\mathbf{Z}\), stops in the shortest distance?
\(\qquad\)
(Total 8 marks)

Q8. Motorway accidents have many causes.
(a) Which one of the following is most likely to increase the chance of a car being in an accident?

Tick \((\checkmark)\) the box next to your answer.

The car has just had new tyres fitted.

The driver has been drinking alcohol.

A road surface in dry conditions

Give a reason for your answer.
\(\qquad\)
\(\qquad\)
(b) The diagram shows three designs of motorway crash barriers.

Before a new design of barrier is used, it must be tested.
A car of mass 1500 kg is driven at \(30 \mathrm{~m} / \mathrm{s}\) to hit the barrier at an angle of 20 degrees.
This barrier must slow the car down and must not break.
Explain why the mass of the car, the speed of the car and the angle at which the car hits the barrier must be the same in every test.
\(\qquad\)
\(\qquad\)
\(\qquad\)
(c) A group of scientists has suggested that new designs of crash barriers should be first tested using computer simulations.

Which two statements give sensible reasons for testing new barrier designs using a computer simulation?

Put a tick \((\checkmark)\) in the box next to each of your answers.

The design of the barrier can be changed easily.

Data for different conditions can be obtained quickly.

Simulations are more realistic than using cars and barriers.

Q9.The diagram shows how the thinking distance and braking distance of a car add together to give the stopping distance of the car.

(a) Use words from the box to complete the sentence.
\begin{tabular}{|llll|}
\hline distance & energy & force & time \\
\hline
\end{tabular}

The stopping distance is found by adding the distance the car travels during the driver's reaction \(\qquad\) and the distance the car travels under the
braking \(\qquad\) .
(b) Which one of the following would not increase the thinking distance?
\[
\text { Tick }(\checkmark) \text { one box. }
\]

The car driver being tired.

The car tyres being badly worn.

The car being driven faster.

(c) The graph shows how the braking distance of a car changes with the speed of the car.
The force applied to the car brakes does not change.

(i) What conclusion about braking distance can be made from the graph?
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
(ii) The graph is for a car driven on a dry road.

Draw a line on the graph to show what is likely to happen to the braking distance at different speeds if the same car was driven on an icy road.
(d) A local council has reduced the speed limit from 30 miles per hour to 20 miles per hour on a few roads. The reason for reducing the speed limit was to reduce the number of accidents.
(i) A local newspaper reported that a councillor said:
"It will be much safer because drivers can react much faster when driving at 20 miles per hour than when driving at 30 miles per hour."

This statement is wrong. Why?
(ii) The local council must decide whether to introduce the lower speed limit on a lot more roads.

What evidence should the local council collect to help make this decision?
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

M1. (a) increases
increases
(b) \(\quad 23(\mathrm{~m})\)
accept 43 circled for 1 mark
accept \(9+14\) for 1 mark
(c) (i) all points correctly plotted
all to \(\pm 1 / 2\) small square one error = \(\mathbf{1}\) mark two or more errors = 0 marks
line of best fit
(ii) correct value from their graph (\(\pm 1 / 2\) small square)
(d) (i) 70
\(1 / 2 \times 35 \times 4\) gains 2 marks
attempt to estimate area under the graph for 1 mark
(ii) line from \((0.6,35)\)
sloping downwards with a less steep line than the first line
cutting time axis at time \(>4.6 \mathrm{~s}\)
accept cutting \(x\)-axis at 6
(e) (i) 42000
\(1200 \times 35\) gains 1 mark
kgm / s
Ns
(ii) \(10500(\mathrm{~N})\)

42000 / 4 gains 1 mark alternatively:
\(a=35 / 4=8.75 \mathrm{~m} / \mathrm{s}^{2}\)
\(F=1200 \times 8.75\)

M2. (a) (i) as one goes up so does the other
or (directly) proportional
accept change by the same ratio
(ii) steeper straight line through the origin judge by eye
(iii) Yes with reason
eg data would have been checked / repeated accept produced by a reliable/ official/ government source do not accept it needs to be reliable
or No with reason
eg does not apply to all conditions / cars / drivers
or are only average values
or Maybe with a suitable reason
eg cannot tell due to insufficient information
(b) (i) stopping distance \(=\) thinking distance + braking distance
(ii) any two from:
factors must be to do with increasing braking distance
- smooth road / loose surface
- rain / snow / ice
accept wet road/ petrol spills
do not accept condition of road unless suitably qualified
- badly maintained brakes
accept worn brakes
accept bad/ worn/ rusty brakes
do not accept old brakes

\title{
- worn tyres \\ accept bald tyres accept lack of grip on tyres do not accept old tyres \\ - downhill slope/gradient \\ - heavily loaded car
}

M3. (a) A constant speed / velocity
\[
\begin{aligned}
& \text { accept steady pace } \\
& \text { do not accept terminal velocity } \\
& \text { do not accept stationary }
\end{aligned}
\]

B acceleration
accept speeding up

C deceleration
accept slowing down
accept accelerating backwards
accept accelerating in reverse do not accept decelerating backwards
(b) (i) the distance the car travels under the braking force accept braking distance
(ii) speed/velocity/momentum
(c) (i) \(5000(\mathrm{~N})\) to the left both required accept 5000(N) with the direction indicated by an arrow drawn pointing to the left accept 5000(N) in the opposite direction to the force of the car (on the barrier) accept 5000(N) towards the car
(ii) to measure/detect forces exerted (on dummy / driver during the collision)
(iii) 4
allow 1 mark for showing a triangle drawn on the straight part of the graph
or correct use of two pairs of coordinates
do not accept \(\mathrm{mps}^{2}\)

M4. (a) (i) gravitational potential (energy)
(ii) kinetic (energy)
(b) (i) slope or gradient
(ii) area (under graph) do not accept region
(iii) starts at same \(y\)-intercept
steeper slope than original and cuts time axis before original
the entire line must be below the given line
allow curve
(ii) student 1 incorrect because \(80 \neq 65\)

Page 8

\title{
student 2 correct because average velocities similar ecf from (c)(i)
}
student 3 incorrect because times are different
1
[12]

M5.
(a) gravitational / gravity / weight
do not accept gravitational potential
(b) accelerating
accept speed / velocity increases
the distance between the drops increases
but the time between the drops is the same
accept the time between drops is (always) 5 seconds accept the drops fall at the same rate
(c) (i) any one from:
- speed / velocity
- (condition of) brakes / road surface / tyres
- weather (conditions)
accept specific examples, eg wet / icy roads accept mass / weight of car friction is insufficient reference to any factor affecting thinking distance negates this answer
(ii) 75000
allow 1 mark for correct substitution, ie \(3000 \times 25\) provided no subsequent step shown
or allow 1 mark for an answer 750r allow 2 marks for 75 k(+ incorrect unit), eg 75 kN
joules / J
do not accept \(j\)
an answer 75 kJ gains 3 marks
for full marks the unit and numerical answer must be consistent

Q1.An investigation was carried out to show how thinking distance, braking distance and stopping distance are affected by the speed of a car.

The results are shown in the table.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
Speed \\
in metres \\
per second
\end{tabular} & \begin{tabular}{c}
Thinking \\
distance \\
in metres
\end{tabular} & \begin{tabular}{c}
Braking \\
distance in \\
metres
\end{tabular} & \begin{tabular}{c}
Stopping \\
distance \\
in metres
\end{tabular} \\
\hline 10 & 6 & 6 & 12 \\
\hline 15 & 9 & 14 & 43 \\
\hline 20 & 12 & 24 & 36 \\
\hline 25 & 15 & 38 & 53 \\
\hline 30 & 18 & 55 & 73 \\
\hline
\end{tabular}
(a) Draw a ring around the correct answer to complete each sentence.
As speed increases, thinking distance \begin{tabular}{l|l|}
\hline decreases. \\
increases. \\
stays the same. \\
\hline
\end{tabular}
As speed increases, braking distance \begin{tabular}{l|l|}
\hline decreases. \\
increases. \\
stays the same. \\
\hline
\end{tabular}
(b) One of the values of stopping distance is incorrect.

Draw a ring around the incorrect value in the table.
Calculate the correct value of this stopping distance.
\(\qquad\)

Stopping distance \(=\) \(\qquad\)
(c) (i) Using the results from the table, plot a graph of braking distance against speed.

Draw a line of best fit through your points.

(ii) Use your graph to determine the braking distance, in metres, at a speed of 22 \(\mathrm{m} / \mathrm{s}\).

Braking distance \(=\) \(\qquad\) m
(d) The speed-time graph for a car is shown below.

While travelling at a speed of \(35 \mathrm{~m} / \mathrm{s}\), the driver sees an obstacle in the road at time \(t=0\). The driver reacts and brakes to a stop.

(i) Determine the braking distance.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Braking distance \(=\) \(\qquad\) m
(ii) If the driver was driving at \(35 \mathrm{~m} / \mathrm{s}\) on an icy road, the speed-time graph would be different.

Add another line to the speed-time graph above to show the effect of travelling at \(35 \mathrm{~m} / \mathrm{s}\) on an icy road and reacting to an obstacle in the road at time \(t=0\).
(e) A car of mass 1200 kg is travelling with a velocity of \(35 \mathrm{~m} / \mathrm{s}\).
(i) Calculate the momentum of the car.

Give the unit.
\(\qquad\)
\(\qquad\)
Momentum =
(ii) The car stops in 4 seconds.

Calculate the average braking force acting on the car during the 4 seconds.
\(\qquad\)
Force = N

Q2. (a) A car driver takes a short time to react to an emergency before applying the brakes. The distance the car will travel during this time is called the 'thinking distance'.

The graph shows how the thinking distance of a driver depends on the speed of the car.

(i) What is the connection between thinking distance and speed?
\(\qquad\)
(ii) Many people drive while they are tired.

Draw a new line on the graph to show how thinking distance changes with speed for a tired driver.
(iii) The graph was drawn using data given in the Highway Code.

Do you think that the data given in the Highway Code is likely to be reliable?
Draw a ring around your answer.
Yes No Maybe

Give a reason for your answer.
\(\qquad\)
\(\qquad\)
(b) The distance a car travels once the brakes are applied is called the 'braking distance'.
(i) What is the relationship between thinking distance, braking distance and stopping distance?
(ii) State two factors that could increase the braking distance of a car at a speed of \(15 \mathrm{~m} / \mathrm{s}\).

1
2
(Total 6 marks)

Q3. (a) A car is being driven along a straight road. The diagrams, A, B and \(\mathbf{C}\), show the horizontal forces acting on the moving car at three different points along the road.

Describe the motion of the car at each of the points, \(\mathbf{A}, \mathbf{B}\) and \(\mathbf{C}\).

\(\qquad\)
\(\qquad\)
\(\qquad\)
(b) The diagram below shows the stopping distance for a family car, in good condition, driven at \(22 \mathrm{~m} / \mathrm{s}\) on a dry road. The stopping distance has two parts.
(i) Complete the diagram below by adding an appropriate label to the second part of the stopping distance.

\section*{The distance the car travels during the driver's reaction time}

\(\qquad\)
(ii) State one factor that changes both the first part and the second part of the stopping distance.
\(\qquad\)
(c) The front crumple zone of a car is tested at a road traffic laboratory. This is done by using a remote control device to drive the car into a strong barrier. Electronic sensors are attached to the dummy inside the car.

(i) At the point of collision, the car exerts a force of 5000 N on the barrier. State the size and direction of the force exerted by the barrier on the car.
\(\qquad\)
\(\qquad\)
(ii) Suggest why the dummy is fitted with electronic sensors.
\(\qquad\)
\(\qquad\)
(iii) The graph shows how the velocity of the car changes during the test.

Use the graph to calculate the acceleration of the car just before the collision with the barrier.

Show clearly how you work out your answer, including how you use the graph, and give the unit.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Acceleration =

Q4.(a) The diagram shows a car at position \(\mathbf{X}\).

The handbrake is released and the car rolls down the slope to \(\mathbf{Y}\). The car continues to roll along a horizontal surface before stopping at \(\mathbf{Z}\). The brakes have not been used during this time.
(i) What type of energy does the car have at \(\mathbf{X}\) ?
(ii) What type of energy does the car have at \(\mathbf{Y}\) ?
(b) The graph shows how the velocity of the car changes with time between \(\mathbf{Y}\) and \(\mathbf{Z}\).

(i) Which feature of the graph represents the negative acceleration between \(\mathbf{Y}\) and \(\mathbf{Z}\) ?
\(\qquad\)
(ii) Which feature of the graph represents the distance travelled between \(\mathbf{Y}\) and Z?
\(\qquad\)
(iii) The car starts again at position \(\mathbf{X}\) and rolls down the slope as before. This time the brakes are applied lightly at \(\mathbf{Y}\) until the car stops.

Draw on the graph another straight line to show the motion of the car between \(\mathbf{Y}\) and \(\mathbf{Z}\).
(c) Three students carry out an investigation. The students put trolley \(\mathbf{D}\) at position \(\mathbf{P}\) on a slope. They release the trolley. The trolley rolls down the slope and along the floor as shown in the diagram.

Floor

The students measure the distance from \(\mathbf{R}\) at the bottom of the slope to \(\mathbf{S}\) where the trolley stops. They also measure the time taken for the trolley to travel the distance RS.
They repeat the investigation with another trolley, \(\mathbf{E}\).

Their results are shown in the table.
\begin{tabular}{|c|c|c|c|}
\hline Trolley & \begin{tabular}{c}
Distance RS \\
in \\
centimetres
\end{tabular} & \begin{tabular}{c}
Time taken in \\
seconds
\end{tabular} & \begin{tabular}{c}
Average velocity \\
in centimetres \\
per second
\end{tabular} \\
\hline D & 65 & 2.1 & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \(\mathbf{E}\) & 80 & 2.6 & \\
\hline
\end{tabular}
(i) Calculate the average velocity, in centimetres per second, between \(\mathbf{R}\) and \(\mathbf{S}\) for trolleys \(\mathbf{D}\) and \(\mathbf{E}\). Write your answers in the table.
\(\qquad\)
\(\qquad\)
\(\qquad\)
(ii) Before the investigation, each student made a prediction.
- Student 1 predicted that the two trolleys would travel the same distance.
- Student 2 predicted that the average velocity of the two trolleys would be the same.
- Student 3 predicted that the negative acceleration of the two trolleys would be the same.

Is each prediction correct?
Justify your answers.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Q5.A car has an oil leak. Every 5 seconds an oil drop falls from the bottom of the car onto the road.
(a) What force causes the oil drop to fall towards the road?
\(\qquad\)
(b) The diagram shows the spacing of the oil drops left on the road during part of a journey
A
-
B

Describe the motion of the car as it moves from \(\mathbf{A}\) to \(\mathbf{B}\).
\(\qquad\)
Explain the reason for your answer.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
(c) When the brakes are applied, a braking force slows down and stops the car.
(i) The size of the braking force affects the braking distance of the car.

State one other factor that affects the braking distance of the car.
\(\qquad\)
(ii) A braking force of 3 kN is used to slow down and stop the car in a distance of 25 m .

Calculate the work done by the brakes to stop the car and give the unit.
\(\qquad\)
\(\qquad\)
\(\qquad\)
Work done \(=\) \(\qquad\)

M1.
(a) more streamlined accept decrease surface area
air resistance is smaller (for same speed)
accept drag for air resistance friction is insufficient
so reaches a higher speed (before resultant force is 0)
ignore reference to mass
(b) (i) 1.7
allow 1 mark for correct method, ie \(\frac{5}{3}\)
or allow 1 mark for an answer with more than 2 sig figs that rounds to 1.7 or allow 1 mark for an answer of 17
(ii) 7.5
allow 1 mark for correct use of graph, eg \(\frac{1}{2} \times 5 \times 3\)
(iii) air (resistance)
accept wind (resistance)
drag is insufficient
friction is insufficient

M2. (a) the distance travelled under the braking force
(b) the reaction time will increase
increasing the thinking distance (and so increasing stopping distance) (increases stopping distance is insufficient)
(c) No, because although when the speed increases the thinking distance increases by the same factor the braking distance does not.
eg
increasing from \(10 \mathrm{~m} / \mathrm{s}\) to \(20 \mathrm{~m} / \mathrm{s}\) increases thinking distance from 6 m to 12 m but the braking distance increases from 6 m to 24 m
(d) If the sled accelerates the value for the constant of friction will be wrong.
(e) only a (the horizontal) component of the force would be pulling the sled forward
the vertical component of the force (effectively) lifts the sled reducing the force of the surface on the sled
(f) \(-u^{2}=2 \times-7.2 \times 22\)
award this mark even with \(0^{2}\) and / or the negative sign missing
\[
u=17.7(99)
\]

18
allow 18 with no working shown for 3 marks allow 17.7(99) then incorrectly rounded to 17 for 2 marks

M3.
(a) any two from:
- (acceleration occurs when) the direction (of each capsule) changes
- velocity has direction
- acceleration is (rate of) change of velocity
(b) to(wards) the centre (of the wheel)
(c) the greater the radius / diameter / circumference (of the wheel) the smaller the (resultant) force (required)
accept 'the size' for radiusboth parts required for the mark

M4. (a) (i) longer reaction time accept slower reactions do not accept slower reaction time unless qualified orgreater thinking distance accept greater thinking time orgreater stopping distance accept greater stopping time greater braking distance negates answer
(b) \(\mathbf{Z}\)
accept extracting both reaction times correctly for 1 mark(0.6 and 1.4)
or time \(=0.8\) (s) for 1 mark accept \(0.8 \times 15\) for 2 marks accept calculating the distance travelled by car A as 28.5 m or the distance travelled by car B as 40.5 m for \(\mathbf{2}\) marks
different force values give a unique / different resistance only scores if \(\boldsymbol{Z}\) chosen do not accept force and resistance are (directly) proportional accept answers in terms of why either \(\boldsymbol{X}\) or \(\boldsymbol{Y}\) would not be best eg
\(\boldsymbol{X}\) - same resistance value is obtained for 2 different force values

Page 6

M5. (a) (i) 100 (m)
(ii) stationary
(iii) accelerating
(iv) tangent drawn at \(t=45 \mathrm{~s}\)
attempt to determine slope
speed in the range \(3.2-4.2(\mathrm{~m} / \mathrm{s})\)
dependent on 1st marking point
(b) (i) 500000 (J)
ignore negative sign
(ii) \(20000(\mathrm{~N})\)
ignore negative sign
allow 1 mark for correct substitution, ie \(500000=F \times 25\)
or their part \((b)(i)=F \times 25\)
provided no subsequent step
(iii) (kinetic) energy transferred by heating
to the brakes
ignore references to sound energy
if no other marks scored allow k.e. decreases for 1 mark

M6. (a) (i) distance vehicle travels during driver's reaction time accept distance vehicle travels while driver reacts
(ii) any two from:
- tiredness
- (drinking) alcohol
- (taking) drugs
- speed
- age
accept as an alternative factor distractions, eg using a mobile phone
(b) (i) 320000
allow 1 mark for correct substitution, ie \({ }^{\frac{1}{2}} \times 1600 \times 20^{2}\) provided no subsequent step shown
(ii) 320000 or their (b)(i)
(iii) 40
or
\[
\begin{aligned}
& \frac{\text { their (b)(ii) }}{8000} \text { correctly calculated } \\
& \text { allow } 1 \text { mark for statement work done = KE lost } \\
& \text { or } \\
& \text { allow } 1 \text { mark for correct substitution, ie } \\
& 8000 \times \text { distance }=320000 \text { or their (b)(ii) }
\end{aligned}
\]
(iv) any one from:
- icy / wet roads
accept weather conditions
- (worn) tyres
- road surface
- mass (of car and passengers) accept number of passengers
- (efficiency / condition of the) brakes
(v) (work done by) friction (between brakes and wheel) do not accept friction between road and tyres / wheels
(causes) decrease in KE and increase in thermal energy accept heat for thermal energy accept KE transferred to thermal energy
(c) the battery needs recharging less often accept car for battery
orincreases the range of the car
accept less demand for other fuels or lower emissions or lower fuel costs environmentally friendly is insufficient
as the efficiency of the car is increased accept it is energy efficient
the decrease in (kinetic) energy / work done charges the battery (up)

Q1.(a) Some students have designed and built an electric-powered go-kart. After testing, the students decided to make changes to the design of their go-kart.

Final design \(\mathbf{Y}\)

The go-kart always had the same mass and used the same motor.
The change in shape from the first design \((\mathbf{X})\) to the final design \((\mathbf{Y})\) will affect the top speed of the go-kart.

Explain why.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
(b) The final design go-kart, \(\mathbf{Y}\), is entered into a race.

The graph shows how the velocity of the go-kart changes during the first 40 seconds of the race.

(i) Use the graph to calculate the acceleration of the go-kart between points \(\mathbf{J}\) and \(\mathbf{K}\).

Give your answer to two significant figures.
\(\qquad\)
\(\qquad\)
\(\qquad\)
Acceleration \(=\) \(\qquad\) \(\mathrm{m} / \mathrm{s}^{2}\)
(ii) Use the graph to calculate the distance the go-kart travels between points \(\mathbf{J}\) and \(\mathbf{K}\).
\(\qquad\)
\(\qquad\)
\(\qquad\)
Distance \(=\) \(\qquad\) m
(iii) What causes most of the resistive forces acting on the go-kart?
\(\qquad\)

Q2.The stopping distance of a car is the sum of the thinking distance and the braking distance.
The table below shows how the thinking distance and braking distance vary with speed.
\begin{tabular}{|l|c|c|}
\hline \begin{tabular}{c}
Speed \\
in \(\mathbf{m} / \mathbf{s}\)
\end{tabular} & \begin{tabular}{c}
Thinking \\
distance \\
in \(\mathbf{m}\)
\end{tabular} & \begin{tabular}{c}
Braking \\
distance \\
in \(\mathbf{m}\)
\end{tabular} \\
\hline 10 & 6 & 6.0 \\
\hline 15 & 9 & 13.5 \\
\hline
\end{tabular}

\section*{Page 3}
\begin{tabular}{|l|c|c|}
\hline 20 & 12 & 24.0 \\
\hline 25 & 15 & 37.5 \\
\hline 30 & 18 & 54.0 \\
\hline
\end{tabular}
(a) What is meant by the braking distance of a vehicle?
\(\qquad\)
\(\qquad\)
(b) The data in the table above refers to a car in good mechanical condition driven by an alert driver.

Explain why the stopping distance of the car increases if the driver is very tired.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
(c) A student looks at the data in the table above and writes the following:
thinking distance \(\propto\) speed
thinking distance \(\propto\) speed
Explain whether the student is correct.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
(d) Applying the brakes with too much force can cause a car to skid.

The distance a car skids before stopping depends on the friction between the road surface and the car tyres and also the speed of the car.

Friction can be investigated by pulling a device called a 'sled' across a surface at constant speed.

The figure below shows a sled being pulled correctly and incorrectly across a surface.

The constant of friction for the surface is calculated from the value of the force pulling the sled and the weight of the sled.

Why is it important that the sled is pulled at a constant speed?
Tick one box.
If the sled accelerates it will be difficult to control.
If the sled accelerates the value for the constant of friction will be wrong.

If the sled accelerates the normal contact force will change.

(e) If the sled is pulled at an angle to the surface the value calculated for the constant of friction would not be appropriate.

Explain why.
\(\qquad\)
\(\qquad\)
\(\qquad\)
(f) By measuring the length of the skid marks, an accident investigator determines that the distance a car travelled between the brakes being applied and stopping was 22 m.

The investigator used a sled to determine the friction. The investigator then calculated that the car decelerated at \(7.2 \mathrm{~m} / \mathrm{s}^{2}\).

Calculate the speed of the car just before the brakes were applied.
Give your answer to two significant figures.
Use the correct equation from the Physics Equation Sheet.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Speed = \(\mathrm{m} / \mathrm{s}\)

Q3.The London Eye is one of the largest observation wheels in the world.

© Angelo Ferraris/Shutterstock
The passengers ride in capsules. Each capsule moves in a circular path and accelerates.
(a) Explain how the wheel can move at a steady speed and the capsules accelerate at the same time.
\(\qquad\)
\(\qquad\)
\(\qquad\)
(b) In which direction is the resultant force on each capsule?
\(\qquad\)
(c) The designers of the London Eye had to consider three factors which affect the resultant force described in part (b).

Two factors that increase the resultant force are:
- \(\quad\) an increase in the speed of rotation
- \(\quad\) an increase in the total mass of the wheel, the capsules and the passengers.

Name the other factor that affects the resultant force and state what effect it has on

\section*{Page 7}
the resultant force.
\(\qquad\)
\(\qquad\)

Q4.(a) The graphs show how the velocity of two cars, \(\mathbf{A}\) and \(\mathbf{B}\), change from the moment the car

\section*{Page 8}
drivers see an obstacle blocking the road.

Car A

Car B

One of the car drivers has been drinking alcohol. The other driver is wide awake and alert.
(i) How does a comparison of the two graphs suggest that the driver of car \(\mathbf{B}\) is the one who has been drinking alcohol?
\(\qquad\)
\(\qquad\)
(ii) How do the graphs show that the two cars have the same deceleration?
\(\qquad\)
\(\qquad\)
(iii) Use the graphs to calculate how much further car \(\mathbf{B}\) travels before stopping compared to car A.

Show clearly how you work out your answer.
\(\qquad\)
\(\qquad\)
\(\qquad\)
(b) In a crash-test laboratory, scientists use sensors to measure the forces exerted in collisions. The graphs show how the electrical resistance of 3 experimental types of sensor, \(\mathbf{X}, \mathbf{Y}\), and \(\mathbf{Z}\), change with the force applied to the sensor.

Which of the sensors, \(\mathbf{X}, \mathbf{Y}\) or \(\mathbf{Z}\), would be the best one to use as a force sensor?

Give a reason for your answer.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Q5.A bus is taking some children to school.
(a) The bus has to stop a few times. The figure below shows the distance-time graph for part of the journey.

(i) How far has the bus travelled in the first 20 seconds?

Distance travelled \(=\) \(\qquad\) m
(ii) Describe the motion of the bus between 20 seconds and 30 seconds.
\(\qquad\)
\(\qquad\)
(iii) Describe the motion of the bus between 30 seconds and 60 seconds.

Tick \((\checkmark)\) one box.

Page 11
\begin{tabular}{|l|l|}
\hline Reversing & \\
\hline Travelling at constant speed & \\
\hline
\end{tabular}
(iv) What is the speed of the bus at 45 seconds?

Show clearly on the figure above how you obtained your answer.
\(\qquad\)
\(\qquad\)
\(\qquad\)
Speed =
\(\qquad\) m / s
(b) Later in the journey, the bus is moving and has 500000 J of kinetic energy. The brakes are applied and the bus stops.
(i) How much work is needed to stop the bus?
Work = .. J
(ii) The bus stopped in a distance of 25 m .

Calculate the force that was needed to stop the bus.
\(\qquad\)
\(\qquad\)
\[
\text { Force = .. } \text { I }
\]
(iii) What happens to the kinetic energy of the bus as it is braking?
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Q6.(a) The stopping distance of a vehicle is made up of two parts, the thinking distance and
the braking distance.
(i) What is meant by thinking distance?
\(\qquad\)
\(\qquad\)
(ii) State two factors that affect thinking distance.

1
\(\qquad\)
2 \(\qquad\)
\(\qquad\)
(b) A car is travelling at a speed of \(20 \mathrm{~m} / \mathrm{s}\) when the driver applies the brakes. The car decelerates at a constant rate and stops.
(i) The mass of the car and driver is 1600 kg .

Calculate the kinetic energy of the car and driver before the brakes are applied.
\(\qquad\)
\(\qquad\)
\(\qquad\)
Kinetic energy = J
(ii) How much work is done by the braking force to stop the car and driver?

Work done \(=\).. J
(iii) The braking force used to stop the car and driver was 8000 N .

Calculate the braking distance of the car.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Braking distance = m
(iv) The braking distance of a car depends on the speed of the car and the braking force applied.

State one other factor that affects braking distance.
\(\qquad\)
\(\qquad\)
(v) Applying the brakes of the car causes the temperature of the brakes to increase.

Explain why.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
(c) Hybrid cars have an electric engine and a petrol engine. This type of car is often fitted with a regenerative braking system. A regenerative braking system not only slows a car down but at the same time causes a generator to charge the car's battery.

State and explain the benefit of a hybrid car being fitted with a regenerative braking system.
\(\qquad\)
\(\qquad\)
\(\qquad\)
moment \(=252\)
allow 252 with no working shown for 2 marks
allow 25200 with no working shown for 1 mark
(b) the clockwise moment (of child B) decreases
making it is less than the anticlockwise moment (of child A) accept so moments are no longer balanced
so child A moves downwards
or
so child B moves upwards

M2. (a) centre of \(\mathbf{X}\) at the centre of the concentric circles judge by eye that the intention is correct
(b) drawn from any corner to the diagonally opposite corner judge by eye that the intention is correct or from the mid-point of any side to the mid-point of the opposite side if more than one axis of symmetry has been drawn, accept only if both / all are correct
(c) a turning
accept any unambiguous indication

M3. lever
turning effect
pivot
for 1 mark each

M4. (a) (i) moment
(ii) rotation
(iii) the girl moves nearer to point \(\mathbf{P}\)
(b) (i) X drawn in the centre of the space enclosed by the tyre judge by eye
(ii) below

M5. (a) 1250
allow 1 mark for correct substitution ie \(500 \times 2.5\) provided there is no subsequent calculation
(b) (i) smaller than
(ii) force (exerted) further from axis of rotation (than the weight) accept pivot for axis of rotation
(c) increase the force (exerted)
do not accept increase distance of force from axis of rotation

M6. (a) C
(b) moment
accept any unambiguous correct indication
(c) bigger than
accept any unambiguous correct indication
(d) \(120(\mathrm{Ncm})\)
allow 1 mark for correct substitution
ie \(12 \times 10\)

M7. (a) (i) 75
allow 1 mark for correct substitution ie \(250 \times 0.3\)
do not credit if subsequent step shown
allow 1 mark for an answer 7500
(ii) Nm
(b) force is (applied) further from the nut / pivot / axis of rotation handle is longer is insufficient do not accept less force needed
moment (on wrench) is larger

M8. (a) 360
allow 1 mark for correct substitution ie \(300 \times 1.2\) provided no subsequent step shown
(b) the force is applied further from the axis of rotation accept pivot / (tree) stump for 'axis of rotation'
or
this increases the moment of the force increases the force on the (tree) stump

M9.
(a) centre of \(X\) drawn at centre of pendulum bob
judged by eye
accept dot drawn at centre of circle
(b) (i) 2
allow 1 mark for correct substitution, ie \(\frac{1}{0.5}\) provided no subsequent step shown
(ii) 30or60 \(\div\) their (b)(i) correctly calculated
allow 1 mark for \(\frac{60}{2}\)
or \(\frac{60}{\text { their (b)(i) }}\)
or \(0.5 \times 60\)
provided no subsequent step shown
(c) 51.2
allow 1 mark for correct substitution, ie \(64 \times 0.8\) provided no subsequent step shown
(d) it increases (the moment)
must be comparative
accept 1 mark for calculation of the moment \(=64(\mathrm{Nm})\)

M10. (a) 3000
allow 1 mark for correct substitution, ie \(600 \times 5\) provided no subsequent step
(b) anticlockwise moment must be both words
(c) (i) 3400
allow 3.4 kilo (newtons)
(ii) as the distance (of the girl from point A) increases, force F increases allow gets bigger for increases
force is (directly) proportional to distance will negate any correct response
push down on the rod with a greater force
(b) particles are close together
so no room for more movement
dependent on 1st marking point
(c) (i) downward force produces pressure in liquid reference to compression of liquid negates this mark
this pressure is the same at all points in a liquid or this pressure is transmitted equally through the liquid and \(P=F / A\) or \(F=P \times A\)
area (at load) bigger (so force bigger)
(ii) the force acting on the car moves less distance than the effort force

\section*{Q1.Two children, \(\mathbf{A}\) and \(\mathbf{B}\), are sitting on a see-saw, as shown in the figure below.}

The see-saw is balanced.

(a) Use the following equation to calculate the moment of child \(\mathbf{B}\) about the pivot of the see-saw.
\[
\text { moment of a force }=\text { force } \times \text { distance }
\]

Give your answer in newton-metres
\(\qquad\)
\(\qquad\)
\(\qquad\)
Moment = .. Nm
(b) Use the idea of moments to explain what happens when child \(\mathbf{B}\) moves closer to the pivot.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Q2. The drawing shows a sign which hangs outside a shop.

(a) Draw an \(\mathbf{X}\) on the sign so that the centre of your \(\mathbf{X}\) is at the centre of mass of the sign.
(b) Use a ruler to draw one axis of symmetry on the sign.
(c) One force which acts on the sign is its weight.

Complete the following sentence by drawing a ring around the correct line in the box.
\begin{tabular}{|l|l|}
\cline { 2 - 3 } & The moment of the weight produces \\
& a balancing \\
a turning & effect. \\
\hline
\end{tabular}

Q3. A spanner makes it a lot easier to loosen a bolt.

> You cannot usually loosen a bolt with your fingers.

It is easier with a spanner.

Choose words from this list to complete the sentences below.
lever piston pivot pulley turning effect

The spanner is a simple \(\qquad\)
You use it to produce a bigger on the bolt.

A longer spanner works better.
This is because there is a bigger distance between your force and the \(\qquad\)
(Total 3 marks)

Q4. Two children visit a playground.
(a) The diagram shows them on a see-saw. The see-saw is balanced.

Complete the following sentences by drawing a ring around the correct word or line in the box.
(i) The turning effect of the girl's weight is called her force.
oad.
moment.
(iii) To make end \(\mathbf{A}\) of the see-saw go up, \(\begin{aligned} & \text { the boy moves nearer to point } \mathbf{P} \text {. } \\ & \text { the girl moves nearer to point } \mathbf{P} . \\ & \text { the girl moves nearer to end } \mathbf{A} .\end{aligned}\)
(b) In another part of the playground, a tyre has been suspended from a bar.
(i) Draw an \(\mathbf{X}\) on the diagram so that the centre of the \(\mathbf{X}\) marks the centre of
mass of the tyre.

(ii) Complete the sentence by using the correct word or phrase from the box.
\begin{tabular}{|lll|}
\hline above below & to the left of & to the right of \\
\hline
\end{tabular}

If the suspended tyre is pushed, it will come to rest with its centre of mass
directly \(\qquad\) the point of suspension.

Q5.The diagram shows someone starting to lift the end of a heavy wooden pole.

(a) Use the equation in the box to calculate the moment produced by the weight of the pole.
\begin{tabular}{|cc|}
\hline \begin{tabular}{c}
moment \\
ce \(\times\)
\end{tabular} & \(=\) for perpendicular distance from the \\
line of \\
action of the force to the axis of \\
rotation
\end{tabular}
\(\qquad\)
\(\qquad\)
Moment \(=\) Nm
(b) (i) Complete the following sentence by drawing a ring around the correct line in the box.
The smallest force needed to lift the end of the pole will be \begin{tabular}{l}
bigger than \\
the same as \\
smaller than \\
\hline
\end{tabular}
the weight of the pole.
(ii) Give a reason for your answer to part (b)(i).
\(\qquad\)
\(\qquad\)
(c) How could the person lifting the end of the pole increase the moment?
\(\qquad\)
\(\qquad\)

Q6. (a) A student holds a ruler at one end and slides a weight along the ruler.

At which point, \(\mathbf{A}, \mathbf{B}\) or \(\mathbf{C}\), will the turning effect of the weight feel greatest?
Write your answer, A, B or \(\mathbf{C}\), in the box.

(b) Complete the following sentence by drawing a ring around the correct word in the box.

The turning effect of a force is called the

(c) In a human arm, the biceps muscle provides the force needed to hold the arm horizontal.
A student uses a model in which a rubber band represents the biceps muscle.

Complete the following sentence by drawing a ring around the correct line in the box.

To hold the model arm horizontal, the pull from the rubber band will be
\begin{tabular}{|l|}
\hline bigger than \\
smaller than \\
the same as \\
\hline
\end{tabular} the force caused by the weight.
(d) The diagram shows a long spanner.

Use the equation in the box to calculate the moment, in Ncm , being produced.
\[
\begin{array}{|l}
\text { moment }=\text { force } \quad \begin{array}{l}
\times \text { perpendicular distance from the line of } \\
\text { action of the force to the axis of rotation }
\end{array}
\end{array}
\]

Show clearly how you work out your answer.

Moment = Ncm
(Total 5 marks)

Q7. A company makes a wheel wrench with an extending handle. The company claims that the extending handle makes it easier to loosen the wheel nuts on a car.

The diagram shows the wheel wrench being used without the handle extended.

(a) (i) Use the equation in the box to calculate the moment produced by the force on the wrench.
```

moment = force }\times\mathrm{ perpendicular distance from the line of
action of the force to the axis of rotation

```

Show clearly how you work out your answer.
\(\qquad\)
\(\qquad\)
Moment \(=\) \(\qquad\) newton metres
(ii) Units can be written in words or symbols.

Which of the following is the unit for a moment written using symbols?
Draw a ring around your answer.
nm
Nm
nM
NM
(b) The wheel nut will not move and so the handle of the wrench is extended.

It is now easy to loosen the wheel nut using the same force as before.
Explain why.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Q8. The diagram shows a gardener using a steel bar to lift a tree stump out of the ground.

When the gardener pushes with a force of \(300 \mathbf{N}\), the tree stump just begins to move.
(a) Use the equation in the box to calculate the moment produced by the 300 N force.

> moment =
force \(x\) perpendicular distance from the line of action of the force to the axis of rotation

Show clearly how you work out your answer.
\(\qquad\)
\(\qquad\)
Moment \(=\) \(\qquad\) newton metres
(b) Using a longer steel bar would have made it easier for the gardener to lift the tree stump out of the ground.

Explain why.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Q9.(a) The diagram shows a pendulum.

Draw an \(\mathbf{X}\) on the diagram above, so that the centre of the \(\mathbf{X}\) marks the centre of mass of the pendulum bob.
(b) A large clock keeps time using the swing of a pendulum.

(i) The frequency of the swinging pendulum is 0.5 hertz.

Calculate the periodic time of the pendulum.
\(\qquad\) seconds
(ii) Calculate the number of complete swings the pendulum would make in 60 seconds.

Use your answer from part (b)(i) in your calculation.
\(\qquad\)
\(\qquad\)
\(\qquad\)
Number of swings in 60 seconds \(=\) \(\qquad\)
(c) The diagram shows a clock on a trolley.

The trolley is being used to move the clock.

Calculate the moment of the 64 N force about the pivot.
Moment of the force = Nm
(d) The design of the trolley is now changed to make it taller.

How does making the trolley taller affect the moment produced by the 64 N force about the pivot?
\(\qquad\)
\(\qquad\)

Q10.Figure 1 shows a girl standing on a diving board.
Figure 1

(a) Calculate the moment of the girl's weight about Point \(\mathbf{A}\).
\(\qquad\)
\(\qquad\)
\(\qquad\)
Moment \(=\) \(\qquad\) newton metres
(b) Figure 2 shows the girl standing at a different place on the diving board. The support provides an upward force \(\mathbf{F}\) to keep the diving board balanced.

Figure 2

Complete the following sentence.
The diving board is not turning. The total clockwise moment is balanced
by the total \(\qquad\) ..
(c) Figure 3 shows how the upward force \(\mathbf{F}\) varies with the distance of the girl from Point A.

Figure 3

(i) Use Figure 3 to determine the upward force \(\mathbf{F}\) when the girl is standing at a distance of 3 metres from point \(\mathbf{A}\).
Upward force F = ... newtons
(ii) What conclusion should be made from Figure 3?
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Q11.Levers and hydraulic systems can act as force multipliers.}
(a) Figure 1 shows a girl trying to lift a large rock using a long rod as a lever.

Figure 1

The girl is pushing down on the rod but is just unable to lift the rock.
Which of the following changes would allow her to lift the rock?
Tick (\(\checkmark\)) two boxes.
\begin{tabular}{|l|l|}
\hline Change & Tick (\(\checkmark\)) \\
\hline Move the pivot away from the rock & \\
\hline Make the rod longer & \\
\hline Push the rod upwards & \\
\hline Push down on the rod with a greater force & \\
\hline
\end{tabular}
(b) Liquids are used in hydraulic systems because they are virtually incompressible.

Explain how the spacing of particles in a liquid cause it to be virtually incompressible.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
(c) Figure 2 shows a man using a car jack to lift his car.

Figure 2

© lisaf \(\mathrm{k} /\) iStock/Thinkstock
Figure 3 shows a simple diagram of a car jack.
Figure 3

(i) The man pushes down with an effort force. This results in a much larger force acting upwards on the car.

Use information from Figure 3 to explain how.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
(ii) Which of the following statements about the forces in Figure \(\mathbf{3}\) is correct? Tick \((\checkmark)\) one box.
\begin{tabular}{|l|l|}
\cline { 2 - 3 } \multicolumn{1}{l|}{} & Tick \((\checkmark)\) \\
\hline \begin{tabular}{l}
The force acting on the car moves a greater distance than the effort \\
force.
\end{tabular} & \\
\hline The force acting on the car moves less distance than the effort force. & \\
\hline \begin{tabular}{l}
The force acting on the car moves the same distance as the effort \\
force.
\end{tabular} & \\
\hline
\end{tabular}

M1. (a) 3800
allow 1 mark for 2000
allow 1 mark for 1800
if neither of above scored, allow correct substitution for 1 mark \((800 \times 2.5)+(600 \times 3)\)
if moments have been calculated incorrectly, allow 1 mark for adding their two moment values correctly
newton metres or Nm
do not allow nm or NM
(b) as the girl increases her distance (from the pivot) the clockwise moment increases
(F must increase) as the anticlockwise moment must increase
so (the anticlockwise moment) is equalled / balanced by the clockwise moment
or
so resultant / overall moment (on the board) is zero accept to balance / equal the moments to balance the board is insufficient

M2. (a) (i) \(X\) at the centre of the lifebelt
measuring from the centre of \(\boldsymbol{X}\), allow 2 mm tolerance in any direction
(ii) any two from:
if \(X\) is on vertical line below the hanger (but not at centre) can gain the first point only
below the point of suspension
accept '(vertically) below \(\boldsymbol{Y}^{\prime}\)
at the centre (of the lifebelt)
accept in the middle'
(because) the lifebelt / it is symmetrical
or (because) the mass / weight is evenly distributed
(b) Nm or newton metre(s)
accept Newton metre(s)
do not accept any ambiguity in the symbol ie NM, nM or nm

750
\((\) moment \()=\) force \(\times\) (perpendicular) distance (between line of action and pivot)
or \((\) moment \()=500 \times 1.5\) gains 1 mark
(c) Quality of written communication:
for 2 of the underlined terms used in the correct context
any three connected points from:
low(er) centre of mass / gravity
or centre of mass / gravity will be close(r) to the wheels /axle / ground
(more) stable
or less unstable
less likely to fall over
accept 'less likely to overturn’
do not accept 'will not fall over'
the turning effect / moment (of the weight of case) is less
or so less effort is needed to hold the case ignore references to pulling the case
so the pull on her arm is less

M3. (a) 810000
newton-metres / Nm
(b) any three from:
ignore references to force throughout
- their weight / mass can be altered / adjusted
- so that the crane remains stable
allow does not topple
- so that the (total) clockwise moment equals the (total) anticlockwise moment
do not allow just 'moments are equal'
- because not all containers are the same weight / mass
do not allow 'not all containers are the same size / volume'
- because not all containers will be / need to move the same distance (from the crane)
- to keep the centre of mass (of the upper crane and container) in/ above the base of the tower
- so that the crane remains in equilibrium/balanced

M4. (a) point at which its mass (seems to) act or point at which gravity (seems to) act accept ... its weight acts accept correct statements if the intent is clear e.g.. .. if suspended, the centre of gravity will be directly under the point of suspension
e.g.... (if the object is symmetrical), the centre of gravity is on the or an axis (of symmetry) do not credit just 'it is a point'
(b) The answer to this question requires good English in a sensible order with correct use of scientific terms. Quality of written communication should be considered in crediting points in the mark scheme
maximum of 4 marks if ideas not well expressed
any five from:
clamp (steel) rod (horizontally)
no marks if method quite unworkable
hang plastic / sheet by rod through (one) hole
hang plumb line from rod
mark ends of plumb line on the sheet and use the ruler to draw a straight line
repeat with other hole
centre of mass is where the lines cross
check by balancing at this point
maximum of 3 marks if no 'repeat with other hole'
(c) (i) (turning) effect or moment
force
distance
all three correct

\section*{Page 6}
accept weight
accept length
(ii) 17.6
allow \(44 \times 0.4\) or \(0.4 \times 44\) for 1 mark

Nm or newton metre(s)
do not accept \(\mathrm{N} / \mathrm{m}\) or \(\mathrm{N} / \mathrm{cm}\)
1760 Ncm gains all 3 marks

M5. (a) (i) turning effect
accept turning force
accept force \(x\) distance
(accept symbols only if correctly defined)
do not accept newtons x metres
(ii) stop apparatus falling over
accept holds the stand in place accept make it safer / stable
references to balanced / equilibrium are insufficient
(iii) as \(x\) increases \(y\) increases
in same proportion / ratios
allow both marks for they are directly proportional
Or
a specific example eg doubling \(y\), doubles \(X\)
allow both marks for a correct answer giving figures
eg they increase in the ratio of 1 to 7
allow for 1 mark positive correlation
(iv) the centre of mass of the ruler is at the axis of rotation
(b) 108
allow 1 mark for correct substitution ie \(240 \times 0.45\)
newton metres / Nm
symbols must be correct
for full credit the unit must be consistent with the numerical answer

M6. (a) moment or torque do not credit 'leverage’
(b) \(4(2)\)
either \(0.20 \times 20\) (1) or allow '400' (1)
(c) use a longer spanner
or increases the perpendicular distance / length
or 'fit a pipe over the (end of the) spanner (to lengthen it)'
note 'lever' refers to 'spanner'
note change the . . . (0)
ignore references to wider / larger nut
use a greater force / pull
either order

M7. (a) any two from:
- inversely proportional
- as the load gets biggerthe (maximum safe) distance gets less
allow 'as the mass increases the distance decreases' accept an unspecified response e.g. 'big load at a short distance' for (1)
- \(\quad\) load \(\times\) distance \(=60(\mathrm{kNm})\)
(b) yes, because \(30 \times 2=60\) (2)
accept for (1) a correct but insufficiently explained response e.g. 'yes because it's safe'
accept for (2) a correct response which is sufficiently explained
e.g. 'yes, because \(60(\mathrm{kNm})\) at 1 metre is safe and \(30(\mathrm{kNm})\) is half the load at twice the distance
do not accept 'no' and do not accept just 'yes'
do not accept 'yes, because 30 is between 24 and 40 and 2 is between 2.5 and 1.5'
do not accept 'the crane/ cable may break' or other dangers
(c) the crane may/will topple over/fall over/forward
(d) results of experiments on this mobile crane accept any unambiguous indication

Q1.(a) Figure 1 shows a girl standing on a diving board.
Figure 1

Calculate the total clockwise moment of the weight of the diving board and the weight of the girl about Point A. Give the unit.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Total clockwise moment about Point \(\mathbf{A}=\) \(\qquad\)
(b) Figure 2 shows the girl standing at a different place on the diving board. The support provides an upward force \(\mathbf{F}\) to keep the diving board balanced.

Figure 2

Figure 3 shows how the upward force \(\mathbf{F}\) varies with the distance of the girl from Point A.

Figure 3

Explain, in terms of clockwise and anticlockwise moments, why the upward force \(\mathbf{F}\) increases as shown in Figure 3.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Q2. (a) The diagram shows a lifebelt. It is hanging freely from hook \(\mathbf{Y}\).
(i) On the diagram, mark with an \(\mathbf{X}\) the point where you think the centre of mass of the lifebelt will be.

(ii) Explain why you have chosen this point.
\(\qquad\)
\(\qquad\)
\(\qquad\)
(b) The drawing shows Susan on a diving board. She is 1.5 metres from point \(\mathbf{P}\) and she weighs 500 N .

Calculate her moment (turning effect) about point \(\mathbf{P}\). Show clearly how you work out your answer and give the unit.
\(\qquad\)
\(\qquad\)
Moment about \(\mathbf{P}=\) \(\qquad\)
(c) Susan has a case with wheels.

When she packs this case, she puts the heaviest items at the end where the wheels are.
This means that the heaviest items are less likely to crush the other contents and it helps her to find things when she opens the case.

Explain another advantage of packing her case in this way.
To gain full marks in this question you should write your ideas in good English. Put
them into a sensible order and use the correct scientific words.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Q3. The diagram shows a crane which is loading containers onto a ship.

(a) Calculate the moment of the container which is being loaded.

Show clearly how you work out your answer and give the unit.
\(\qquad\)
\(\qquad\)
Moment of the container \(=\) \(\qquad\)
(b) Suggest and explain the purpose of the large concrete blocks.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Q4. (a) Every object has a centre of mass. What is meant by the centre of mass?
\(\qquad\)
\(\qquad\)
(b) The drawing shows a thin sheet of plastic. The sheet is 250 mm wide. Two holes, each with a radius of 2 mm , have been drilled through the sheet.

Describe how you could use:
- a clamp and stand
- a steel rod 100 mm long and with a radius of I mm
- a weight on a thin piece of string (= a plumb line)
- a ruler
- a pen which will write on the plastic sheet
to find the centre of mass of the plastic sheet.

To gain full marks in this question you should write your ideas in good English. Put them into a sensible order and use the correct scientific words.
\(\qquad\)
(c) There is a trapdoor in the ceiling of a house.

The trapdoor weighs 44 N .
The drawing shows a side view of the trapdoor.

(i) Complete the three spaces to give the equation which is used to calculate the turning effect of a force.
\(\qquad\) = \(\qquad\) \(\times\) perpendicular between line of action and pivot
(ii) Calculate the turning effect, about the hinge, due to the weight of the trapdoor. Show clearly how you work out your final answer and give the unit.
\(\qquad\)
\(\qquad\)
Turning effect \(=\)

Q5. (a) A student investigates the moment of a force.
(i) What does the word moment mean in this sentence?
\(\qquad\)
\(\qquad\)
(ii) The diagram shows how she sets up her apparatus.

Suggest the purpose of the G-clamp.
\(\qquad\)
\(\qquad\)
(iii) A horizontal rod fits into a hole at the centre of the metre ruler. This is the axis of rotation. The student changes the load \(\mathbf{Y}\) and adjusts the distance \(\mathbf{X}\) until the metre ruler is horizontal. She takes six pairs of measurements which are shown in the table.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c}
Load \(\mathbf{Y}\) \\
in newtons
\end{tabular} & \begin{tabular}{c}
Distance \(\mathbf{X}\) \\
in centimetres
\end{tabular} \\
\hline 1 & 7 \\
\hline 2 & 14 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 3 & 21 \\
\hline 4 & 28 \\
\hline 5 & 35 \\
\hline 6 & 42 \\
\hline
\end{tabular}

Explain fully how distance \(\mathbf{X}\) varies with load \(\mathbf{Y}\).
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
(iv) The weight of the ruler can be ignored in this experiment.

Which statement gives the reason why?
Put a tick \((\checkmark)\) in the box next to your answer.
The weight of the ruler is so small it is negligible.

The centre of mass of the ruler is at the axis of rotation.

The ruler is a symmetrical object.

(b) In the summer, a town council fits hanging baskets to some of its lamp posts.

Use the information in the diagram and the equation in the box to calculate the moment produced by the weight of the hanging basket about an axis through point A.
```

moment = force }\times\mathrm{ perpendicular distance from the line of
action of the force to the axis of rotation

```

Show clearly how you work out your answer and give the unit.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Moment \(=\)

Q6. A spanner gives a turning effect to undo a nut.
(a) Complete the sentence.

The turning effect of a force is called the of the force.
(b) The diagram shows a spanner being used.

Calculate the spanner's turning effect in newton metres.

Show clearly how you work out your answer.
\(\qquad\)
\(\qquad\)
Turning effect \(=\) \(\qquad\) Nm
(c) Give two ways in which you can increase the spanner's turning effect.

1 \(\qquad\)

2 \(\qquad\)

Q7. The diagram shows a small mobile crane. It is used on a building site.

The distance, \(d\), is measured to the front of the cab.
The table shows information from the crane driver's handbook.
\begin{tabular}{|c|c|}
\hline Load in kilonewtons (kN) & \begin{tabular}{c}
Maximum safe distance, \(\boldsymbol{d}\), in \\
metres (m)
\end{tabular} \\
\hline 10 & 6.0 \\
\hline 15 & 4.0 \\
\hline 24 & 2.5 \\
\hline 40 & 1.5 \\
\hline 60 & 1.0 \\
\hline
\end{tabular}
(a) What is the relationship between the load and the maximum safe distance?
\(\qquad\)
\(\qquad\)
\(\qquad\)
(b) The crane driver studies the handbook and comes to the conclusion that a load of

30 kN would be safe at a distance, \(d\), of 2.0 metres.
Is the driver correct?
Explain your answer.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
(c) What is the danger if the driver does not follow the safety instructions?
\(\qquad\)
\(\qquad\)
(d) How should the data in the table have been obtained?

Put a tick \((\checkmark)\) in the box next to your answer.
average results from an opinion poll of mobile crane drivers

copied from a handbook for a similar crane

results of experiments on a model mobile crane

results of experiments on this mobile crane

M1. (a) motor effect
(b) increase the strength of the magnet
or
increase the current
(c) \(4.8 \times 10^{-4}=\mathrm{F} \times 8 \times 10^{-2}\)
\(\mathrm{F}=6 \times 10^{-3}(\mathrm{~N})\)
\(6 \times 10^{-3}=\mathrm{B} \times 1.5 \times 5 \times 10^{-2}\)
\(B=\frac{6 \times 10^{-3}}{7.5 \times 10^{-2}}\)
\(B=8 \times 10^{-2}\) or 0.08
allow \(8 \times 10^{-2}\) or 0.08 with no working shown for 5 marks a correct method with correct calculation using an incorrect value of \(F\) gains 3 marks

Tesla
accept \(T\)

M2. (a) the point at which the (total) mass seems to act / appears to be concentrated accept 'weight' for 'mass' accept the point at which gravity seems to act do not accept a definitive statement eg where (all) the mass is
(b) wider / larger base marks are for a correct comparison
lower centre of mass
accept lower centre of gravity / c of g
(c) line of action (of the weight) lies / falls inside the base in each case the underlined term must be used correctly to gain the mark
the resultant moment returns mixer to its original position
\(\begin{aligned} & \text { accept there is no resultant moment / resultant moment is } \\ & \text { zero } \\ & \text { accept resulting moment for resultant moment } \\ & \text { do not accept converse argument }\end{aligned}\) 1

M3. (a) (i) will not fall over (1)
accept will not easily fall over (2)
orcentre of mass will remain above the base (1) (line of action of the) weight will remain above within the base
accept centre of gravity / c of g/c of m/cm
if the monitor is given a small push (1) depends on mark above
(ii) (total) clockwise moment = (total) anticlockwise moment or they are equal / balanced
(b) the position of the centre of mass has changed (1)the line of action of the weight is outside the base (1)producing a (resultant) moment (1)
points may be expressed in any order

M4. (a) 1.2

> allow 1 mark for conversion of 2.4 kN to 2400 N or for correct transformation without conversion ie \(d=2880 \div 2.4\)
metre(s)/m
(b) any two from:
- as the load increases the (total) clockwise moment increases
- danger is that the fork lift truck / the load will topple / tip forward
- (this will happen) when the total clockwise moment is equal to (or greater than) the anticlockwise moment
accept moments will not be balanced
- (load above 10.0 kN) moves line of action (from C of M) outside base (area)

M5. (a) \(960(\mathrm{Nm})\)
see-saw is in equilibrium
accept see-saw is balanced see-saw is stationary is insufficient
(total) clockwise moments = anticlockwise moment accept no resultant moment forces are balanced is insufficient an answer clockwise moments balance the anticlockwise moments gains 2 marks
(b) (i) \(600(\mathrm{Nm})\)
(ii) \(375(\mathrm{~N})\) or their (b)(i) \(\div 1.6\) correctly calculated do not credit if (b)(i) is larger than 960 allow 1 mark for correct substitution and transformation ie \(\frac{600}{1.6}\) or their (b)(i)

M6. (a) (i) current produces a magnetic field (around XY) accept current (in \(X Y\)) is perpendicular to the (permanent) magnetic field
(creating) a force (acting) on XY / wire / upwards reference to Fleming's left hand rule is insufficient
(ii) motor (effect)
(iii) vibrate / move up and down

5 times a second
only scores if first mark point scores
allow for 1 mark only an answer 'changes direction 5 times a second'
(b) 0.005
allow 1 mark for calculating moment of the weight as 0.04
(Ncm)andallow 1 mark for correctly stating principle of momentsorallow 2 marks for correct substitution ie \(F \times 8=2 \times 0.02\) or \(F \times 8=0.04\)

M7. (a) 38400

Nm or newton metres
do not credit ' \(n m\) ', 'mN' or 'metre newtons'
(b) \(16000(\mathrm{~N})\) or 16 kN
allow 1 mark for \(38400 \div 2.4\)
accept their (a) \(\div 2.4\) correctly calculated for \(\mathbf{2}\) marks accept their (a) \(\div 2.4\) for 1 mark

M8. (a) (i) turning accept turning ringed in the box
(ii) point at which mass (or weight) may be thought to be concentrated accept the point from which the weight appears to act allow focused for concentrated do not accept most / some of the mass do not accept region / area for point
(b) \(600(\mathrm{Nm})\)
\(400 \times 1.5\) gains 1 mark provided no subsequent steps shown
(c) (i) plank rotates clockwise accept girl moves downwards do not accept rotates to the right
(total) CM > (total) ACM
accept moment is larger on the girl's side
weight of see-saw provides CM
answer must be in terms of moment
maximum of \(\mathbf{2}\) marks if there is no reference to the weight of the see-saw
(ii) \(\mathrm{W}=445(\mathrm{~N})\)
\(W \times 1.5=(270 \times 0.25)+(300 \times 2.0)\) gains 2 marks allow for 1 mark: total \(C M=\) total \(A C M\) either stated or implied
or
\((270 \times 0.25)+(300 \times 2.0)\)
if no other marks given

M9.
(a) 60
allow 1 mark for correct substitution (with d in metres), ie \(36=\) \(F \times 0.6\)
an answer of 0.6 or 6 gains 1 mark
(b) the line of action of the weight lies outside the base / bottom (of the bag) accept line of action of the weight acts through the side accept the weight (of the bag) acts outside the base / bottom(of the bag)
a resultant / overall / unbalanced moment acts (on the bag)
accept the bag is not in equilibrium do not accept the bag is unbalanced```

